Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „TERAHERTZ (THZ) RADIATION“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "TERAHERTZ (THZ) RADIATION" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "TERAHERTZ (THZ) RADIATION"
Zainullin, F. A., D. I. Khusyainov, M. V. Kozintseva und A. M. Buryakov. „Polarization analysis of THz radiation using a wire grid polarizer and ZnTe crystal“. Russian Technological Journal 10, Nr. 3 (09.06.2022): 74–84. http://dx.doi.org/10.32362/2500-316x-2022-10-3-74-84.
Der volle Inhalt der QuelleZabolotniy, A. G., I. A. Geiko und L. M. Balagov. „Terahertz radiation in ophthalmology (review)“. Acta Biomedica Scientifica 6, Nr. 6-1 (28.12.2021): 168–80. http://dx.doi.org/10.29413/abs.2021-6.6-1.20.
Der volle Inhalt der QuelleKhodzitsky, Mikhail K., Petr S. Demchenko, Dmitry V. Zykov, Anton D. Zaitsev, Elena S. Makarova, Anastasiia S. Tukmakova, Ivan L. Tkhorzhevskiy, Aleksei V. Asach, Anna V. Novotelnova und Natallya S. Kablukova. „Photothermal, Photoelectric, and Photothermoelectric Effects in Bi-Sb Thin Films in the Terahertz Frequency Range at Room Temperature“. Photonics 8, Nr. 3 (12.03.2021): 76. http://dx.doi.org/10.3390/photonics8030076.
Der volle Inhalt der QuelleKhusyainov, D. I., A. V. Gorbatova und A. M. Buryakov. „Terahertz generation from surface of the bulk and monolayer tungsten diselenide“. Russian Technological Journal 8, Nr. 6 (18.12.2020): 121–29. http://dx.doi.org/10.32362/2500-316x-2020-8-6-121-129.
Der volle Inhalt der QuellePfeifer, Tilo, und Stephan Bichmann. „THz-Imaging on its Way to Industrial Application“. Key Engineering Materials 437 (Mai 2010): 271–75. http://dx.doi.org/10.4028/www.scientific.net/kem.437.271.
Der volle Inhalt der QuelleSabluk, A. V., und A. A. Basharin. „Terahertz radiation converter based on metamaterial“. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 26, Nr. 1 (14.04.2023): 56–65. http://dx.doi.org/10.17073/1609-3577-2023-1-56-65.
Der volle Inhalt der QuelleZhao, Li, Ruhan Yi, Sun Liu, Yunliang Chi, Shengzhi Tan, Ji Dong, Hui Wang et al. „Biological responses to terahertz radiation with different power density in primary hippocampal neurons“. PLOS ONE 18, Nr. 1 (20.01.2023): e0267064. http://dx.doi.org/10.1371/journal.pone.0267064.
Der volle Inhalt der QuelleZhang, Xingyun, Fangyuan Zhan, Xianlong Wei, Wenlong He und Cunjun Ruan. „Performance Enhancement of Photoconductive Antenna Using Saw-Toothed Plasmonic Contact Electrodes“. Electronics 10, Nr. 21 (04.11.2021): 2693. http://dx.doi.org/10.3390/electronics10212693.
Der volle Inhalt der QuelleFu, Xiao Jian, und Ji Zhou. „The Applications of Terahertz Spectroscopy in Functional Optical Materials Researches“. Applied Mechanics and Materials 320 (Mai 2013): 133–37. http://dx.doi.org/10.4028/www.scientific.net/amm.320.133.
Der volle Inhalt der QuelleSidorov A. V., Veselov A. P., Vodopyanov A. V., Kubarev V. V., Gorbachev Ya. I. und Shevchenko O. A. „Features of the breakdown in heavy noble gases under the action of Novosibirsk free electron laser radiation“. Technical Physics Letters 49, Nr. 2 (2023): 14. http://dx.doi.org/10.21883/tpl.2023.02.55362.19424.
