Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „THZ FREQUENCY“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "THZ FREQUENCY" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "THZ FREQUENCY"
Gu, Qun Jane, Zhiwei Xu, Heng-Yu Jian, Bo Pan, Xiaojing Xu, Mau-Chung Frank Chang, Wei Liu und Harold Fetterman. „CMOS THz Generator With Frequency Selective Negative Resistance Tank“. IEEE Transactions on Terahertz Science and Technology 2, Nr. 2 (März 2012): 193–202. http://dx.doi.org/10.1109/tthz.2011.2181922.
Der volle Inhalt der QuelleKleine-Ostmann, Thomas, Christian Jastrow, Kai Baaske, Bernd Heinen, Michael Schwerdtfeger, Uwe Karst, Henning Hintzsche, Helga Stopper, Martin Koch und Thorsten Schrader. „Field Exposure and Dosimetry in the THz Frequency Range“. IEEE Transactions on Terahertz Science and Technology 4, Nr. 1 (Januar 2014): 12–25. http://dx.doi.org/10.1109/tthz.2013.2293115.
Der volle Inhalt der QuelleYablokov, Anton A., Vladimir A. Anfertev, Leonid S. Revin, Vladimir Yu Balakirev, Mariya B. Chernyaeva, Elena G. Domracheva, Aleksey V. Illyuk, Sergey I. Pripolzin und Vladimir L. Vaks. „Two-Frequency THz Spectroscopy for Analytical and Dynamical Research“. IEEE Transactions on Terahertz Science and Technology 5, Nr. 5 (September 2015): 845–51. http://dx.doi.org/10.1109/tthz.2015.2463114.
Der volle Inhalt der QuelleConsolino, Luigi, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka et al. „Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers“. Applied Sciences 11, Nr. 4 (04.02.2021): 1416. http://dx.doi.org/10.3390/app11041416.
Der volle Inhalt der QuelleJarzab, Przemysław P., Kacper Nowak und Edward F. Plinski. „Frequency aspects of the THz photomixer“. Optics Communications 285, Nr. 6 (März 2012): 1308–13. http://dx.doi.org/10.1016/j.optcom.2011.09.053.
Der volle Inhalt der QuelleZhang, Xiao Yu, Zhong Xin Zheng, Xin Xing Li, Ren Bing Tan, Zhi Peng Zhang, Yu Zhou, Jian Dong Sun, Bao Shun Zhang und Hua Qin. „Terahertz Filter Based on Frequency Selective Surfaces“. Advanced Materials Research 571 (September 2012): 362–66. http://dx.doi.org/10.4028/www.scientific.net/amr.571.362.
Der volle Inhalt der QuelleYashchyshyn, Yevhen, und Konrad Godziszewski. „A New Method for Dielectric Characterization in Sub-THz Frequency Range“. IEEE Transactions on Terahertz Science and Technology 8, Nr. 1 (Januar 2018): 19–26. http://dx.doi.org/10.1109/tthz.2017.2771309.
Der volle Inhalt der QuelleDickie, Raymond, Robert Cahill, Vincent Fusco, Harold S. Gamble und Neil Mitchell. „THz Frequency Selective Surface Filters for Earth Observation Remote Sensing Instruments“. IEEE Transactions on Terahertz Science and Technology 1, Nr. 2 (November 2011): 450–61. http://dx.doi.org/10.1109/tthz.2011.2129470.
Der volle Inhalt der QuelleLiu, Weilin, Jiejun Zhang, Maxime Rioux, Jeff Viens, Younes Messaddeq und Jianping Yao. „Frequency Tunable Continuous THz Wave Generation in a Periodically Poled Fiber“. IEEE Transactions on Terahertz Science and Technology 5, Nr. 3 (Mai 2015): 470–77. http://dx.doi.org/10.1109/tthz.2015.2412381.
Der volle Inhalt der QuelleNazarov, Maxim, O. P. Cherkasova und A. P. Shkurinov. „Spectroscopy of solutions in the low frequency extended THz frequency range“. EPJ Web of Conferences 195 (2018): 10008. http://dx.doi.org/10.1051/epjconf/201819510008.
