Inhaltsverzeichnis

  1. Zeitschriftenartikel

Auswahl der wissenschaftlichen Literatur zum Thema „Sydney (N.S.W.). Water Board“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sydney (N.S.W.). Water Board" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Sydney (N.S.W.). Water Board"

1

Goda, Yoshimi, Masanobu Kudaka und Hiroyasu Kawai. „INCORPORATION OF WEIBULL DISTRIBUTION IN L-MOMENTS METHOD FOR“. Coastal Engineering Proceedings 1, Nr. 32 (21.01.2011): 62. http://dx.doi.org/10.9753/icce.v32.waves.62.

Der volle Inhalt der Quelle
Annotation:
The L-moments of the Weibull distribution are derived and incorporated in the regional frequency analysis of peaksover-threshold significant wave heights at eleven stations along the eastern coast of Japan Sea. The effective duration of wave measurements varies from 18.0 to 37.2 years with the mean rate of 10.4 to 15.1 events per year. The eleven stations are divided into three regions to assure homogeneity of the data. Both the Weibull and Generalized Pareto (GPA) distributions fit well to the observed data. The 100-year wave height varied from 8.2 to 11.2 m by the Weibull and 7.6 to 10.3 m by the GPA. The GPA distribution is not recommended for determination of design waves for these stations because it has an inherent upper limit and a tendency of under-prediction. References Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values, Springer, 208p. Goda, Y., Konagaya, O., Takeshita, N., Hitomi, H., and T. Nagai. 2000. Population distribution of extreme wave heights estimated through regional analysis, Coastal Engineering 2000 (Proc. 26th ICCE, Sydney), ASCE, Sydney, 1078-1091. Greenwood, J A., J. M. Landwehr, N. C. Matalas, and J. R. Wallis. 1978. Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form, Water Resources Res., Vol. 15, No. 5, pp. 1049-1064. http://dx.doi.org/10.1029/WR015i005p01049 Hosking, J. R. M. 1990. L-moments: Analysis and estimation of distributions using linear combinations of order statistics, J. Roy. Statistical Soc., Series B, 52, pp. 105-24. Hosking, J. R. M. and J. R. Wallis. 1997. Regional Frequency Analysis, Cambridge Univ. Press, 224p. http://dx.doi.org/10.1017/CBO9780511529443 Ma, Q.-S., Li, Y.-B., and J. Li .2006. Regional frequency analysis of siginicant wave heights based on L-moments, China Ocean Engineering, 20(1), pp. 85-98. Petruaskas, C. and P. M. Aagaard. 1971. Extrapolation of historical storm data for estimating design wave heights, J. Soc. Petroleum Engrg., 11, pp. 23-27. van Gelder, P. H. A. J. M. 2000. Statistical Methods for the Risk-Based Design of Civil Structures, Ph.D. thesis Delft University of Technology, 249p. van Gelder, P. H. A. J. M., J. De Ronde, N. W. Neykov, and P. Neytchev. 2000. Regional frequency analysis of extreme wave heights: trading space for time, Coastal Engineering 2000
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

PERKINS, PHILIP D. „A revision of the Australian species of the water beetle genus Hydraena Kugelann (Coleoptera: Hydraenidae)“. Zootaxa 1489, Nr. 1 (31.05.2007): 1–207. http://dx.doi.org/10.11646/zootaxa.1489.1.1.

Der volle Inhalt der Quelle
Annotation:
The Australian species of the water beetle genus Hydraena Kugelann, 1794, are revised, based on the study of 7,654 specimens. The 29 previously named species are redescribed, and 56 new species are described. The species are placed in 24 species groups. High resolution digital images of all primary types are presented (online version in color), and geographic distributions are mapped. Male genitalia, representative female terminal abdominal segments and representative spermathecae are illustrated. Australian Hydraena are typically found in sandy/gravelly stream margins, often in association with streamside litter; some species are primarily pond dwelling, a few species are humicolous, and one species may be subterranean. The areas of endemicity and species richness coincide quite closely with the Bassian, Torresian, and Timorian biogeographic subregions. Eleven species are shared between the Bassian and Torresian subregions, and twelve are shared between the Torresian and Timorian subregions. Only one species, H. impercepta Zwick, is known to be found in both Australia and Papua New Guinea. One Australian species, H. ambiflagellata, is also known from New Zealand. New species of Hydraena are: H. affirmata (Queensland, Palmerston National Park, Learmouth Creek), H. ambiosina (Queensland, 7 km NE of Tolga), H. antaria (New South Wales, Bruxner Flora Reserve), H. appetita (New South Wales, 14 km W Delagate), H. arcta (Western Australia, Synnot Creek), H. ascensa (Queensland, Rocky Creek, Kennedy Hwy.), H. athertonica (Queensland, Davies Creek), H. australula (Western Australia, Synnot Creek), H. bidefensa (New South Wales, Bruxner Flora Reserve), H. biimpressa (Queensland, 19.5 km ESE Mareeba), H. capacis (New South Wales, Unumgar State Forest, near Grevillia), H. capetribensis (Queensland, Cape Tribulation area), H. converga (Northern Territory, Roderick Creek, Gregory National Park), H. cubista (Western Australia, Mining Camp, Mitchell Plateau), H. cultrata (New South Wales, Bruxner Flora Reserve), H. cunninghamensis (Queensland, Main Range National Park, Cunningham's Gap, Gap Creek), H. darwini (Northern Territory, Darwin), H. deliquesca (Queensland, 5 km E Wallaman Falls), H. disparamera (Queensland, Cape Hillsborough), H. dorrigoensis (New South Wales, Dorrigo National Park, Rosewood Creek, upstream from Coachwood Falls), H. ferethula (Northern Territory, Cooper Creek, 19 km E by S of Mt. Borradaile), H. finniganensis (Queensland, Gap Creek, 5 km ESE Mt. Finnigan), H. forticollis (Western Australia, 4 km W of King Cascade), H. fundaequalis (Victoria, Simpson Creek, 12 km SW Orbost), H. fundata (Queensland, Hann Tableland, 13 km WNW Mareeba), H. hypipamee (Queensland, Mt. Hypipamee National Park, 14 km SW Malanda), H. inancala (Queensland, Girraween National Park, Bald Rock Creek at "Under-ground Creek"), H. innuda (Western Australia, Mitchell Plateau, 16 mi. N Amax Camp), H. intraangulata (Queensland, Leo Creek Mine, McIlwrath Range, E of Coen), H. invicta (New South Wales, Sydney), H. kakadu (Northern Territory, Kakadu National Park, Gubara), H. larsoni (Queensland, Windsor Tablelands), H. latisoror (Queensland, Lamington National Park, stream at head of Moran's Falls), H. luminicollis (Queensland, Lamington National Park, stream at head of Moran's Falls), H. metzeni (Queensland, 15 km NE Mareeba), H. millerorum (Victoria, Traralgon Creek, 0.2 km N 'Hogg Bridge', 5.0 km NNW Balook), H. miniretia (Queensland, Mt. Hypipamee National Park, 14 km SW Malanda), H. mitchellensis (Western Australia, 4 km SbyW Mining Camp, Mitchell Plateau), H. monteithi (Queensland, Thornton Peak, 11 km NE Daintree), H. parciplumea (Northern Territory, McArthur River, 80 km SW of Borroloola), H. porchi (Victoria, Kangaroo Creek on Springhill Rd., 5.8 km E Glenlyon), H. pugillista (Queensland, 7 km N Mt. Spurgeon), H. queenslandica (Queensland, Laceys Creek, 10 km SE El Arish), H. reticuloides (Queensland, 3 km ENE of Mt. Tozer), H. reticulositis (Western Australia, Mining Camp, Mitchell Plateau), H. revelovela (Northern Territory, Kakadu National Park, GungurulLookout), H. spinissima (Queensland, Main Range National Park, Cunningham's Gap, Gap Creek), H. storeyi (Queensland, Cow Bay, N of Daintree River), H. tenuisella (Queensland, 3 km W of Batavia Downs), H. tenuisoror (Australian Capital Territory, Wombat Creek, 6 km NE of Piccadilly Circus), H. textila (Queensland, Laceys Creek, 10 km SE El Arish), H. tridisca (Queensland, Mt. Hemmant), H. triloba (Queensland, Mulgrave River, Goldsborough Road Crossing), H. wattsi (Northern Territory, Holmes Jungle, 11 km NE by E of Darwin), H. weiri (Western Australia, 14 km SbyE Kalumburu Mission), H. zwicki (Queensland, Clacherty Road, via Julatten).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dam G., Oscar. „Comparative study on the un test n` 5 application on cargoes that emit flammable gases similar to dri c that requires ventilation“. Athenea 1, Nr. 1 (26.09.2020): 41–51. http://dx.doi.org/10.47460/athenea.v1i1.5.

