Zeitschriftenartikel zum Thema „Surrogate dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Surrogate dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Varsha D. Vyas. "Investigating the Commercial Surrogacy Sector in Mumbai: Trends, Challenges, and Dynamics." Journal of Information Systems Engineering and Management 10, no. 42s (2025): 1124–37. https://doi.org/10.52783/jisem.v10i42s.8265.
Der volle Inhalt der QuelleHuang, C.-K., Q. Tang, Y. K. Batygin, et al. "Symplectic neural surrogate models for beam dynamics." Journal of Physics: Conference Series 2687, no. 6 (2024): 062026. http://dx.doi.org/10.1088/1742-6596/2687/6/062026.
Der volle Inhalt der QuelleNAKAMURA, TOMOMICHI, and MICHAEL SMALL. "APPLYING THE METHOD OF SMALL–SHUFFLE SURROGATE DATA: TESTING FOR DYNAMICS IN FLUCTUATING DATA WITH TRENDS." International Journal of Bifurcation and Chaos 16, no. 12 (2006): 3581–603. http://dx.doi.org/10.1142/s0218127406016999.
Der volle Inhalt der QuelleKoutsoupakis, Josef, and Dimitrios Giagopoulos. "Drivetrain Response Prediction Using AI-based Surrogate and Multibody Dynamics Model." Machines 11, no. 5 (2023): 514. http://dx.doi.org/10.3390/machines11050514.
Der volle Inhalt der QuelleCharles, Giovanni, Timothy M. Wolock, Peter Winskill, Azra Ghani, Samir Bhatt, and Seth Flaxman. "Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 12 (2023): 14170–77. http://dx.doi.org/10.1609/aaai.v37i12.26658.
Der volle Inhalt der QuelleXu, Lin, Hongyu Nie, Xiangyang Cheng, Qi Wei, Hongyu Chen, and Jianfeng Tao. "Surrogate Model of Hydraulic Actuator for Active Motion Compensation Hydraulic Crane." Electronics 14, no. 13 (2025): 2678. https://doi.org/10.3390/electronics14132678.
Der volle Inhalt der QuelleChen, Menghui, Xiaoshu Gao, Cheng Chen, Tong Guo, and Weijie Xu. "A Comparative Study of Meta-Modeling for Response Estimation of Stochastic Nonlinear MDOF Systems Using MIMO-NARX Models." Applied Sciences 12, no. 22 (2022): 11553. http://dx.doi.org/10.3390/app122211553.
Der volle Inhalt der QuelleLiu, Shizhong, Ziyao Wang, Jingwen Chen, Rui Xu, and Dong Ming. "The Estimation of Knee Medial Force with Substitution Parameters during Walking and Turning." Sensors 24, no. 17 (2024): 5595. http://dx.doi.org/10.3390/s24175595.
Der volle Inhalt der QuelleGong, Xu, Zhengqi Gu, and Zhenlei Li. "Surrogate model for aerodynamic shape optimization of a tractor-trailer in crosswinds." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226, no. 10 (2012): 1325–39. http://dx.doi.org/10.1177/0954407012442295.
Der volle Inhalt der QuelleFeng, Yang, Chunfa Zhao, Xin Liang, and Zhan Bai. "SNN-Based Surrogate Modeling of Electromagnetic Force and Its Application in Maglev Vehicle Dynamics Simulation." Actuators 14, no. 3 (2025): 112. https://doi.org/10.3390/act14030112.
Der volle Inhalt der QuelleShe, N., and D. Basketfield. "Streamflow dynamics at the Puget Sound, Washington: application of a surrogate data method." Nonlinear Processes in Geophysics 12, no. 4 (2005): 461–69. http://dx.doi.org/10.5194/npg-12-461-2005.
Der volle Inhalt der QuelleGlaz, Bryan, Li Liu, Peretz P. Friedmann, Jeremy Bain, and Lakshmi N. Sankar. "A Surrogate-Based Approach to Reduced-Order Dynamic Stall Modeling." Journal of the American Helicopter Society 57, no. 2 (2012): 1–9. http://dx.doi.org/10.4050/jahs.57.022002.