Der volle Inhalt der QuelleDissertationen zum Thema "THZ FREQUENCY"
Parvex, Pichaida Taky. „Astrometric precision spectroscopy: Experimental development of a dual-frequency laser synthesizer based on an optical frequency comb“. Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/159288.
Der volle Inhalt der QuelleLa tecnología de terahercios se encuentra en un estado de desarrollo atrasado con respecto a las tecnologías usadas en las bandas adyacentes, como la óptica infrarroja o la electróni- ca de microondas. En particular, no se poseen fuentes compactas de radiación que operen dentro esta banda logrando buenos niveles de potencia y amplios rangos de frecuencia. Las útiles propiedades de la radiación de terahercios como su capacidad de detectar moléculas complejas, buena resolución espacial y ser radiación no ionizante, hacen que el desarrollo de tecnología para esta banda sea un área con creciente interés. En el contexto del desarrollo de una nueva línea de investigación sobre espectroscopía molecular, en el Laboratorio de Terahertz y Astrofotónica de la Universidad de Chile, se realiza este trabajo que consiste en el desarrollo experimental de un sistema láser para la ali- mentación de fotomezcladores. Este sistema tiene como objetivo la generación de dos señales ópticas de alta estabilidad y coherencia, cuya diferencia de frecuencias puede ser ajustada de forma continua dentro del rango de 10 GHz a 300 GHz. Para esto, se utiliza un esquema basado en un peine de frecuencias óptico sobre el cual se enclava por inyección un láser de diodos de frecuencia sintonizable. Esto consigue tener una fuente infrarroja de alta precisión dentro de un gran rango. Además, se genera una segunda señal por medio de modulación en amplitud (AM), la cual es sintonizable dentro de un rango igual al espaciado producido por el peine óptico. En conjunto, estas señales logran abarcar un amplio espectro de frecuencias de forma continua sin perder estabilidad ni calidad de las señales. En este trabajo se logra implementar los subsistemas para la generación de cada una de las señales requeridas y se estudia la capacidad de estos para trabajar dentro del rango deseado. Para la señal generada por enclavamiento por inyección, se logra probar el concepto dentro de un rango reducido, principalmente por falta de un buen sistema de medición de altas frecuencias. Para la señal generada por modulación AM, se logran resultados positivos en todo el rango de diseño. Finalmente, se proponen modificaciones al sistema para mejorar su desempeño.
Este trabajo ha sido parcialmente financiado por Conicyt, a través de su fondo ALMA para el desarrollo de la astronomía, Proyecto 31140025, QUIMAL, Proyecto 1500010, CATA-Basal PFB06 y Fondecyt 1151213
Dolasinski, Brian David. „Nonlinear systems for frequency conversion from IR to RF“. University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1417804168.
Der volle Inhalt der QuelleSuizu, Koji, Kodo Kawase und 晃道 川瀬. „Monochromatic-Tunable Terahertz-Wave Sources Based on Nonlinear Frequency Conversion Using Lithium Niobate Crystal“. IEEE, 2008. http://hdl.handle.net/2237/11170.
Der volle Inhalt der QuelleWang, Cheng. „Wideband and fast THz spectrometer using dual-frequency-comb on CMOS“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118025.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 71-75).