Der volle Inhalt der QuelleDissertationen zum Thema "TERAHERTZ (THZ) RADIATION"
Numan, Nagla Numan Ali. „Terahertz (THz) spectroscopy“. Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71690.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Terahertz radiation is currently used in security, information and communication technology (ICT), and biomedical sciences among others. The usability of terahertz (THz) radiation, in many of its applications depends on characteristics of the materials being investigated in the THz range. At the heart of THz usage is a THz spectroscopy system necessary for the generation and detection of the THz radiation. In this thesis, we characterise such a THz spectroscopy system. In our typical THz spectrometric system, we make use of femtosecond (fs) laser technology and pump-probe principles for emission and detection of THz radiation. Background about the principles of generation THz radiation using fs triggered antennas and the principles of the spectroscopy technique and appropriate literature references are presented. Using an assembled commercially available kit, we reproduce known spectra in order to confirm correct functionality (for calibration) of the assembled spectroscopy system and to gain experience in interpreting these spectra. By introducing a suitable x - y scanning device we construct a crude THz imaging device to illustrate the principle.
AFRIKAANSE OPSOMMING: Terahertsstraling word deesdae wyd in die sekuriteits, inligting-en-kommunikasie en biomediese sektore aangewend. Die gepastheid van terahertsstraling (THz) vir ’n spesifieke toepassings hang af van die eienskappe van die materiale wat ondersoek word. Vir die uitvoer van sulke eksperimente word ’n THz-spektroskopie sisteem benodig vir die opwekking en meting van THz-straling. In hierdie tesis word so ’n THz-spektroskopie sisteem beskou en gekarakteriseer. In die sisteem word van ’n femtosekondelaser (fs) gebruik gemaak in ’nn pomp-en-proef opstelling vir die uitstraling en meting van THz-straling. Die beginsels rakende die opwekking van THz-straling, deur gebruik te maak van ’n antenna wat deur ’n fs-laser geskakel word, asook die beginsels van die spektroskopiese tegniek, met toepaslike verwysings, word in die tesis aangebied. Deur gebruik te maak van’n kommersiële THz opstelling is bekende spektra gemeet om die korrekte funksionering (vir kalibrasie doeleindes) na te gaan en om ondervinding op te doen in die interpretasie van hierdie spektra. ’n X-Y-translasie toestel is tot die opstelling bygevoeg om THz-afbeelding moontlik te maak en sodoende hierdie beginsel te illustreer.
Suzanovičienė, Rasa. „Investigation of carrier kinetics in semiconductors by terahertz radiation pulses“. Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20101116_163924-89818.
Der volle Inhalt der QuelleUltrasparčių puslaidininkinių komponentų kūrimas reikalauja gilesnio supratimo apie tai, kaip puslaidininkiuose vyksta fizikiniai procesai, trunkantys kelias pikosekundes ar net mažiau nei vieną pikosekundę. Tokie reiškiniai, kaip elektronų impulso ir energijos relaksacija bei nepusiausvyrųjų krūvininkų pagavimas yra labai svarbūs puslaidininkinių fotonikos ir terahercinio diapazono prietaisų veikimui. Iki pastarojo meto pagrindinis ultrasparčiųjų procesų puslaidininkiuose tyrimo įrankis buvo optiniai metodai, kuriuose elektronų dinamikai stebėti buvo pasitelkiami pikosekundinių ar femtosekundinių lazerių impulsai. Nepaisant išskirtinai didelės šių metodų laikinės skyros, optinio kaupinimo-zondavimo matavimų rezultatus yra palyginti sudėtinga interpretuoti. Šie rezultatai dažniausiai yra įtakojami kelių sistemos parametrų kitimo ir įvairių fizikinių reiškinių tarpusavio sąveikos, todėl sunkiai susiejamas su kuria nors elektronų laikine charakteristika. Disertacijos darbo tikslas – naudojant terahercinės spinduliuotės impulsus išmatuoti elektronų impulso ir energijos relaksacijos trukmes keliuose siauratarpiuose puslaidininkiuose bei jų gyvavimo trukmes medžiagose, skirtose fotolaidžių terahercinės spinduliuotės emiterių ir detektorių gamybai. Šioje disertacijoje yra pateikiami įvairių charakteringų elektroninius procesus puslaidininkiuose apibūdinančių trukmių matavimų naudojant terahercinės spinduliuotės impulsus rezultatai. Tokie tyrimai atlikti ir optinio žadinimo –... [toliau žr. visą tekstą]
But, Dmytro. „Détecteurs de radiation THz à base de silicium“. Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20170/document.