Der volle Inhalt der QuelleKoutsoupakis, J., and D. Giagopoulos. "AI-Based Surrogate Models for Multibody Dynamics Systems." Journal of Physics: Conference Series 2647, no. 2 (2024): 022002. http://dx.doi.org/10.1088/1742-6596/2647/2/022002.
Der volle Inhalt der QuelleMAKINO, Kohei, Makoto MIWA, Kohei SHINTANI, Atsuji ABE, and Yutaka SASAKI. "Surrogate modeling of vehicle dynamics using deep learning." Proceedings of Design & Systems Conference 2019.29 (2019): 2209. http://dx.doi.org/10.1299/jsmedsd.2019.29.2209.
Der volle Inhalt der QuelleMarin-Lopez, A., J. A. Martínez-Cadena, F. Martinez-Martinez, and J. Alvarez-Ramirez. "Surrogate multivariate Hurst exponent analysis of gait dynamics." Chaos, Solitons & Fractals 172 (July 2023): 113605. http://dx.doi.org/10.1016/j.chaos.2023.113605.
Der volle Inhalt der QuelleSerafino, Aldo, Benoit Obert, and Paola Cinnella. "Multi-Fidelity Gradient-Based Strategy for Robust Optimization in Computational Fluid Dynamics." Algorithms 13, no. 10 (2020): 248. http://dx.doi.org/10.3390/a13100248.
Der volle Inhalt der QuelleFilip, Elena. "Navigating Surrogacy Contracts: Legal Aspects and Key Elements." Interdisciplinary Journal of Research and Development 12, no. 1 (2025): 138. https://doi.org/10.56345/ijrdv12n118.
Der volle Inhalt der QuelleBlubaugh, Frank. "Surrogate modeling in structural vibration problems with dynamic mode decomposition." Journal of the Acoustical Society of America 152, no. 4 (2022): A134. http://dx.doi.org/10.1121/10.0015794.
Der volle Inhalt der QuelleYounis, Adel, and Zuomin Dong. "High-Fidelity Surrogate Based Multi-Objective Optimization Algorithm." Algorithms 15, no. 8 (2022): 279. http://dx.doi.org/10.3390/a15080279.
Der volle Inhalt der QuelleQin, W. J., and J. Q. He. "Optimum Design of Local Cam Profile of a Valve Train." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224, no. 11 (2010): 2487–92. http://dx.doi.org/10.1243/09544062jmes2116.
Der volle Inhalt der QuelleMAKINO, Kohei, Makoto MIWA, Kohei SHINTANI, Atsuji ABE, and Yutaka SASAKI. "Surrogate modeling of vehicle dynamics using Recurrent Neural Networks." Transactions of the JSME (in Japanese) 86, no. 891 (2020): 20–00177. http://dx.doi.org/10.1299/transjsme.20-00177.
Der volle Inhalt der QuelleHabecker, F., R. Röhse, and T. Klüner. "Dissipative quantum dynamics using the stochastic surrogate Hamiltonian approach." Journal of Chemical Physics 151, no. 13 (2019): 134113. http://dx.doi.org/10.1063/1.5119195.
Der volle Inhalt der QuelleTokuda, Isao, Takaya Miyano, and Kazuyuki Aihara. "Surrogate analysis for detecting nonlinear dynamics in normal vowels." Journal of the Acoustical Society of America 110, no. 6 (2001): 3207–17. http://dx.doi.org/10.1121/1.1413749.
Der volle Inhalt der QuelleTan, Tian, Jin-song Dai, Yong-tao Zhang, Chao Meng, and Sheng-ye Lin. "Research on the dynamic characterization of hydraulic buffer based on gene expression programming approach." Journal of Physics: Conference Series 2891, no. 9 (2024): 092026. https://doi.org/10.1088/1742-6596/2891/9/092026.
Der volle Inhalt der QuelleCaron, Davide, Ángel Canal-Alonso, and Gabriella Panuccio. "Mimicking CA3 Temporal Dynamics Controls Limbic Ictogenesis." Biology 11, no. 3 (2022): 371. http://dx.doi.org/10.3390/biology11030371.
Der volle Inhalt der QuelleZeng, Wei, Xian Chao Wang, and Ying Sheng Wang. "Surrogating for High Dimensional Computationally Expensive Multi-Modal Functions with Elliptical Basis Function Models." Applied Mechanics and Materials 733 (February 2015): 880–84. http://dx.doi.org/10.4028/www.scientific.net/amm.733.880.