Millimeter-wave/terahertz rotational spectroscopy of polar gaseous molecules provides a powerful tool for complicated gas mixture analysis. Here, a 220-to-320 GHz dual-frequency-comb spectrometer in 65-nm bulk CMOS is presented, along with a systematic analysis on fundamental issues of rotational spectrometer, including the impacts of various noise mechanisms, gas cell, molecular properties, detection sensitivity, etc. The spectrometer utilizes two counter-propagating frequency-comb signals to seamlessly scan the broadband spectrum. The comb signal, with 10 equally-spaced frequency tones, is generated and detected by a chain of inter-locked transceivers on chip. Each transceiver is based on a multi-functional electromagnetic structure, which serves as frequency doubler, sub-harmonic mixer and on-chip radiator simultaneously. In particular, theory and design methodology of a dual transmission line feedback scheme are presented, which maximizes the transistor gain near its cut-off frequency fmax. The dual-frequency-comb scheme does not only improve the scanning speed by 20 x, but also reduces the overall energy consumption to 90 mJ/point with 1 Hz bandwidth (or 0.5 s integration time). With its channelized 100-GHz scanning range and sub-kHz specificity, wide range of molecules can be detected. In the measurements, state-of-the-art total radiated power of 5.2 mW and single sideband noise figure (NF) of 14.6~19.5 dB are achieved, which further boost the scanning speed and sensitivity. Lastly, spectroscopic measurements for carbonyl sulfide (OCS) and acetonitrile (CH3CN) are presented. With a path length of 70 cm and 1 Hz bandwidth, the measured minimum detectable absorption coefficient reaches [alpha] gas,min=7 .2 x 10-7 cm- 1 . For OCS, that enables a minimum detectable concentration of 11 ppm. The predicted sensitivity for some other molecules reaches ppm level (e.g. 3 ppm for hydrogen cyanide (HCN)), or 10 ppt level if gas pre-concentration with a typical gain of 10 5 is used.
by Cheng Wang.
S.M.
Paquet, Romain. „Nouvelles sources lasers pour génération THz“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTS017.
Der volle Inhalt der QuelleThis work focuses on the design, realization and experimental study of highly coherent dual-frequency laser sources emitting at 1 µm for THz radiation generation by photomixing. We are particularly interested in vertical-external-cavity surface-emitting laser (VeCSEL), the aim being to obtain a robust dual-frequency continuous wave operation, based on simultaneous coexistence of two Laguerre-Gaussian transverse modes. We design intracavity transverse selective losses mask to select only the two Laguerre-Gaussian modes. The stable and simultaneous dual-frequency operation, the beat-frequency tunability range and the temporal coherence was specifically studied. We demonstrated THz emission by seeding a uni-travelling-carrier photodiode by an optically-pumped dual-frequency vertical-external-cavity surface-emitting
Cluff, Julian. „Time domain THz spectroscopy of semiconductors“. Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311454.
Der volle Inhalt der QuelleNiklas, Andrew John. „Characterization of Structured Nanomaterials using Terahertz Frequency Radiation“. Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347461386.
Der volle Inhalt der QuelleThoma, Petra [Verfasser]. „Ultra-fast YBa2Cu3O7-x direct detectors for the THz frequency range / Petra Thoma“. Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.
Der volle Inhalt der QuelleSung, Chieh. „Interaction of a relativistic electron beam with radiation in the THz frequency range“. Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1679290761&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleWang, Yuekun. „In0.53Ga0.47As-In0.52Al0.48As multiple quantum well THz photoconductive switches and In0.53Ga0.47As-AlAs asymmetric spacer layer tunnel (ASPAT) diodes for THz electronics“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/in053ga047asin052al048as-multiple-quantum-well-thz-photoconductive-switches-and-in053ga047asalas-asymmetric-spacer-layer-tunnel-aspat-diodes-for-thz-electronics(5fd73bd5-aef3-476b-be1b-7498da3f9627).html.
Der volle Inhalt der QuelleBücher zum Thema "THZ FREQUENCY"
M, Schneider, und United States. National Bureau of Standards, Hrsg. p12sCp16sO laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cmp-1s) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Den vollen Inhalt der Quelle findenM, Schneider, und United States. National Bureau of Standards, Hrsg. 12C16O laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm-1) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Den vollen Inhalt der Quelle findenM, Schneider, und United States. National Bureau of Standards., Hrsg. ¹²C¹⁶O laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm⁻¹) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Den vollen Inhalt der Quelle findenA, Dax, und National Institute of Standards and Technology (U.S.), Hrsg. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Den vollen Inhalt der Quelle findenA, Dax, und National Institute of Standards and Technology (U.S.), Hrsg. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Den vollen Inhalt der Quelle findenA, Dax, und National Institute of Standards and Technology (U.S.), Hrsg. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Den vollen Inhalt der Quelle findenA, Dax, und National Institute of Standards and Technology (U.S.), Hrsg. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Den vollen Inhalt der Quelle findenA, Dax, und National Institute of Standards and Technology (U.S.), Hrsg. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Den vollen Inhalt der Quelle findenFrequency dictionary English: ENG. [Leipzig]: Leipziger Universitätsverlag, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "THZ FREQUENCY"
Whitford, B. G. „Phase-Locked Frequency Chains to 130 THz at NRC“. In Frequency Standards and Metrology, 187–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_34.