Der volle Inhalt der Quelle
Annotation:
This technical note summarizes a technical comparison of common testing procedures, as well as reviewed of the UN Test N` 5, for the assessment of the self-heating properties of cargoes and materials that has shown a clear trend on maritime fire and explosions events, as well as considering of external factors that can combine self-heating and emit flammable gases to conclude in an unlikely event affecting the security of crews and ships. A high understanding of the external factors effect on the cargo materials certainly will help the application of spontaneous reactions management actions (SRMA) on board of ships during the cargo sea passage. The intended comparison is based on laboratory, industry and field observations and data, whereas the among the external factors considered are, moisture content, stockpile procedure and aging, air velocities and moderate pressures internal and externally to the cargo material. The comparison results have shown that the self-heating and the flammable gas emissions has a common pattern when reacting with any oxygen available source, regardless the reactive material chemical composition. Keywords: reactive materials, self-heating, self-ignition, direct reduced iron fines, materials handling, UN test N` 5, maritime safety, spontaneous reactions, risk management. IMSBC Code , IMO. References [1]A. M. DeGennaro, M. W. Lohry, L. Martinelli, C. W. Rowley. Uncertainty Quantification for Cargo Hold Fires. Princeton University, Princeton, NJ, 08540, USA. American Institute of Aeronautics and Astronautics. [2]L.L.Sloss Assessing and Managing Spontaneous Combustion of Coals. IEA Clean Coal Center (CCC 259). Oct. 2015. [3].A. Janes, G Marlair, D Carson, j. Chaneausx. Towards the improvement of UN Test N1 5 Method for the characterization of substances which in contact with water emit Flammable Gases. Journal of Loss Prevention in the Process Industries. Elsevier 2012, 25 (3), pp 524-534. [4]G. Rouget, B. Majidi, D. Picard, G. Gauvin, D. Ziegler, J. Mashreghi, and H. Alamdar. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method. Metallurgical and Materials Transactions B. Vol. 48B, Oct. 2017-2543. [5]Y. Rubiela Hernández Puerto, M.Triviño Restrepo. El coque metalúrgico aplicado a protección catódica (Metallurgia coque applied to catodic protection). Revista del Instituto de Investigaciones FIGMMG. Vol. 10, Nº 20, 60-67 (2007) UNMSM I. [6]S. Narayan Jha, K. Narsaiah, A.L. Basediya, R.Sharma, P. Jaiswal, R. Kumar, and R. Bhardwaj. Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods—a review. Food Sci Technol. 2011 Aug; 48(4): 387–411. [7]R. Fontes Araujo, J. Batisa Zonta, E. Fontes Araujo, E. Heberle, E, F. Miranda Garcia Zonta. Teste de Conductividade Eletrica para Smentes de Feijao Mungo Verde 1. Rev. Brasikleira de Sementes, Vol. 33, N` 1, pp123/130, 2011. [8]P.A. Eidem. Electric Resistivity of Coke Beds. PhD Thesis. Norwegian University of Science and Technology Faculty of Natural Sciences and Technology Department of Materials Science and Engineering. Tronheim Oct. 2008. [9]N. Birks, et.al. - Mechanism in Corrosion Induced Auto-ignition of Direct Reduced Iron. Materials Science and Engineering Department, University of Pittsburgh. [10]Monitoring Implementation of the Hazardous and Noxious Substances Convention. Report on incidents involving HNS. Submitted by the United Kingdom. IMO 85th Session, Agenda item 5- LEG 85/INF.2, 19 September 2002.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Berno, Tracy, Eilidh Thorburn, Mindy Sun und Simon Milne. „International visitor surveys“. Hospitality Insights 3, Nr. 1 (26.06.2019): 7–9. http://dx.doi.org/10.24135/hi.v3i1.53.

Der volle Inhalt der Quelle
Annotation:
International visitor surveys (IVS) are traditionally designed to provide destinations with marketing data and intelligence. The New Zealand Tourism Research Institute has been developing new approaches to IVS implementation and data collection in the Pacific Islands that can provide a much richer source of information [1]. The research outlined here is the first to utilise an IVS to explore the positioning of cuisine in the culinary identity of a destination – specifically, the cuisine of the Cook Islands. The Cook Islands is known primarily for its sun, sea and sand features, rather than its culinary attributes. Drawing on data mining of the Cook Islands IVS (2012–2016) and a web audit of destination websites and menus, this paper considers the positioning of food and food-related activities within the Pacific nation’s tourism experience. National tourism organisations are increasingly seeking competitive advantage by utilising their local cuisines as tourist attractions. Research suggests that distinctive local cuisines can act as both a tourism attraction, and as a means of shaping the identity of a destination [2, 3]. In addition to providing an important source of marketable images, local cuisine can also provide a unique experience for tourists. This reinforces the competitiveness and sustainability of the destination [2]. The cuisine of the Cook Islands has come up repeatedly in recommendations for how the country can grow its tourism revenue. Recommendations have been made to improve the food product on offer, develop a distinctive Cook Islands cuisine based on fresh, local produce, and to promote a Cook Islands cuisine experience [4, 5], and to use these to market the Cook Islands as a destination for local food tourism experiences [4]. Despite these recommendations, Cook Island cuisine features less prominently than stereotypical sun, sea, and sand marketing images, and little is known about tourists’ perceptions of and satisfaction with food and food-related activities [6]. Our research addresses this gap by mining IVS data to gain a deeper understanding of tourists’ experiences and perceptions of food in the Cook Islands and assessing whether local food can be positioned as means of creating a unique destination identity. Two methods were used to develop a picture of where food sits in the Cook Islands tourist experience: one focussed on tourist feedback; and the other focused on how food is portrayed in relevant online media. Analysis of all food-related data collected as part of the national IVS between 1 April 2012 and 30 June 2016 was conducted (N = 10,950). A web audit also focused on how food is positioned as part of the Cook Islands tourism product. After identifying the quantitative food-related questions in the IVS, satisfaction with these activities was analysed. Qualitative comments related to food experiences were also examined. The results suggest that participation in food-related activities is generally a positive feature of the visitor experience. The web-audit revealed, however, that food is not a salient feature in the majority of Cook Islands-related websites, and when food did feature, it tended to be oriented towards international cuisine with a ‘touch of the Pacific’ rather than specifically Cook Islands cuisine. This reinforced findings from the IVS data mining that Cook Islands food is presented as a generic tropical ‘seafood and fruit’ cuisine that, largely, lacks the defining and differentiating features of authentic Cook Island cuisine. High participation rates in food-related activities and overall positive evaluations by visitors emerged from the IVS data, yet a dearth of images and information on the country’s food suggests that the Cook Islands is not exploiting its cuisine and food experiences to their full potential. As a direct result of this secondary analysis of IVS data, which highlighted the importance of and potential for food-related activities, the Cook Islands Government is now actively addressing this gap by developing a range of food-related resources and information that can better link tourism to local cuisine. In addition to developing a greater presence of local food in online resources, the Cook Islands Tourism Corporation has also taken on board the messages from the IVS to drive the development of Takurua [7] – an initiative to develop and document local, traditional cuisine and share it with the world. This approach is part of a broader ongoing effort to differentiate the Cook Islands from other South Pacific destinations through its unique cultural attributes. Data mining and secondary analysis of IVS data has not been restricted to the identification of food-related opportunities. Secondary analysis of IVS data in the Pacific has also been used to investigate the impact of other niche markets such as events [8] and to gauge the impact of environmental incidents, for example Cyclone Pam in Vanuatu [9] and algal bloom in the Cook Islands [10], thus reinforcing that IVS data are a rich source of information and are indeed more than just numbers. Corresponding author Tracy Berno can be contacted at tracy.berno@aut.ac.nz References (1) New Zealand Tourism Research Institute (NZTRI). Cook Islands Resources and Outputs; NZTRI: Auckland. http://www.nztri.org.nz/cook-islands-resources (accessed Jun 10, 2019). (2) Lin, Y.; Pearson, T.; Cai, L. Food as a Form of Destination Identity: A Tourism Destination Brand Perspective. Tourism and Hospitality Research 2011, 11, 30–48. https://doi.org/10.1057/thr.2010.22 (3) Okumus, F.; Kock, G.; Scantlebury, M. M.; Okumus, B. Using Local Cuisines when Promoting Small Caribbean Island Destinations. Journal of Travel & Tourism Marketing 2013, 30 (4), 410–429. (4) Food and Agricultural Organization (FAO). Linking Farmers to Markets: Realizing Opportunities for Locally Produced Food on Domestic and Tourist Markets in Cook Islands. FAO Sub-regional Office of the Pacific Islands: Apia, Samoa, 2014. (5) United Nations. “Navigating Stormy Seas through Changing winds”: Developing an Economy whilst Preserving a National Identity and the Modern Challenges of a Small Island Developing State. The Cook Islands National Report for the 2014 Small Islands Developing States (SIDS) Conference and post 2015 Sustainable Development Goals (SDGs). https://sustainabledevelopment.un.org/content/documents/1074217Cook%20Is%20_%20Final%20NATIONAL%20SIDS%20Report.pdf (accessed Jun 10, 2019). (6) Boyera, S. Tourism-led Agribusiness in the South Pacific Countries; Technical Centre for Agriculture and Rural Cooperation (CTA): Brussels, 2016. (7) Cook Islands Tourism Corporation (CITC). Takurua: Food and Feasts of the Cook Islands; CITC: Avarua, Cook Islands, 2018. (8) Thorburn, E.; Milne, S.; Histen, S.; Sun, M.; Jonkers, I. Do Events Attract Higher Yield, Culturally Immersive Visitors to the Cook Islands? In CAUTHE 2016: The Changing Landscape of Tourism and Hospitality: The Impact of Emerging Markets and Emerging Destinations; Scerri, M., Ker Hui, L., Eds.; Blue Mountains International Hotel Management School: Sydney, 2016; pp 1065–1073. (9) Sun, M.; Milne, S. The Impact of Cyclones on Tourist Demand: Pam and Vanuatu. In CAUTHE 2017: Time for Big Ideas? Re-thinking the Field for Tomorrow; Lee, C., Filep, S., Albrecht, J. N., Coetzee, W. JL, Eds.; Department of Tourism, University of Otago: Dunedin, 2017; pp 731–734. (10) Thorburn, E.; Krause, C.; Milne, S. The Impacts of Algal Blooms on Visitor Experience: Muri Lagoon, Cook Islands. In CAUTHE 2017: Time for Big Ideas? Re-thinking the Field For Tomorrow; Lee, C., Filep, S., Albrecht, J. N., Coetzee, W. JL, Eds., Department of Tourism, University of Otago: Dunedin, 2017; pp 582–587.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hens, Luc, Nguyen An Thinh, Tran Hong Hanh, Ngo Sy Cuong, Tran Dinh Lan, Nguyen Van Thanh und Dang Thanh Le. „Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis“. VIETNAM JOURNAL OF EARTH SCIENCES 40, Nr. 2 (19.01.2018): 127–53. http://dx.doi.org/10.15625/0866-7187/40/2/11107.