Der volle Inhalt der QuelleThis thesis is devoted to study of terahertz detectors based on field-effect transistors fabricated using silicon technology and they comparison to InGaAs/InP ones. The main research effort was devoted to the problem of detectors linearity at high radiation intensities. The photoresponse of field effect transistors to terahertz radiation in a wide range of intensities: from 0.5 mW/cm2 up to 500 kW/cm2 and for frequencies from 0.13 THz to 3.3 THz was studied. This work shows that the photoresponse of all studied detectors increases linearly with increasing radiation intensity up to a few kW/cm2 range and is followed by the nonlinear and saturation parts for higher radiation intensities. This effect has led to the new model of broadband field-effect transistor detectors. The model is based on the phenomenological knowledge of the transistor static transfer characteristic and explains the photoresponse nonlinearity as related to non-linearity and saturation of the transistor channel current. The developed model explains consistently experimental data both in linear and nonlinear regions of terahertz detection
Niklas, Andrew John. „Characterization of Structured Nanomaterials using Terahertz Frequency Radiation“. Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347461386.
Der volle Inhalt der QuelleAl-Ibadi, Amel. „Terahertz imaging and spectroscopy of biomedical tissues : application to breast cancer detection“. Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0059/document.
Der volle Inhalt der QuelleThe work of this thesis consists in developing terahertz spectroscopy and imaging tools for medical applications. The goal is to determine the potential and effectiveness of terahertz spectroscopy and imaging in the detection of cancer regions and the distinction between diseased and healthy tissue for breast cancer in women. Terahertz spectroimaging is a non-contact, non-ionizing technique for rapid results compared to standard clinical analysis. Experimental studies are divided into two main sections:Section IThis part focuses on THz spectroscopy using THz radiation. The mastery of this technique makes it possible to work in reflection or transmission mode with frequencies in the terahertz bandwidth. Several types of materials have been used as ghosts for the calibration of the experiment: solids (silica, teflon, sapphire and glass), liquids (methanol, water and alcohol) and biological tissues (cancer, fiber and fat), as well as a mixture (water-methanol). The refractive indices, the absorption coefficients and the complex dielectric functions were first measured and extracted and then fitted with a Debye model. Biological tissues have appeared heterogeneous in thickness and with surfaces that may be irregular, making it difficult to extract accurate information because of induced artifacts. The signals have been processed according to a rigorous protocol: The measurements are carried out on a perfectly characterised substratet in transmission to reduce the uncertainties on the phase during the measurements in reflection. The THz signals reflected at the interfaces between the air / sample, air / window, water / window and window / window are used as a basic signal to estimate and improve the signal-to-noise ratio in the spectroscopy measurements. The advantage of this method is its accuracy, simplicity and ease of application for a reflection system with an angle of incidence. Measurement of refractive indices and absorption coefficients of samples with tumor and healthy tissue revealed that the tumor regions showed significant differences from normal tissue during terahertz tissue-radiation interaction.Section II:The second part of this study focuses on THz imaging for breast cancer detection in both transmission and reflection modes. Several types of samples have been studied. Sections used included paraffin-embedded tissue, fresh tissues removed from the OR, formalin-fixed, and blocks. For this the spectrometer has been moved to the hospital. More than 50 samples were inspected. Three image processing methods were used: cutting, automation and manual image sorting. In addition, time domain and frequency domain images were analyzed to describe and identify the different regions of mammary tissue studied and to determine the contrast between healthy tissue and diseased tissue. The amount of differential water present in diseased tissue can be one of the sources of contrast. In fact, the cancerous tissue has a higher water content than that of normal fibers or adipose tissue, which makes it possible to discriminate the cancerous, fibrous and fatty regions on the THz images
Wachsmuth, Matthew George. „Measurement and Characterization of Terahertz Radiation Propagating Through a Parallel Plate Waveguide“. PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/317.