Der volle Inhalt der QuelleSertel, Kubilay, und Georgios C. Trichopoulos. „Non-contact Metrology for mm-Wave and THz Electronics“. In High-Frequency GaN Electronic Devices, 283–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_10.
Der volle Inhalt der QuelleClairon, A., O. Acef, C. Chardonnet und C. J. Bordé. „State-of-the-Art for High Accuracy Frequency Standards in the 28 THz Range Using Saturated Absorption Resonances of OsO4 and CO2“. In Frequency Standards and Metrology, 212–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_38.
Der volle Inhalt der QuelleVieweg, Nico, Christian Jansen und Martin Koch. „Liquid Crystals and their Applications in the THz Frequency Range“. In Terahertz Spectroscopy and Imaging, 301–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29564-5_12.
Der volle Inhalt der QuelleLuo, Jun, Dong Wei und Xinyu Zhang. „Signal Sensing of Electrically Controlled Metamaterials Based on Terahertz Time-Domain Spectra (THz-TDS)“. In Metamaterial-Based Optical and Radio Frequency Sensing, 137–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2965-8_8.
Der volle Inhalt der QuelleÖzkan, Vedat Ali, Yıldız Menteşe, Taylan Takan, Asaf Behzat Şahin und Hakan Altan. „Compressive Sensing Imaging at Sub-THz Frequency in Transmission Mode“. In NATO Science for Peace and Security Series B: Physics and Biophysics, 49–55. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1093-8_7.
Der volle Inhalt der QuelleDebbarma, N., S. Debbarma, J. Pal und K. P. Ghatak. „Influence of THz Frequency on the Gate Capacitance in 2D QWFETs“. In Lecture Notes in Electrical Engineering, 181–86. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6301-8_15.
Der volle Inhalt der QuelleHellicar, Andrew D., Li Li, Kieran Greene, Greg Hislop, Stephen Hanham, Nasiha Nikolic und Jia Dn. „A 500-700 GHz System for Exploring the THz Frequency Regime“. In Advances in Broadband Communication and Networks, 37–54. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337089-2.
Der volle Inhalt der QuelleSchevchenko, Yuliaa, Apostolos Apostolakis und Mauro F. Pereira. „Recent Advances in Superlattice Frequency Multipliers“. In Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN, 101–16. Dordrecht: Springer Netherlands, 2021. http://dx.doi.org/10.1007/978-94-024-2082-1_8.
Der volle Inhalt der QuelleBeard, M. C., G. M. Turner und C. A. Schmuttenmaer. „Low Frequency, Collective Solvent Dynamics Probed with Time-Resolved THz Spectroscopy“. In ACS Symposium Series, 44–57. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0820.ch004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "THZ FREQUENCY"
Kumagai, Motohiro, Shigeo Nagano, Yoshihisa Irimajiri, Yuko Hanado und Iwao Hosako. „Frequency calibration of distant THz quantum cascade laser by THz frequency reference transfer“. In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758852.
Der volle Inhalt der QuelleCrowe, Thomas W., Brian Foley, Steve Durant, Kai Hui, Yiwei Duan und Jeffrey L. Hesler. „VNA frequency extenders to 1.1 THz“. In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105028.
Der volle Inhalt der QuelleHu, F., W. J. Otter und S. Lucyszyn. „Optically tunable THz frequency metamaterial absorber“. In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327423.
Der volle Inhalt der QuelleScalari, Giacomo, Andres Forrer, Tudor Olariu, David Stark, Mattias Beck und Jerome Faist. „Broadband On-Chip Thz Frequency Combs“. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510358.