Der volle Inhalt der Quelle
Annotation:
Climate change induced sea-level rise (SLR) is on its increase globally. Regionally the lowlands of China, Vietnam, Bangladesh, and islands of the Malaysian, Indonesian and Philippine archipelagos are among the world’s most threatened regions. Sea-level rise has major impacts on the ecosystems and society. It threatens coastal populations, economic activities, and fragile ecosystems as mangroves, coastal salt-marches and wetlands. This paper provides a summary of the current state of knowledge of sea level-rise and its effects on both human and natural ecosystems. The focus is on coastal urban areas and low lying deltas in South-East Asia and Vietnam, as one of the most threatened areas in the world. About 3 mm per year reflects the growing consensus on the average SLR worldwide. The trend speeds up during recent decades. The figures are subject to local, temporal and methodological variation. In Vietnam the average values of 3.3 mm per year during the 1993-2014 period are above the worldwide average. Although a basic conceptual understanding exists that the increasing global frequency of the strongest tropical cyclones is related with the increasing temperature and SLR, this relationship is insufficiently understood. Moreover the precise, complex environmental, economic, social, and health impacts are currently unclear. SLR, storms and changing precipitation patterns increase flood risks, in particular in urban areas. Part of the current scientific debate is on how urban agglomeration can be made more resilient to flood risks. Where originally mainly technical interventions dominated this discussion, it becomes increasingly clear that proactive special planning, flood defense, flood risk mitigation, flood preparation, and flood recovery are important, but costly instruments. Next to the main focus on SLR and its effects on resilience, the paper reviews main SLR associated impacts: Floods and inundation, salinization, shoreline change, and effects on mangroves and wetlands. The hazards of SLR related floods increase fastest in urban areas. This is related with both the increasing surface major cities are expected to occupy during the decades to come and the increasing coastal population. In particular Asia and its megacities in the southern part of the continent are increasingly at risk. The discussion points to complexity, inter-disciplinarity, and the related uncertainty, as core characteristics. An integrated combination of mitigation, adaptation and resilience measures is currently considered as the most indicated way to resist SLR today and in the near future.References Aerts J.C.J.H., Hassan A., Savenije H.H.G., Khan M.F., 2000. Using GIS tools and rapid assessment techniques for determining salt intrusion: Stream a river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265-273. Doi: 10.1016/S1464-1909(00)00014-9. Alongi D.M., 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349. Doi: 10.1017/S0376892902000231 Alongi D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1, 30-39. Doi: 10.1007/s404641-015-0002-x. Anderson F., Al-Thani N., 2016. Effect of sea level rise and groundwater withdrawal on seawater intrusion in the Gulf Coast aquifer: Implications for agriculture. Journal of Geoscience and Environment Protection, 4, 116-124. Doi: 10.4236/gep.2016.44015. Anguelovski I., Chu E., Carmin J., 2014. Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. Global Environmental Change, 27, 156-167. Doi: 10.1016/j.gloenvcha.2014.05.010. Arustienè J., Kriukaitè J., Satkunas J., Gregorauskas M., 2013. Climate change and groundwater - From modelling to some adaptation means in example of Klaipèda region, Lithuania. In: Climate change adaptation in practice. P. Schmidt-Thomé, J. Klein Eds. John Wiley and Sons Ltd., Chichester, UK., 157-169. Bamber J.L., Aspinall W.P., Cooke R.M., 2016. A commentary on “how to interpret expert judgement assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik S.W. Van de Wal. Climatic Change, 137, 321-328. Doi: 10.1007/s10584-016-1672-7. Barnes C., 2014. Coastal population vulnerability to sea level rise and tropical cyclone intensification under global warming. BSc-thesis. Department of Geography, University of Lethbridge, Alberta Canada. Be T.T., Sinh B.T., Miller F., 2007. Challenges to sustainable development in the Mekong Delta: Regional and national policy issues and research needs. The Sustainable Mekong Research Network, Bangkok, Thailand, 1-210. Bellard C., Leclerc C., Courchamp F., 2014. Impact of sea level rise on 10 insular biodiversity hotspots. Global Ecology and Biogeography, 23, 203-212. Doi: 10.1111/geb.12093. Berg H., Söderholm A.E., Sönderström A.S., Nguyen Thanh Tam, 2017. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong delta, Vietnam. Sustainability Science, 12, 137-154. Doi: 10.1007/s11625-016-0409-x. Bilskie M.V., Hagen S.C., Medeiros S.C., Passeri D.L., 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41, 927-934. Doi: 10.1002/2013GL058759. Binh T.N.K.D., Vromant N., Hung N.T., Hens L., Boon E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau penisula, Vietnam. Environment, Development and Sustainability, 7, 519-536. Doi: 10.1007/s10668-004-6001-z. Blankespoor B., Dasgupta S., Laplante B., 2014. Sea-level rise and coastal wetlands. Ambio, 43, 996- 005.Doi: 10.1007/s13280-014-0500-4. Brockway R., Bowers D., Hoguane A., Dove V., Vassele V., 2006. A note on salt intrusion in funnel shaped estuaries: Application to the Incomati estuary, Mozambique.Estuarine, Coastal and Shelf Science, 66, 1-5. Doi: 10.1016/j.ecss.2005.07.014. Cannaby H., Palmer M.D., Howard T., Bricheno L., Calvert D., Krijnen J., Wood R., Tinker J., Bunney C., Harle J., Saulter A., O’Neill C., Bellingham C., Lowe J., 2015. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci. Discuss, 12, 2955-3001. Doi: 10.5194/osd-12-2955-2015. Carraro C., Favero A., Massetti E., 2012. Investment in public finance in a green, low carbon economy. Energy Economics, 34, S15-S18. Castan-Broto V., Bulkeley H., 2013. A survey ofurban climate change experiments in 100 cities. Global Environmental Change, 23, 92-102. Doi: 10.1016/j.gloenvcha.2012.07.005. Cazenave A., Le Cozannet G., 2014. Sea level rise and its coastal impacts. GeoHealth, 2, 15-34. Doi: 10.1002/2013EF000188. Chu M.L., Guzman J.A., Munoz-Carpena R., Kiker G.A., Linkov I., 2014. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion and nourishment. Environmental modelling and software, 52, 111-120. Doi.org/10.1016/j.envcsoft.2013.10.020. Church J.A. et al., 2013. Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of Intergovernmental Panel on Climate Change. Eds: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Cambridge University Press, Cambridge, UK. Connell J., 2016. Last days of the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pacific Viewpoint, 57, 3-15. Doi: 10.1111/apv.12118. Dasgupta S., Laplante B., Meisner C., Wheeler, Yan J., 2009. The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379-388. Doi: 10.1007/s 10584-008-9499-5. Delbeke J., Vis P., 2015. EU climate policy explained, 136p. Routledge, Oxon, UK. DiGeorgio M., 2015. Bargaining with disaster: Flooding, climate change, and urban growth ambitions in QuyNhon, Vietnam. Public Affairs, 88, 577-597. Doi: 10.5509/2015883577. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, 2015. Enhancement of coastal protection under the context of climate change: A case study of Hai Hau coast, Vietnam. Proceedings of the 10th Asian Regional Conference of IAEG, 1-8. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, Lan Nguyen Chau, 2017. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. Journal of Coastal Conservation, 21, 47-62. Donner S.D., Webber S., 2014. Obstacles to climate change adaptation decisions: A case study of sea level rise; and coastal protection measures in Kiribati. Sustainability Science, 9, 331-345. Doi: 10.1007/s11625-014-0242-z. Driessen P.P.J., Hegger D.L.T., Bakker M.H.N., Van Renswick H.F.M.W., Kundzewicz Z.W., 2016. Toward more resilient flood risk governance. Ecology and Society, 21, 53-61. Doi: 10.5751/ES-08921-210453. Duangyiwa C., Yu D., Wilby R., Aobpaet A., 2015. Coastal flood risks in the Bangkok Metropolitan region, Thailand: Combined impacts on land subsidence, sea level rise and storm surge. American Geophysical Union, Fall meeting 2015, abstract#NH33C-1927. Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marba N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. Doi: 10.1038/nclimate1970. Erban L.E., Gorelick S.M., Zebker H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9, 1-20. Doi: 10.1088/1748-9326/9/8/084010. FAO - Food and Agriculture Organisation, 2007.The world’s mangroves 1980-2005. FAO Forestry Paper, 153, Rome, Italy. Farbotko C., 2010. Wishful sinking: Disappearing islands, climate refugees and cosmopolitan experimentation. Asia Pacific Viewpoint, 51, 47-60. Doi: 10.1111/j.1467-8373.2010.001413.x. Goltermann D., Ujeyl G., Pasche E., 2008. Making coastal cities flood resilient in the era of climate change. Proceedings of the 4th International Symposium on flood defense: Managing flood risk, reliability and vulnerability, 148-1-148-11. Toronto, Canada. Gong W., Shen J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China.Continental Shelf Research, 31, 769-788. Doi: 10.1016/j.csr.2011.01.011. Gosian L., 2014. Protect the world’s deltas. Nature, 516, 31-34. Graham S., Barnett J., Fincher R., Mortreux C., Hurlimann A., 2015. Towards fair outcomes in adaptation to sea-level rise. Climatic Change, 130, 411-424. Doi: 10.1007/s10584-014-1171-7. COASTRES-D-12-00175.1. Güneralp B., Güneralp I., Liu Y., 2015. Changing global patterns of urban expoàsure to flood and drought hazards. Global Environmental Change, 31, 217-225. Doi: 10.1016/j.gloenvcha.2015.01.002. Hallegatte S., Green C., Nicholls R.J., Corfee-Morlot J., 2013. Future flood losses in major coastal cities. Nature Climate Change, 3, 802-806. Doi: 10.1038/nclimate1979. Hamlington B.D., Strassburg M.W., Leben R.R., Han W., Nerem R.S., Kim K.-Y., 2014. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4, 782-785. Doi: 10.1038/nclimate2307. Hashimoto T.R., 2001. Environmental issues and recent infrastructure development in the Mekong Delta: Review, analysis and recommendations with particular reference to large-scale water control projects and the development of coastal areas. Working paper series (Working paper No. 4). Australian Mekong Resource Centre, University of Sydney, Australia, 1-70. Hibbert F.D., Rohling E.J., Dutton A., Williams F.H., Chutcharavan P.M., Zhao C., Tamisiea M.E., 2016. Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. Doi: 10.1016/j.quascirev.2016.04.019. Hinkel J., Lincke D., Vafeidis A., Perrette M., Nicholls R.J., Tol R.S.J., Mazeion B., Fettweis X., Ionescu C., Levermann A., 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292-3297. Doi: 10.1073/pnas.1222469111. Hinkel J., Nicholls R.J., Tol R.S.J., Wang Z.B., Hamilton J.M., Boot G., Vafeidis A.T., McFadden L., Ganapolski A., Klei R.J.Y., 2013. A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. Doi: 10.1016/j.gloplacha.2013.09.002. Huong H.T.L., Pathirana A., 2013. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci., 17, 379-394. Doi: 10.5194/hess-17-379-2013. Hurlimann A., Barnett J., Fincher R., Osbaldiston N., Montreux C., Graham S., 2014. Urban planning and sustainable adaptation to sea-level rise. Landscape and Urban Planning, 126, 84-93. Doi: 10.1016/j.landurbplan.2013.12.013. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, 2011. Climate change vulnerability and risk assessment study for Ca Mau and KienGiang provinces, Vietnam. Hanoi, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN), 250p. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, Ca Mau PPC, 2011. Climate change impact and adaptation study in The Mekong Delta - Part A: Ca Mau Atlas. Hanoi, Vietnam: Institute of Meteorology, Hydrology and Environment (IMHEN), 48p. IPCC-Intergovernmental Panel on Climate Change, 2014. Fifth assessment report. Cambridge University Press, Cambridge, UK. Jevrejeva S., Jackson L.P., Riva R.E.M., Grinsted A., Moore J.C., 2016. Coastal sea level rise with warming above 2°C. Proceedings of the National Academy of Sciences, 113, 13342-13347. Doi: 10.1073/pnas.1605312113. Junk W.J., AN S., Finlayson C.M., Gopal B., Kvet J., Mitchell S.A., Mitsch W.J., Robarts R.D., 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Science, 75, 151-167. Doi: 10.1007/s00027-012-0278-z. Jordan A., Rayner T., Schroeder H., Adger N., Anderson K., Bows A., Le Quéré C., Joshi M., Mander S., Vaughan N., Whitmarsh L., 2013. Going beyond two degrees? The risks and opportunities of alternative options. Climate Policy, 13, 751-769. Doi: 10.1080/14693062.2013.835705. Kelly P.M., Adger W.N., 2000. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47, 325-352. Doi: 10.1023/A:1005627828199. Kirwan M.L., Megonigal J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rice. Nature, 504, 53-60. Doi: 10.1038/nature12856. Koerth J., Vafeidis A.T., Hinkel J., Sterr H., 2013. What motivates coastal households to adapt pro actively to sea-level rise and increased flood risk? Regional Environmental Change, 13, 879-909. Doi: 10.1007/s10113-12-399-x. Kontgis K., Schneider A., Fox J;,Saksena S., Spencer J.H., Castrence M., 2014. Monitoring peri urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377-388. Doi: 10.1016/j.apgeogr.2014.06.029. Kopp R.E., Horton R.M., Little C.M., Mitrovica J.X., Oppenheimer M., Rasmussen D.J., Strauss B.H., Tebaldi C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383-406. Doi: 10.1002/2014EF000239. Kuenzer C., Bluemel A., Gebhardt S., Quoc T., Dech S., 2011. Remote sensing of mangrove ecosystems: A review.Remote Sensing, 3, 878-928. Doi: 10.3390/rs3050878. Lacerda G.B.M., Silva C., Pimenteira C.A.P., Kopp Jr. R.V., Grumback R., Rosa L.P., de Freitas M.A.V., 2013. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: Adaptive measures to the impacts of sea level rise. Mitigation and Adaptation Strategies for Global Change, 19, 104-1062. Doi: 10.1007/s11027-013-09459-x. Lam Dao Nguyen, Pham Van Bach, Nguyen Thanh Minh, Pham Thi Mai Thy, Hoang Phi Hung, 2011. Change detection of land use and river bank in Mekong Delta, Vietnam using time series remotely sensed data. Journal of Resources and Ecology, 2, 370-374. Doi: 10.3969/j.issn.1674-764x.2011.04.011. Lang N.T., Ky B.X., Kobayashi H., Buu B.C., 2004. Development of salt tolerant varieties in the Mekong delta. JIRCAS Project, Can Tho University, Can Tho, Vietnam, 152. Le Cozannet G., Rohmer J., Cazenave A., Idier D., Van de Wal R., de Winter R., Pedreros R., Balouin Y., Vinchon C., Oliveros C., 2015. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 44-56. Doi: 10.1016/j.envsoft.2015.07.021. Le Cozannet G., Manceau J.-C., Rohmer J., 2017. Bounding probabilistic sea-level projections with the framework of the possible theory. Environmental Letters Research, 12, 12-14. Doi.org/10.1088/1748-9326/aa5528.Chikamoto Y., 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888-892. Doi: 10.1038/nclimate2330. Lovelock C.E., Cahoon D.R., Friess D.A., Gutenspergen G.R., Krauss K.W., Reef R., Rogers K., Saunders M.L., Sidik F., Swales A., Saintilan N., Le Xuan Tuyen, Tran Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559-563. Doi: 10.1038/nature15538. MA Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Current state and trends. Island Press, Washington DC, 266p. Masterson J.P., Fienen M.N., Thieler E.R., Gesch D.B., Gutierrez B.T., Plant N.G., 2014. Effects of sea level rise on barrier island groundwater system dynamics - ecohydrological implications. Ecohydrology, 7, 1064-1071. Doi: 10.1002/eco.1442. McGanahan G., Balk D., Anderson B., 2007. The rising tide: Assessing the risks of climate changes and human settlements in low elevation coastal zones.Environment and urbanization, 19, 17-37. Doi: 10.1177/095624780707960. McIvor A., Möller I., Spencer T., Spalding M., 2012. Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International, 1-27. Merryn T., Pidgeon N., Whitmarsh L., Ballenger R., 2016. Expert judgements of sea-level rise at the local scale. Journal of Risk Research, 19, 664-685. Doi.org/10.1080/13669877.2015.1043568. Monioudi I.N., Velegrakis A.F., Chatzipavlis A.E., Rigos A., Karambas T., Vousdoukas M.I., Hasiotis T., Koukourouvli N., Peduzzi P., Manoutsoglou E., Poulos S.E., Collins M.B., 2017. Assessment of island beach erosion due to sea level rise: The case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci., 17, 449-466. Doi: 10.5194/nhess-17-449-2017. MONRE - Ministry of Natural Resources and Environment, 2016. Scenarios of climate change and sea level rise for Vietnam. Publishing House of Environmental Resources and Maps Vietnam, Hanoi, 188p. Montz B.E., Tobin G.A., Hagelman III R.R., 2017. Natural hazards. Explanation and integration. The Guilford Press, NY, 445p. Morgan L.K., Werner A.D., 2014. Water intrusion vulnerability for freshwater lenses near islands. Journal of Hydrology, 508, 322-327. Doi: 10.1016/j.jhydrol.2013.11.002. Muis S., Güneralp B., Jongman B., Aerts J.C.H.J., Ward P.J., 2015. Science of the Total Environment, 538, 445-457. Doi: 10.1016/j.scitotenv.2015.08.068. Murray N.J., Clemens R.S., Phinn S.R., Possingham H.P., Fuller R.A., 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and Environment, 12, 267-272. Doi: 10.1890/130260. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding. A global assessment. Plos One, 10, 1-22. Doi: 10.1371/journal.pone.0118571. Nguyen A. Duoc, Savenije H. H., 2006. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 10, 743-754. Doi: 10.5194/hess-10-743-2006. Nguyen An Thinh, Nguyen Ngoc Thanh, Luong Thi Tuyen, Luc Hens, 2017. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An, World Heritage site. Journal of Environment, Development and Sustainability. Nguyen An Thinh, Luc Hens (Eds.), 2018. Human ecology of climate change associated disasters in Vietnam: Risks for nature and humans in lowland and upland areas. Springer Verlag, Berlin.Nguyen An Thinh, Vu Anh Dung, Vu Van Phai, Nguyen Ngoc Thanh, Pham Minh Tam, Nguyen Thi Thuy Hang, Le Trinh Hai, Nguyen Viet Thanh, Hoang Khac Lich, Vu Duc Thanh, Nguyen Song Tung, Luong Thi Tuyen, Trinh Phuong Ngoc, Luc Hens, 2017. Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam). Environ Dev Sustain, 19, 745-767. Doi: 10.1007/s/10668-016-9761-3. Nguyen Van Hoang, 2017. Potential for desalinization of brackish groundwater aquifer under a background of rising sea level via salt-intrusion prevention river gates in the coastal area of the Red River delta, Vietnam. Environment, Development and Sustainability. Nguyen Tho, Vromant N., Nguyen Thanh Hung, Hens L., 2008. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environmental Geology, 54, 1739-1746. Doi: 10.1007/s00254-007-0951-z. Nguyen Thang T.X., Woodroffe C.D., 2016. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River delta. Sustainability Science, 11, 645-659. Doi: 10.1007/s11625-015-0336-2. Nicholls N.N., Hoozemans F.M.J., Marchand M., Analyzing flood risk and wetland losses due to the global sea-level rise: Regional and global analyses.Global Environmental Change, 9, S69-S87. Doi: 10.1016/s0959-3780(99)00019-9. Phan Minh Thu, 2006. Application of remote sensing and GIS tools for recognizing changes of mangrove forests in Ca Mau province. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh City, Vietnam, 9-11 November, 1-17. Reise K., 2017. Facing the third dimension in coastal flatlands.Global sea level rise and the need for coastal transformations. Gaia, 26, 89-93. Renaud F.G., Le Thi Thu Huong, Lindener C., Vo Thi Guong, Sebesvari Z., 2015. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre province, Mekong Delta. Climatic Change, 133, 69-84. Doi: 10.1007/s10584-014-1113-4. Serra P., Pons X., Sauri D., 2008. Land cover and land use in a Mediterranean landscape. Applied Geography, 28, 189-209. Shearman P., Bryan J., Walsh J.P., 2013.Trends in deltaic change over three decades in the Asia-Pacific Region. Journal of Coastal Research, 29, 1169-1183. Doi: 10.2112/JCOASTRES-D-12-00120.1. SIWRR-Southern Institute of Water Resources Research, 2016. Annual Report. Ministry of Agriculture and Rural Development, Ho Chi Minh City, 1-19. Slangen A.B.A., Katsman C.A., Van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M., 2012. Towards regional projections of twenty-first century sea-level change based on IPCC RES scenarios. Climate Dynamics, 38, 1191-1209. Doi: 10.1007/s00382-011-1057-6. Spencer T., Schuerch M., Nicholls R.J., Hinkel J., Lincke D., Vafeidis A.T., Reef R., McFadden L., Brown S., 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Global and Planetary Change, 139, 15-30. Doi:10.1016/j.gloplacha.2015.12.018. Stammer D., Cazenave A., Ponte R.M., Tamisiea M.E., 2013. Causes of contemporary regional sea level changes. Annual Review of Marine Science, 5, 21-46. Doi: 10.1146/annurev-marine-121211-172406. Tett P., Mee L., 2015. Scenarios explored with Delphi. In: Coastal zones ecosystems services. Eds., Springer, Berlin, Germany, 127-144. Tran Hong Hanh, 2017. Land use dynamics, its drivers and consequences in the Ca Mau province, Mekong delta, Vietnam. PhD dissertation, 191p. VUBPRESS Brussels University Press, ISBN 9789057186226, Brussels, Belgium. Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, Mai Van Khiem, Nguyen Xuan Hien, Doan Ha Phong, 2016. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam. Tran Hong Hanh, Tran Thuc, Kervyn M., 2015. Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau province, Vietnam. Remote Sensing, 7, 2899-2925. Doi: 10.1007/s00254-007-0951-z Van Lavieren H., Spalding M., Alongi D., Kainuma M., Clüsener-Godt M., Adeel Z., 2012. Securing the future of Mangroves. The United Nations University, Okinawa, Japan, 53, 1-56. Water Resources Directorate. Ministry of Agriculture and Rural Development, 2016. Available online: http://www.tongcucthuyloi.gov.vn/Tin-tuc-Su-kien/Tin-tuc-su-kien-tong-hop/catid/12/item/2670/xam-nhap-man-vung-dong-bang-song-cuu-long--2015---2016---han-han-o-mien-trung--tay-nguyen-va-giai-phap-khac-phuc. Last accessed on: 30/9/2016. Webster P.J., Holland G.J., Curry J.A., Chang H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Doi: 10.1126/science.1116448. Were K.O., Dick O.B., Singh B.R., 2013. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage Basin, Kenya. Applied Geography, 41, 75-86. Williams G.A., Helmuth B., Russel B.D., Dong W.-Y., Thiyagarajan V., Seuront L., 2016. Meeting the climate change challenge: Pressing issues in southern China an SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373-381. Doi: 10.1016/j.rsma.2016.07.002. Woodroffe C.D., Rogers K., McKee K.L., Lovdelock C.E., Mendelssohn I.A., Saintilan N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. Doi: 10.1146/annurev-marine-122414-034025.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Anjali, Anjali, und Manisha Sabharwal. „Perceived Barriers of Young Adults for Participation in Physical Activity“. Current Research in Nutrition and Food Science Journal 6, Nr. 2 (25.08.2018): 437–49. http://dx.doi.org/10.12944/crnfsj.6.2.18.