Der volle Inhalt der QuelleSikharin, Suphakul. „Development of Compact Accelerator-Based Terahertz Radiation Source at Kyoto University“. Kyoto University, 2017. http://hdl.handle.net/2433/228250.
Der volle Inhalt der QuelleLarsen, Mads Jacob Hedegaard. „Non-Contact Probes for Characterization of THz Devices and Components“. Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1369393504.
Der volle Inhalt der QuelleVieille, Grosjean Mélissa. „Atomes de Rydberg : Étude pour la production d'une source d'électrons monocinétique. Désexcitation par radiation THz pour l'antihydrogène“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS349/document.
Der volle Inhalt der QuelleSince 1975, Rydberg atoms have been studied and now used in quantum information for their particular interaction properties. However, these physical objects can be involved in various other applications, where their remarkable characteristics make them perfect tools. In this paper, we will focus on two distinct applications involving cesium Rydberg atoms. First, we will see how to use such atoms to produce a source of monocinetic electrons, thanks to the singular ionization mechanism of this type of atoms at a precise value of electric field dependent on the excitation level. The electrons thus produced are then extracted and their energy dispersion measured. Theoretically and according to the first experimental measurements made during the thesis, we will show that we can hope an energy dispersion of the electrons produced by this meV technique, a resolution never reached before. Today, this type of source is becoming an indispensable tool for the development and study of new materials by molecular scale chemical reaction control and for phonon mapping. In a second step, we will see that it is possible to de-energize a cloud of Rydberg atoms of various levels thanks to an external source in the tera-hertz domain. This project is part of the ongoing anti-matter experiments at CERN, which aim to unravel the mystery of the matter/anti-matter asymmetry. The current methods of production of antihydrogen, forms clouds of these anti-atoms in different Rydberg states. To study them, it is then necessary to de-energize as many antihydrogen atoms as possible to the fundamental level. We will present the method envisaged, as well as the results obtained experimentally on a device created during the thesis to show the feasibility of the technique. These first results show that it is possible to accelerate the deenergization of a Rydberg atom on a very high state thanks to a lamp behaving like a black body. We will detail the improvements envisaged, in particular to adapt the spectrum of the THz frequencies to use and prevent the photoionization of atoms, by filters or by spectral shaping via the use of a photomixer
Pallas, Florent. „Etude théorique et expérimentale du fonctionnement bifréquence de microlasers continus et impulsionnels pour la génération d'ondes RF et THz“. Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00877894.
Der volle Inhalt der QuelleBücher zum Thema "TERAHERTZ (THZ) RADIATION"
Royal Society (Great Britain). Discussion Meeting. The terahertz gap: The generation of far-infrared radiation and its applications : papers of a discussion meeting held at The Royal Society on 4 and 5 June 2003. London: The Royal Society, 2004.
Den vollen Inhalt der Quelle findenTerahertz And Mid Infrared Radiation Generation Detection And Applications Proceedings Of The Nato Advanced Research Workshopon Terahertz And Mid Infrared Radiation. Springer, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "TERAHERTZ (THZ) RADIATION"
Zhang, Xi-Cheng, und Jingzhou Xu. „Terahertz Radiation“. In Introduction to THz Wave Photonics, 1–26. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0978-7_1.
Der volle Inhalt der QuelleRoskos, H. G., T. Pfeifer, H. M. Heiliger, T. Löffler und H. Kurz. „Tunable Coherent THz Radiation Pulses From Optically Excited Bloch Oscillations“. In New Directions in Terahertz Technology, 369–75. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5760-5_28.
Der volle Inhalt der QuelleMishra, Ajay, Nimish Dixit und Himani Sharma. „Generation of THz Radiation Using Ring Terahertz Parametric Oscillator“. In Springer Proceedings in Physics, 907–9. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_208.
Der volle Inhalt der QuelleJo, Seong Jin, und Oh Sang Kwon. „Structure and Function of Skin: The Application of THz Radiation in Dermatology“. In Convergence of Terahertz Sciences in Biomedical Systems, 281–99. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3965-9_16.