Der volle Inhalt der QuelleMariani, Valerio, Leonardo Pulga, Gian Marco Bianchi, Stefania Falfari, and Claudio Forte. "Machine Learning-Based Identification Strategy of Fuel Surrogates for the CFD Simulation of Stratified Operations in Low Temperature Combustion Modes." Energies 14, no. 15 (2021): 4623. http://dx.doi.org/10.3390/en14154623.
Der volle Inhalt der QuellePreen, Richard J., and Larry Bull. "Design Mining Interacting Wind Turbines." Evolutionary Computation 24, no. 1 (2016): 89–111. http://dx.doi.org/10.1162/evco_a_00144.
Der volle Inhalt der QuelleUeki, Ryosuke, Shota Hayashi, Masaya Tsunoda, et al. "Nongenetic control of receptor signaling dynamics using a DNA-based optochemical tool." Chemical Communications 57, no. 48 (2021): 5969–72. http://dx.doi.org/10.1039/d1cc01968f.
Der volle Inhalt der QuelleThiel, M., M. C. Romano, J. Kurths, M. Rolfs, and R. Kliegl. "Generating surrogates from recurrences." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1865 (2007): 545–57. http://dx.doi.org/10.1098/rsta.2007.2109.
Der volle Inhalt der QuelleSmall, Michael, and Kevin Judd. "Detecting Nonlinearity in Experimental Data." International Journal of Bifurcation and Chaos 08, no. 06 (1998): 1231–44. http://dx.doi.org/10.1142/s0218127498000966.
Der volle Inhalt der QuelleWang, Xu, and Kai Liu. "A Crash Surrogate Metric considering Traffic Flow Dynamics in a Motorway Corridor." Journal of Advanced Transportation 2018 (June 27, 2018): 1–7. http://dx.doi.org/10.1155/2018/9349418.
Der volle Inhalt der QuelleBender, Niels C., Torben Ole Andersen, and Henrik C. Pedersen. "Feasibility of Deep Neural Network Surrogate Models in Fluid Dynamics." Modeling, Identification and Control: A Norwegian Research Bulletin 40, no. 2 (2019): 71–87. http://dx.doi.org/10.4173/mic.2019.2.1.
Der volle Inhalt der QuelleMooney, Barbara L., Brian H. Morrow, Keith Van Nostrand, et al. "Elucidating the Properties of Surrogate Fuel Mixtures Using Molecular Dynamics." Energy & Fuels 30, no. 2 (2016): 784–95. http://dx.doi.org/10.1021/acs.energyfuels.5b01468.
Der volle Inhalt der QuelleGan, Chunbiao, and Shimin He. "Surrogate test for noise-contaminated dynamics in the Duffing oscillator." Chaos, Solitons & Fractals 38, no. 5 (2008): 1517–22. http://dx.doi.org/10.1016/j.chaos.2007.01.134.
Der volle Inhalt der QuelleForrester, Alexander I. J., Neil W. Bressloff, and Andy J. Keane. "Optimization using surrogate models and partially converged computational fluid dynamics simulations." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2071 (2006): 2177–204. http://dx.doi.org/10.1098/rspa.2006.1679.
Der volle Inhalt der QuelleFouladinejad, Nariman, Nima Fouladinejad, Mohamad Kasim Abdul Jalil, and Jamaludin Mohd Taib. "Development of a surrogate-based vehicle dynamic model to reduce computational delays in a driving simulator." SIMULATION 92, no. 12 (2016): 1087–102. http://dx.doi.org/10.1177/0037549716675956.
Der volle Inhalt der QuelleRubin, Sergio, and Michel Crucifix. "Earth’s Complexity Is Non-Computable: The Limits of Scaling Laws, Nonlinearity and Chaos." Entropy 23, no. 7 (2021): 915. http://dx.doi.org/10.3390/e23070915.