Der volle Inhalt der Quelle
Annotation:
This study aimed to explore the perceived barriers to physical activity among college students Study Design: Qualitative research design Eight focus group discussions on 67 college students aged 18-24 years (48 females, 19 males) was conducted on College premises. Data were analysed using inductive approach. Participants identified a number of obstacles to physical activity. Perceived barriers emerged from the analysis of the data addressed the different dimensions of the socio-ecological framework. The result indicated that the young adults perceived substantial amount of personal, social and environmental factors as barriers such as time constraint, tiredness, stress, family control, safety issues and much more. Understanding the barriers and overcoming the barriers at this stage will be valuable. Health professionals and researchers can use this information to design and implement interventions, strategies and policies to promote the participation in physical activity. This further can help the students to deal with those barriers and can help to instil the habit of regular physical activity in the later adult years.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hasegawa, H., und Y. Ohki. „Development of a Model of on-Board Pemfc Powered Locomotive with a Metal Hydride Cylinder“. MRS Proceedings 393 (1995). http://dx.doi.org/10.1557/proc-393-145.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTThis paper presents a phase-zero evaluation case of installing on-off-board hybrid powered Electric Motor Vehicle (EMV) in existing and new local line and reports development of a model fuel cell powered locomotive. EMV such as electric car and locomotive are a new conceptual EMV using hybrid power between off-board substation and on-board Regenerative Fuel Cell (RFC) power system with Metal Hydride (MH) stored hydrogen generated with water electrolyzer by off-board surplus power. In this study, it is estimated a possibility to close power gap over 30 % in placing the new conceptual vehicle. The Locomotive is a 110 cm long locomotive powered by a 20 W PEMFC configured with 20 cells and supplied with about 2 g hydrogen, from a cylinder of 100 g metal hydride, and natural convection air (02). Measuring 50 cm (W), 50 cm (H), and weighting 25.9 kgf, the locomotive has a permanent magnet motor with a rated power 38 W (12 V, 3 A) and ran on railway that has a gauge of 126 mm (3'6“/8.5=4.94”), a length of 100 m. The performance of this train was acceleration of 0.5 m/s, cruising speed of 4.1 m/s at traction force of 15.8 N (1.6 kgf), average rolling friction of 5 N (460 gf).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Anh, Hoang Quoc, Shin Takahashi, Duong Thi Thao, Nguyen Hung Thai, Pham Thanh Khiet, Nguyen Thi Quynh Hoa, Le Thi Phuong Quynh, Le Nhu Da, Tu Binh Minh und Tran Manh Tri. „Analysis and Evaluation of Contamination Status of Polycyclic Aromatic Hydrocarbons (PAHs) in Settled House and Road Dust Samples from Hanoi“. VNU Journal of Science: Natural Sciences and Technology 35, Nr. 4 (23.12.2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4943.

Der volle Inhalt der Quelle
Annotation:
Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in settled house dust and road dust samples collected from a core urban area of Hanoi. Levels of PAHs ranged from 830 to 3500 (median 2000) ng/g in house dust, and from 1400 to 4700 (median 1700) ng/g in road dust. Concentrations of PAHs in dust samples of this study were within the moderate range as compared with those from other countries in the world. Toxic equivalents to benzo[a]pyrene (BaP-EQs) in our samples ranged from 81 to 850 (median 330) ng BaP-EQ/g with principal contributors as BaP and dibenz[a,h]anthracene, which accounted for 69% to 93% of BaP-EQs. In almost all the samples, proportions of high-molecular-weight PAHs (HMW-PAHs with 4–6 rings) were higher than those of low-molecular-weight PAHs (LMW-PAHs with 2–3 rings), suggesting emission sources from combustion processes rather than direct contamination by petrogenic sources. Traffic activities were estimated as important sources of PAHs in the studied areas, for example, vehicular exhaust and tire debris. Keywords: PAHs, house dust, road dust, traffic emission, urbanization. References [1] K. Srogi, Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review, Environ. Chem. Let. 5 (2007) 169-195. https://doi. org/10.1007/s10311-007-0095-0.[2] K.H. Kim, S.A. Jahan, E. Kabir, R.J.C. Brown, A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60 (2013) 71–80. https://doi. org/10.1016/j.envint.2013.07.019.[3] E. Stogiannidis, R. Laane, Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Rev. Environ. Contam. Toxicol. 234 (2015) 49–133. https://doi.org/10.1007/978-3-319-10638-0_2.[4] H.I. Abdel-Shafy, M.S.M. Mansour, A review on polycyclic aromatic hydrocarbons: source, environmental impacts, effect on human health and remediation. Egypt. J. Pet. 25 (2016) 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.[5] ATSDR, 1995. Toxicological profile for polycyclic aromatic hydrocarbons. https://www.atsdr.cdc. gov/toxprofiles/tp69.pdf.[6] M.T. Anh, L.M. Triet, J.J. Sauvain, J. Tarradellas, PAH contamination levels in air particles and sediments of Ho Chi Minh City, Vietnam. Bull. Environ. Contam. Toxicol. 63 (1999) 728–735. https://doi.org/10.1007/s00128 9901040.[7] T.T. Hien, L.T. Thanh, T. Kameda, N. Takenaka, H. Bandow, Distribution characteristics of polycyclic aromatic hydrocarbons with particle size in urban aerosols at the roadside in Ho Chi Minh City, Vietnam. Atmos. Environ. 41 (2007) 1575–1586. https://doi.org/10.1016/j.atmosenv. 2006.10.045.[8] M. Kishida, K. Imamura, N. Takenaka, Y. Maeda, P.H. Viet, H. Bandow, Concentrations of atmospheric polycyclic aromatic hydrocarbons in particulate matter and the gaseous phase at roadside sites in Hanoi, Vietnam. Bull. Environ. Contam. Toxicol. 81 (2008) 174–179. https://doi. org/10.1007/s00128-008-9450-5. [9] H.Q. Anh, K. Tomioka, N.M. Tue, L.H. Tuyen, N.K. Chi, T.B. Minh, P.H. Viet, S. Takahashi, A preliminary investigation of 942 organic micro-pollutants in the atmosphere in waste processing and urban areas, northern Vietnam: levels, potential sources, and risk assessment. Ecotoxicol. Environ. Saf. 167 (2019) 354–364. https://doi.org/10.1016/j.ecoenv.2018.10.026.[10] C.V. Hung, B.D. Cam, P.T.N Mai, B.Q. Dzung, Heavy metals and polycyclic aromatic hydrocarbons in municipal sewage sludge from a river in highly urbanized metropolitan area in Hanoi, Vietnam: levels, accumulation pattern and assessment of land application. Environ. Geochem. Health 37 (2015) 133–146. https:// doi.org/10.1007/s10653-014-9635-2.[11] C.T. Pham, N. Tang, A. Toriba, K. Hayakawa, Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in atmospheric particles and soil at a traffic site in Hanoi, Vietnam. Polycycl. Aromat. Comp. 35 (2015) 355–371. https://doi.org/10.1080/10406 638.2014.903284.