Der volle Inhalt der QuelleShimosato, H., M. Ashida, T. Itoh, S. Saito und K. Sakai. „Ultrabroadband Detection of Terahertz Radiation from 0.1 to 100 THz with Photoconductive Antenna“. In Springer Series in Optical Sciences, 317–23. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49119-6_41.
Der volle Inhalt der QuelleQuema, Alex, Gilbert Diwa, Elmer Estacio, Romeric Pobre, Glenda Delos Reyes, Carlito Ponseca, Hidetoshi Murakami, Shingo Ono und Nobuhiko Sarukura. „Terahertz (THz) Pigtail Assembly Utilizing a Lens Duct for Effective Coupling of THz Radiation into Teflon Photonic Crystal Fiber Waveguide“. In Springer Series in Optical Sciences, 293–99. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49119-6_38.
Der volle Inhalt der QuelleBucur-Portase, Robin-Cristian. „The Effects of Terahertz Radiation on the Development of Biological Organisms I: Wheat Seeds“. In IFMBE Proceedings, 483–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92328-0_63.
Der volle Inhalt der QuelleTomalia, Donald A. „Early Goddard Contributions Confirming the Dendritic State: Engineering PAMAM Dendrimer CNDPs to Generate CW-Terahertz Radiation Suitable for Molecular, Bio- and Diagnostics Imaging Spectroscopy“. In Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile, 935–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-18778-1_39.
Der volle Inhalt der Quelle„THz Radiative Transfer Basics and Line Radiation“. In Terahertz Astronomy, 39–66. CRC Press, 2015. http://dx.doi.org/10.1201/b19111-3.
Der volle Inhalt der Quelle„- THz RADIATIVE TRANSFER BASICS AND LINE RADIATION“. In Terahertz Astronomy, 56–83. CRC Press, 2015. http://dx.doi.org/10.1201/b19111-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "TERAHERTZ (THZ) RADIATION"
Nishitani, Junichi, Takeshi Nagashima und Masanori Hangyo. „Terahertz radiation from antiferromagnetic MnO“. In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105017.
Der volle Inhalt der QuelleHannotte, T., M. Lavancier, S. Mitryukovskiy, J.-F. Lampin und R. Peretti. „Terahertz radiation confinement using metallic resonators“. In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8873795.
Der volle Inhalt der QuelleZhang, W.-D., L. Viveros und E. R. Brown. „Concentration of terahertz radiation for microsample spectroscopy“. In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956297.
Der volle Inhalt der QuelleLi, D., Y. Wang, M. Nakajima, M. Hashida, Y. Wei, S. Miyamoto und M. Tani. „Terahertz radiation from graphene surface plasmon polaritons“. In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758931.
Der volle Inhalt der QuelleDrexler, C., J. Karch, P. Olbrich, M. Fehrenbacher, M. M. Glazov, S. A. Tarasenko, D. Weiss et al. „Terahertz radiation induced edge currents in graphene“. In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105064.
Der volle Inhalt der QuelleSasa, S., M. Tatsumi, Y. Kinoshita, M. Koyama, T. Maemoto, I. Kawayama und M. Tonouchi. „Enhanced Terahertz Radiation from GaSb/InAs Heterostructures“. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510477.
Der volle Inhalt der QuelleGong, Sen, Fenxiao Dong, Hu Min, Renbin Zhong und Shenggang Liu. „Terahertz Radiation from Graphene Based Hyperbolic Medium“. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510482.
Der volle Inhalt der QuellePerucchi, A., L. Capasso, S. Di Mitri, P. Di Pietro, F. Giorgianni, S. Lupi, C. Svetina et al. „THz coherent transition radiation at TeraFERMI: First characterization of THz radiation and electron beam dynamics“. In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758440.
Der volle Inhalt der QuelleFrolov, Nikita S., Semen A. Kurkin, Alexey A. Koronovskii und Alexander E. Hramov. „Nanovircator: Promising THz electromagnetic radiation source“. In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327630.
Der volle Inhalt der QuelleKnap, W., N. Dyakonova, D. Coquilliat, D. But und F. Teppe. „A Terahertz plasma oscillations in nanometer field effect transistors for Terahertz radiation rectification“. In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665746.
Der volle Inhalt der Quelle