Der volle Inhalt der QuelleMezzapesa, Francesco P., Katia Garrasi, Valentino Pistore, Lianhe Li, A. Giles Davies, Edmund H. Linfield, Sukhdeep Dhillon und Miriam S. Vitiello. „THz quantum cascade laser frequency combs“. In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874187.
Der volle Inhalt der QuelleConsolino, L., S. Bartalini, A. Taschin, P. Bartolini, P. Cancio, M. De Pas, H. E. Beere et al. „THz spectroscopy with an absolute frequency scale by a QCL phase-locked to a THz frequency comb“. In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665715.
Der volle Inhalt der QuelleHayashi, Kenta, Hajime Inaba, Kaoru Minoshima und Takeshi Yasui. „THz frequency comb for precise frequency measurement of continuous-wave terahertz radiation“. In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665714.
Der volle Inhalt der QuellePavelyev, Dmitry, Yuri Kochurinov, Yuan Ren, Jian Rong Gao, Niels Hovenier, Darren Hayton, Andrey Baryshev und Andrey Khudchenko. „Superlattice devices applications in THz frequency range“. In 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012). IEEE, 2012. http://dx.doi.org/10.1109/irmmw-thz.2012.6380134.
Der volle Inhalt der QuelleHubers, Heinz-Wilhelm. „Heterodyne receivers for high frequency THz astrophysics“. In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956070.
Der volle Inhalt der QuelleWu, J., A. S. Mayorov, C. D. Wood, D. Mistry, L. H. Li, E. H. Linfield, A. G. Davies und J. E. Cunningham. „On-chip THz-frequency tuneable plasmonic circuits“. In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327862.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "THZ FREQUENCY"
Kim, Sangwoo. Frequency Agile THz Detectors for Multiplicative Mixing. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada552127.
Der volle Inhalt der QuelleSchneider, M. [12C16O] laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm-1) region. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.tn.1321.
Der volle Inhalt der QuelleDax, Adrien M. Sub-doppler frequency measurements on OCS at 87 THz (3.4 *m) with the CO overtone Laser:. Gaithersburg, MD: National Bureau of Standards, 1994. http://dx.doi.org/10.6028/nist.tn.1365.
Der volle Inhalt der QuelleHsiao, Ming-Yen, Yoo Jin Choo, I.-Chun Liu, Boudier-Revéret Mathieu und Min Cheol Chang. Effect of Repetitive Transcranial Magnetic Stimulation on Post-stroke Dysphagia: Meta-analysis of Stimulation Frequency, Stimulation Site, and Timing of Outcome Measurement. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0005.
Der volle Inhalt der QuelleLunsford, Kurt G. Business Cycles and Low-Frequency Fluctuations in the US Unemployment Rate. Federal Reserve Bank of Cleveland, August 2023. http://dx.doi.org/10.26509/frbc-wp-202319.
Der volle Inhalt der QuelleWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet und Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-3916.
Der volle Inhalt der QuelleWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet und Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.89-3916r1991.
Der volle Inhalt der QuelleRice, Michael, und Erik Perrins. On Frequency Offset Estimation Using the iNET Preamble in Frequency Selective Fading Channels. Fort Belvoir, VA: Defense Technical Information Center, März 2014. http://dx.doi.org/10.21236/ada622041.
Der volle Inhalt der QuelleBerlinski, Samuel, Matías Busso, Taryn Dinkelman und Claudia Martínez. Research Insights: Can Low-Cost Communication Technologies Bridge Information Gaps between Schools and Parents? Inter-American Development Bank, Oktober 2021. http://dx.doi.org/10.18235/0003737.
Der volle Inhalt der QuelleKlemetti, Wayne I., Paul A. Kossey, John E. Rasmussen und Maria Sueli Da Silveira Macedo Moura. VLF/LF (Very Low Frequency/Low Frequency) Reflection Properties of the Low Latitude Ionosphere. Fort Belvoir, VA: Defense Technical Information Center, Februar 1988. http://dx.doi.org/10.21236/ada205976.
Der volle Inhalt der Quelle