[12] H.Q. Anh, K. Tomioka, N.M. Tue, G. Suzuki, T.B. Minh, P.H. Viet, S. Takahashi, Comprehensive analysis of 942 organic micro-pollutants in settled dusts from northern Vietnam: pollution status and implications for human exposure. J. Mater. Cycles Waste Manag. 21 (2019) 57–66. https://doi.org/10.1007/s101 63-018-0745-2.[13] L.H. Tuyen, N.M. Tue, G. Suzuki, K. Misaki, P.H. Viet, S. Takahashi, S. Tanabe, Aryl hydrocarbon receptor mediated activities in road dust from a metropolitan area, Hanoi-Vietnam: contribution of polycyclic aromatic hydrocarbons (PAHs) and human risk assessment. Sci. Total Environ. 491-492 (2014) 246–254. https://doi.org/10.1016/j.scitotenv.2014. 01.086.[14] L.H. Tuyen, N.M. Tue, S. Takahashi, G. Suzuki, P.H. Viet, A. Subramanian, K.A. Bulbule, P. Parthasarathy, A. Ramanathan, S. Tanabe, Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: occurrence, distribution and in vitro toxicity evaluation. Environ. Pollut. 194 (2014) 272–280. https://doi.org/10.1016/j.envpol. 2014.07.029.[15] H.Q. Anh, T.M. Tran, N.T.T. Thuy, T.B. Minh, S. Takahashi, Screening analysis of organic micro-pollutants in road dusts from some areas in northern Vietnam: a preliminary investigation on contamination status, potential sources, human exposures, and ecological risk. Chemosphere 224 (2019) 428–436. https://doi.org/10.1016/j. chemosphere.2019.02.177.[16] H.T.T. Thuy, T.T.C. Loan, T.H. Phuong, The potential accumulation of polycyclic aromatic hydrocarbons in phytoplankton and bivalves in Can Gio coastal wetland, Vietnam. Environ. Sci. Pollut. Res. 25 (2018) 17240–17249. https://doi. org/10.1007/s11356-018-2249-y.[17] P.C. Van Metre, B.J. Mahler, J.T. Wilson, PAHs underfoot: contaminated dust from coal-tar sealcoated pavement is widespread in the United States. Environ. Sci. Technol. 43 (2009) 20–25. https://doi.org/10.1021/es802119h.[18] L. Liu, A. Liu, Y. Li, L. Zhang, G. Zhang, Y. Guan, Polycyclic aromatic hydrocarbons associated with road deposited solid and their ecological risk: Implications for road stormwater reuse. Sci. Total Environ. 563–564 (2016) 190–198. https://doi.org/10.1016/j.scitotenv.2016.04.114.[19] X. Zheng, Y. Yang, M. Liu, Y. Yu, J.L. Zhou, D. Li, PAH determination based on a rapid and novel gas purge-microsyringe extraction (GP-MSE) technique in road dust of Shanghai, China: Characterization, source apportionment, and health risk assessment. Sci. Total Environ. 557–558 (2016) 688–696. https://doi.org/10.1016/j. scitotenv.2016.03.124.[20] T.T. Dong, B.K. Lee, Characteristics, toxicity, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 74 (2009) 1245–1253. https: //doi.org/10.1016/j.chemosphere.2008.11.035.[21] R. Khanal, H. Furumai, F. Nakajima, C. Yoshimura, Carcinogenic profile, toxicity and source apportionment of polycyclic aromatic hydrocarbons accumulated from urban road dust in Tokyo, Japan. Ecotoxicol. Environ. Saf. 165 (2018) 440–449. https://doi.org/10.1016/j. ecoenv.2018.08.095.[22] N. Soltani, B. Keshavarzi, F. Moore, T. Tavakol, A.R. Lahijanzadeh, N. Jaafarzadeh, M. Kermani, Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci. Total Environ. 505 (2015) 712–723. https://doi.org/10.1016/j.scitotenv.2014.09.097.[23] B.A.M. Bandowe, M.A. Nkansah, Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Sci. Total Environ. 553 (2016) 439-449. https://doi.org/10.1016/j. scitotenv.2016.02.142.[24] T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran, J. Kandasamy, D. Slee, G. Stevenson, R. Naidu, Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: Comparisons of concentration distribution, sources and potential toxicity. Ecotoxicol. Environ. Saf. 104 (2014) 339–348. https://doi.org/10.1016/j.ecoenv.2014.03.010. [25] C. Y. Kuo, H.C. Chen, F.C. Cheng, L.R. Huang, P.S. Chien, J.Y. Wang, Polycyclic aromatic hydrocarbons in household dust near diesel transport routes. Environ. Geochem. Health 34 (2012) 77–87. https://doi.org/10.1007/s10653-011-9392-4.[26] W. Wang, F.Y. Wu, J.S. Zheng, M.H. Wong, Risk assessments of PAHs and Hg exposure via settled house dust and street dust, linking with their correlations in human hair. J. Hazard. Mater. 263 (2013) 627–637. https://doi.org/10.1016/j.jhazmat. 2013.10.023.[27] N. Ali, I.M.I. Ismail, M. Khoder, M. Shamy, M. Alghamdi, M. Costa, L.N. Ali, W. Wang, S.A.M.A.S. Eqani, Polycyclic aromatic hydrocarbons (PAHs) in indoor dust samples from cities of Jeddah and Kuwait: levels, sources and non-dietary human exposure. Sci. Total Environ. 573 (2016) 1607–1614. https://doi.org/10.1016/j. scitotenv.2016.09.134.[28] M.Y. Civan, U.M. Kara, Risk assessment of PBDEs and PAHs in house dust in Kocaeli, Turkey: levels and sources. Environ. Sci. Pollut. Res. 23 (2016) 23369–23384. https://doi.org/10. 1007/s11356-016-7512-5.[29] A. Maragkidou, S. Arar, A. Al-Hunaiti, Y. Ma, S. Harrad, O. Jaghbeir, D. Faouri, K. Hämeri, T. Hussein, Occupational health risk assessment and exposure to floor dust PAHs inside an educational building. Sci. Total Environ. 579 (2017) 1050–1056. https://doi.org/10.1016/j.scitotenv.2016. 11.055. [30] I.C. Yadav, N.L. Devi, J. Li, G. Zhang, Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: implication on source apportionment and toxicological effect. Sci. Total Environ. 616–617 (2018) 223–235. https://doi.org/10.1016/j.scitotenv.2017.10.313.[31] R. Boonyatumanond, M. Murakami, G. Wattayakorn, A. Togo, H. Takada, Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Sci. Total Environ. 384 (2007) 420−432. https://doi.org/10.1016/j.scitotenv. 2007.06.046.[32] I. Sadiktsis, C. Bergvall, C. Johansson, R. Westerholm, Automobile tire–a potential source of highly carcinogenic dibenzopyrenes to the environment. Environ. Sci. Technol. 46 (2012) 3326−3334. https://doi.org/10.1021/es204257d.[33] M. Howsam, K.C. Jones, Sources of PAHs in the environment. In: Neilson, A.H. (Ed.), The Handbook of Environmental Chemistry Vol. 3 Part I PAHs and Related Compounds. Springer-Verlag, Berlin, Heidelberg (1998) 137–174. https://doi.org/10.1007/978-3-540-49697-7_4.[34] I.C.T. Nisbet, P.K. Lagoy, Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 16 (1992) 290–300. https://doi.org/10. 1016/0273-2300(92)90009-X.[35] B. Pieterse, E. Felzel, R. Winter, B. van der Burg, A. Brouwer, PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures. Environ. Sci. Technol 47 (2013) 11651–11659. https://doi.org/10.1021/es403810w.[36] M.B. Yunker, R.W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette, S. Sylvestre, PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33 (2002) 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5.[37] M. Saha, A. Togo, K. Mizukawa, M. Murakami, H. Takada, M.P. Zakaria, N.H. Chiem, B.C. Tuyen, M. Prudente, R. Boonyatumanond, S.K. Sarkar, B. Bhattacharya, P. Mishra, T.S. Tana, Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar. Pollut. Bull. 58 (2009) 189–200. https://doi.org/10.1016/j.marpolbul.2008.04.049.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fiorani, Valeria Piacentini. „RICERCHE STORICO-ARCHEOLOGICHE DELL’UNIVERSITÀ CATTOLICA DI MILANO SUL DELTA DELL’INDO (2010-2018)“. Istituto Lombardo - Accademia di Scienze e Lettere - Rendiconti di Lettere, 05.05.2020. http://dx.doi.org/10.4081/let.2018.648.