Der volle Inhalt der QuelleLu, Qiuyu, Yuqi Cao, Pingping Xie, Ying Chen, and Yingming Lin. "A Scalable Data-Driven Surrogate Model for 3D Dynamic Wind Farm Wake Prediction Using Physics-Inspired Neural Networks and Wind Box Decomposition." Energies 18, no. 13 (2025): 3356. https://doi.org/10.3390/en18133356.
Der volle Inhalt der QuelleHulsman, Paul, Søren Juhl Andersen, and Tuhfe Göçmen. "Optimizing wind farm control through wake steering using surrogate models based on high-fidelity simulations." Wind Energy Science 5, no. 1 (2020): 309–29. http://dx.doi.org/10.5194/wes-5-309-2020.
Der volle Inhalt der QuelleWenink, Robert, Martin van der Eijk, Neil Yorke-Smith, and Peter Wellens. "Multi-fidelity Kriging extrapolation together with CFD for the design of the cross-section of a falling lifeboat." International Shipbuilding Progress 70, no. 2 (2023): 115–50. http://dx.doi.org/10.3233/isp-230013.
Der volle Inhalt der QuelleDaniel Marjavaara, B., T. Staffan Lundström, Tushar Goel, Yolanda Mack, and Wei Shyy. "Hydraulic Turbine Diffuser Shape Optimization by Multiple Surrogate Model Approximations of Pareto Fronts." Journal of Fluids Engineering 129, no. 9 (2007): 1228–40. http://dx.doi.org/10.1115/1.2754324.
Der volle Inhalt der QuelleMa, Xiaopeng, Jinsheng Zhao, Desheng Zhou, Kai Zhang, and Yapeng Tian. "Deep Graph Learning-Based Surrogate Model for Inverse Modeling of Fractured Reservoirs." Mathematics 12, no. 5 (2024): 754. http://dx.doi.org/10.3390/math12050754.
Der volle Inhalt der QuelleLaisa, Cristina Juffo Campos, Betencurte da Silva Wellington, Carolina Spindola Rangel Dias Ana, and Cesar Sampaio Dutra Julio. "Exploring Digital Twins of Nonlinear Systems through Meta-Modeling with Echo State Networks." Latin-American Journal of Computing 11, no. 2 (2024): 13–22. https://doi.org/10.5281/zenodo.12169048.
Der volle Inhalt der QuelleNikolaou, Eleftherios, Spyridon Kilimtzidis, and Vassilis Kostopoulos. "Winglet Design for Aerodynamic and Performance Optimization of UAVs via Surrogate Modeling." Aerospace 12, no. 1 (2025): 36. https://doi.org/10.3390/aerospace12010036.
Der volle Inhalt der QuelleHue, Keat Yung, Jin Hau Lew, Maung Maung Myo Thant, Omar K. Matar, Paul F. Luckham, and Erich A. Müller. "Molecular Dynamics Simulation of Polyacrylamide Adsorption on Calcite." Molecules 28, no. 17 (2023): 6367. http://dx.doi.org/10.3390/molecules28176367.
Der volle Inhalt der QuelleHakkak Moghadam Torbati, Armin, Christian Georgiev, Daria Digileva, et al. "Nonlinear Dynamics of MEG and EMG: Stability and Similarity Analysis." Brain Sciences 15, no. 7 (2025): 681. https://doi.org/10.3390/brainsci15070681.
Der volle Inhalt der QuelleTuan, Nguyen Hung, Le Xuan Huynh, and Pham Hoang Anh. "A fuzzy finite element algorithm based on response surface method for free vibration analysis of structure." Vietnam Journal of Mechanics 37, no. 1 (2015): 17–27. http://dx.doi.org/10.15625/0866-7136/37/1/3923.
Der volle Inhalt der QuelleFu, Chao, Zhaoli Zheng, Weidong Zhu, Zhongliang Xie, Weiyang Qin, and Kuan Lu. "Nonlinear dynamics of discontinuous uncertain oscillators with unilateral constraints." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 12 (2022): 123112. http://dx.doi.org/10.1063/5.0125365.
Der volle Inhalt der QuelleHirata, Yoshito, Masanori Shiro, and José M. Amigó. "Surrogate Data Preserving All the Properties of Ordinal Patterns up to a Certain Length." Entropy 21, no. 7 (2019): 713. http://dx.doi.org/10.3390/e21070713.
Der volle Inhalt der Quelle