Der volle Inhalt der Quelle
Annotation:
Historic-Archaeological Research of the Catholic University of the Sacred Heart of Milano on the Indus Delta (2010-2018). The following text is only an abridged note on the excavations at Banbhore and some significant extra-moenia surveys carried out by the Italian Team within the Institutional framework of a “Pak-French-Italian Historical and Archaeological Research at Banbhore” on the basis of a Licence issued by the competent Pakistani Authorities (2010-2015 - Coordinator of the Project Dr Kaleemullah Lashari), and, some later, within a new institutional asset: a “Memorandum of Understanding” (MoU) signed in the 2017 between the Director General of the Department of Antiquities of Sindh (Manzoor A. Kanasro) and the Magnifico Rettore of the Catholic University of the Sacred Heart of Milan (Prof. Franco Anelli). Aims of the said MoU are: (a) historical-archaeological research-work at Banbhore and Rani Kot; (b) training (theoretical and on the job) to selected students and officers of the DAS. The Italian group works under the sponsorship of the Italian Ministry for Foreign Affairs (now Ministry for Foreign Affairs and International Cooperation/MAECI). Scientific director for the Italian Team is Prof. Valeria Piacentini, member of the Board of Directors of the Research Centre CRiSSMA of the Catholic University. In the following dissertation I won’t linger on the debated issue about the identification of the site of Banbhore with historic sites on the Indus delta (the historical Mihrān river) mentioned and described in the written sources of the past. Too many respected scholars and archaeologists have entered this debate since the end of the 19th Century, for which I refer to a well-known exhaustive literature. In the “50s of the previous century, Leslie Alckok – then official to the Department of Archaeology of Pakistan – carried out some preliminary excavations, followed by Dr Rafique Mughal and F.A. Khan. This latter carried out a systematic and extensive archaeological campaign of several years between the “50s and the “60s, well backed by one of the most authoritative Pakistani historians, N.A. Baloch. Khan brought to light extraordinary archaeological and architectural evidence, but, unfortunately, his excavation-notes have gone lost and little or nothing has been published. Thence, our research-work had to start from nothing. First of all and most urgent was an updated planimetric and altimetric study of the site by kite-photos: a massive wall of c. 1,4 km with 55 towers, 7 posterns, and major and secondary accesses to the citadel (2010-2012 by Y. Ubelman, S. Reynard, A. Tilia), regularly updated with advanced technologies (A. Tilia). Then, in collaboration with Dr M. Kervran, head of the French Team, we undertook an accurate study of the bastions and the shapes of its towers (squared, U-shaped, circular), which has brought to envisage three main occupational phases of the intra-moenia area: 1. Indo-Parthian/Indo-Kushan phase (c. III-II Century b.CE – III-IV Century CE); 2. Sasanian/Indo-Sasanian phase (c. III-IV Century – early VIII Century CE); 3. Islamic phase (VIII – XII/early XIII Century CE). Decay and/or abandonment and end of any settled life on the site can be dated around the XII-early XIII Century, due to attacks and pillaging by Turco-Mongol nomadic tribes, and/or the deviation of this branch of the Indus delta and consequent filling of the harbour, or both. Archaeological evidence come to light confirms the historical information. Our third aim (2010-2015) was to arrive to a first chronological panorama of the site through levels in stratigraphy and the assemblage of pottery and other significant evidence with the individual levels (N. Manassero – A. Fusaro – A. Tilia). Deep trenches were excavated (T/7 and T/9 on the Italian side; T/1 on the French side near the western portion of the bastions skirting the Hindu Temple. These brought to the very early Sasanian period or late Indo-Parthian (c. II-III Century CE), then the water-table invaded the trenches preventing us to go deeper; however, drillings (T/9) have allowed to go deeper for c.1,8 mt of shards …thus reaching a much earlier occupational phase. The question about an Hellenistic occupation at the bottom of the site (Arrian’s harbour of Alexander) is still unanswered… a dream…but the importance of Banbhore has induced to take it seriously and include it within our priorities. Ours and the French trenches have also produced significant information on the architectural panorama of the site for its earlier periods of life. A main N-S and E-W road axis was traced. The site was organised in insulae, each insula with its pits of organic and inorganic refusals, densely built along narrow roads by small mono-nuclear houses, roofed, bases in local stones and the elevation in unbacked bricks. Interesting the presence of refusals of some crafts, as if each building had at the same time the function of “home” and workshop. The refusals shew activities of ivory-working (T/1,T/4, T/9), and other crafts carried out “within the bastions of the citadel”, such as glass, shells and mother of pearl, alloys and various metallurgic activities, too, and so on. Significant the presence of a wealth of clay-moulds. T/5 has produced a clay-mould nearly intact in its shape. No less interesting, in the deeper layers, the presence of a well arranged organisation of the hydraulic resources (small canals, little domed cisterns in roughly cut local stones, wells..: T/9). One element of the site attracted our attention: the so called “Partition Wall”. It has a North-South direction; then, it bends Eastwards, including the Mosque and the Eastern lagoon, but cutting out the majestic Southern Gate. So far, it had been interpreted as a Wall that had a “religious” or “social” function to separate – after the Islamic conquest – the Muslims from the non-Muslim inhabitants of the site. Manassero dedicated the 2014 Field-Season to investigate: T/7 and T/8 were the trenches that gave a new profile to this structure and to the general occupational organisation of the citadel during its last period of life. The round-shaped tower in mud-bricks and the walls on both sides show that they had been hurriedly erected in a late phase of the life of the citadel (around the end of the X – early XI Century CE). They had been built on the top of pre-existing buildings either abandoned and collapsed or hastily flatted-down, likely to defend this eastern portion of the site and its Mosque by some human ravage that had succeeded to open a breach in the lower western bastion leaving the higher north-eastern area exposed to attacks (the skeleton found by Dr Kervran on her portion of the wall, and Khan’s skeletons with arrow-heads in their skulls and chests). According to F.A. Khan’s excavations and what he left us in his little booklet that so far – printed and re-printed – is the guide for visitors to Banbhore, in the eastern portion of the site during the latest stage of its life still stood beautiful palaces, the Friday Mosque, markets, and an eastern gate where a staircase (still in situ in the 2015) brought to a lagoon at the foot of the eastern bastions and to the river. At the end of this first stage of our historical and archaeological research-work, the identification of the site of Banbhore with the historic Sasanian/Indo-Sasanian fortified harbour-town seemed quite feasible. When we resumed our field-work in the 2017, we decided to go deeper in this direction. In the meantime, Dr Manassero had resigned due to personal choices of life. Dr Simone Mantellini bravely accepted to be our Field-Director for the archaeological sector. T/9 had unearthed an imposing Building (Building 1) running along the East-West road-axis, parallel to a second Building (Building 2). The road – wide about 5 meters – must have been a major road, that had played a central role within the general architectural urban asset of the site. Building 2 had the typical structure of the local houses: base in rough stones, elevation in mud-bricks. Excavations of Building 1 produced fillings well flatted and an endless chronological procession of floors in row mud, likely the re-occupation of an important palace during the last phase of the occupational life of Banbhore. The material (pottery and others) associated with the various levels in stratigraphy (Dr A. Fusaro) confirmed the dating of the dug portion from c. the early XIII to the XI Century CE. Historically speaking, it makes sense: chronicles of the time report about the invasion of Lower Sindh by the Seljuks (second half of the XI Century CE); they indulge on the assaults against the walls of its great harbour-town named Daybul, its long siege concluded with a peace-treaty that fixed the border with Makrān at Gwadar and gave to Daybul an autonomous status (nāḥiya) within the Seljuk dominion of Qāvurd-Khān ibn Chaghrī Beg. More interesting was the copious filling with ivory refusals. Along Building 2, were found semi-worked shells, glass, iron and brass rivets, iron instruments, alloys, coins and other. This induced to think to a late quarter of work-shops outside the Partition Wall, built on previous buildings. Lastly, some surveys extra-moenia and in the Lahiri Bandar and Mullah-ka Kot islands have revealed a close connection and interaction between these spaces and the citadel. Around the bastions: the remains of a densely settled area and a well organised regulation of the waters and the territory, rock quarries, urban quarters, dwellings, cairn-tombs (some of them re-used), an artificial lake of sweet water delimited to the south by a “barrage”, wells, and a vast so called “industrial area” to the north-northwest of the bastions, pottery kilns and others completed the image of a urban asset at least for a given span of time. Architectural and archaeological evidences have regularly been graphically, photographically and topographically documented (A. Tilia). Archaeometric analyses on the job (pottery, metals, alloys, coins…) and in Italy (ivory, glass, clay-moulds, shards…) have provided precious support and new elements to the archaeological work. We are now confronted with the plan of a positive shahristān. Banbhore is no longer only a fortified citadel. Written sources in Arabic and Persian confirm this feature. After the Jan.-Feb. 2018 field-season, the Islamic occupational phase of Banbhore and the “archaeological park” surrounding it enhanced this image: a positive fluvial and maritime system stemmed out, a well-fortified system and harbour-town, a centre of mercantile power, production and re-distribution of luxury goods, an international centre of pilgrimage and religious learning, too, outlet to the sea of the capital-city of the moment. For the forthcoming field-seasons, it was decided to concentrate the attention on the sector where the North-South axis crosses the East-West one. In particular: to further investigate Building 1; to look for the ivory-workshops that must be there around – given the copious pieces so far brought to light and used as refilling (more than 9.000 fragments) and some fragments of rough ivory (specialist of the Italian Team G. Affanni); to organise a deep-trench in the Pakistani sector (T/11), in order to resume Manassero’s investigations on the urban and architectural features of the pre-Islamic phases...and (why not?) try to overcome the water-table problem with the technological support offered by the Bahrya University of Karachi…the much dreamed quest of Alexander the Macedonian’s port. All in all and to conclude. Nowadays, at the end of this first stage of historical and archaeological research-work in collaboration with the DAS, the identification of the site of Banbhore and its surrounding area with the Sasanian/Indo-Sasanian and the Early-Islamic well-fortified harbour-town of Daybul/Debol can be confirmed. No other site with the characteristics described by the written sources of the time (chronicles, geographies, travelogues…plus Marco Polo and some significant Genoese archival documents) has so far come to light on the Indus deltaic region. Conversely, still un-answered are other queries: Banbhore can be identified also with the great harbour of Alexander the Macedonian? Or with the Barbaricum/Barbarikon/Barbariké, harbour-town of Parthian rulers or local lords of “Skuthia”, also mentioned in the Periplus Maris Erythraei? Or again with Dib/Deb, harbour mentioned in a Parthian-Manichaean text? Or again the Dibos of Greek sources? Or the Dêbuhl/Dêphul of an Arminian text à propos of the Prophet Mani? Wishful thinking; however, these queries represent some amongst the ambitious aims of our future research-work.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie