Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Time-Varying capacity networks“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Time-Varying capacity networks" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Time-Varying capacity networks"
Sas, Bart, Elena Bernal-Mor, Kathleen Spaey, Vicent Pla, Chris Blondia und Jorge Martinez-Bauset. „Modelling the time-varying cell capacity in LTE networks“. Telecommunication Systems 55, Nr. 2 (08.08.2013): 299–313. http://dx.doi.org/10.1007/s11235-013-9782-2.
Der volle Inhalt der QuelleKUMARI, SUCHI, und ANURAG SINGH. „TIME-VARYING NETWORK MODELING AND ITS OPTIMAL ROUTING STRATEGY“. Advances in Complex Systems 21, Nr. 02 (März 2018): 1850006. http://dx.doi.org/10.1142/s0219525918500066.
Der volle Inhalt der QuelleBhadra, Sandeep, Yingdong Lu und Mark S. Squillante. „Optimal capacity planning in stochastic loss networks with time-varying workloads“. ACM SIGMETRICS Performance Evaluation Review 35, Nr. 1 (12.06.2007): 227–38. http://dx.doi.org/10.1145/1269899.1254909.
Der volle Inhalt der QuelleAbrantes, F., Joao Taveira Araújo und M. Ricardo. „Explicit Congestion Control Algorithms for Time Varying Capacity Media“. IEEE Transactions on Mobile Computing 10, Nr. 1 (Januar 2011): 81–93. http://dx.doi.org/10.1109/tmc.2010.143.
Der volle Inhalt der QuelleAmiri, Ali, und Hasan Pirkul. „Routing and capacity assignment in backbone communication networks under time varying traffic conditions“. European Journal of Operational Research 117, Nr. 1 (August 1999): 15–29. http://dx.doi.org/10.1016/s0377-2217(98)00162-3.
Der volle Inhalt der QuelleSupittayapornpong, Sucha, und Poompat Saengudomlert. „Joint Flow Control, Routing and Medium Access Control in Random Access Multi-Hop Wireless Networks with Time Varying Link Capacities“. ECTI Transactions on Electrical Engineering, Electronics, and Communications 8, Nr. 1 (01.08.2009): 22–31. http://dx.doi.org/10.37936/ecti-eec.201081.171988.
Der volle Inhalt der QuelleHuang, Ping, Xiao-Long Chen, Ming Tang und Shi-Min Cai. „Coupled Dynamic Model of Resource Diffusion and Epidemic Spreading in Time-Varying Multiplex Networks“. Complexity 2021 (27.03.2021): 1–11. http://dx.doi.org/10.1155/2021/6629105.
Der volle Inhalt der QuelleXu, Yao, Renren Wang, Hongqian Lu, Xingxing Song, Yahan Deng und Wuneng Zhou. „Adaptive Event-Triggered Synchronization of Networked Neural Networks with Time-Varying Delay Subject to Actuator Saturation“. Complexity 2021 (07.07.2021): 1–14. http://dx.doi.org/10.1155/2021/9957624.
Der volle Inhalt der QuelleShao, Junyi, Shuai Zhang, Weiqiang Sun und Weisheng Hu. „Dimensioning access link capacity for time-varying traffic with mixed packet streams and circuit connections“. Journal of Optical Communications and Networking 13, Nr. 11 (20.08.2021): 276. http://dx.doi.org/10.1364/jocn.432651.
Der volle Inhalt der QuelleKennedy, Okokpujie, Emmanuel Chukwu, Olamilekan Shobayo, Etinosa Noma-Osaghae, Imhade Okokpujie und Modupe Odusami. „Comparative analysis of the performance of various active queue management techniques to varying wireless network conditions“. International Journal of Electrical and Computer Engineering (IJECE) 9, Nr. 1 (01.02.2019): 359. http://dx.doi.org/10.11591/ijece.v9i1.pp359-368.
Der volle Inhalt der QuelleDissertationen zum Thema "Time-Varying capacity networks"
Ky, Joël Roman. „Anomaly Detection and Root Cause Diagnosis for Low-Latency Applications in Time-Varying Capacity Networks“. Electronic Thesis or Diss., Université de Lorraine, 2025. http://www.theses.fr/2025LORR0026.
Der volle Inhalt der QuelleThe evolution of networks has driven the emergence of low-latency (LL) applications such as cloud gaming (CG) and cloud virtual reality (Cloud VR), which demand stringent network conditions, including low latency and high bandwidth. However, time-varying capacity networks introduce impairments such as delays, bandwidth fluctuations, and packet loss, which can significantly degrade user experience on LL applications. This research aims to design methodologies for detecting and diagnosing performance anomalies in LL applications operating over cellular and Wi- Fi networks. To achieve this, realistic experimental testbeds were established to collect datasets that characterize network performance and capture key performance indicators (KPIs) of CG and Cloud VR applications over 4G and Wi-Fi environments. These datasets serve as the foundation for evaluating and developing machine learning-based anomaly detection and diagnostic frameworks. The key contributions of this thesis include the development of CATS, a contrastive learning-based anomaly detection framework capable of efficiently identifying user experience degradation in CG applications while remaining robust to data contamination. Additionally, this research introduces RAID, a two-stage root causes diagnosis framework designed to pinpoint the root causes of performance issues in Cloud VR. RAID demonstrated high efficiency in diagnosing Wi-Fi impairments, even with limited labeled data. The findings of this work advance the fields of anomaly detection and root cause diagnosis, offering actionable insights for network operators to optimize network performance and enhance service reliability to support LL applications, which are set to revolutionize communication technologies and drive innovation across various industries
Buchteile zum Thema "Time-Varying capacity networks"
Salazar, Jonathan, Diego Carrión und Manuel Jaramillo. „Impact Analysis on Voltage Stability by Inserting Non-Linear Loads Through a Dynamic Stability Index“. In Lecture Notes in Networks and Systems, 373–83. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-87065-1_34.
Der volle Inhalt der QuelleYan, Gongjun, Danda B. Rawat, Bhed Bahadur Bista, Wu He und Awny Alnusair. „Privacy Protection in Vehicular Ad-Hoc Networks“. In Transportation Systems and Engineering, 272–309. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8473-7.ch013.
Der volle Inhalt der QuelleYan, Gongjun, Danda B. Rawat, Bhed Bahadur Bista, Wu He und Awny Alnusair. „Privacy Protection in Vehicular Ad-Hoc Networks“. In Security, Privacy, Trust, and Resource Management in Mobile and Wireless Communications, 295–332. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4691-9.ch013.
Der volle Inhalt der QuelleMa, Maode, und Jinchang Lu. „QoS Support Mechanisms in WiMAX“. In Wireless Network Traffic and Quality of Service Support, 330–46. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-61520-771-8.ch013.
Der volle Inhalt der QuelleGao, Yuan, Hai Fang und Kan Wang. „Cost-Efficient Service Function Chaining with CoMP Zero-Forcing Beamforming in Mobile Edge Networks“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2022. http://dx.doi.org/10.3233/faia220568.
Der volle Inhalt der QuelleVendictis, Andrea De, und Andrea Baiocchi. „Investigating TCP single source behavior in time-varying capacity network scenarios“. In Providing Quality of Service in Heterogeneous Environments, Proceedings of the 18th International Teletraffic Congress - ITC-18, 671–80. Elsevier, 2003. http://dx.doi.org/10.1016/s1388-3437(03)80216-0.
Der volle Inhalt der QuelleBojkovic, Zoran, Bojan Bakmaz und Miodrag Bakmaz. „Principles and Enabling Technologies of 5G Network Slicing“. In Paving the Way for 5G Through the Convergence of Wireless Systems, 271–84. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7570-2.ch011.
Der volle Inhalt der QuelleAzzam-ul-Asar, M. Sadeeq Ullah, Mudasser F. Wyne, Jamal Ahmed und Riaz-ul-Hasnain. „Traffic Responsive Signal Timing Plan Generation based on Neural Network“. In Intelligent, Adaptive and Reasoning Technologies, 229–40. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-595-7.ch012.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Time-Varying capacity networks"
Gao, Ying, Ruiying Li und Rui Kang. „Capacity and Time Reliability Evaluation for Time-Varying Networks“. In 2024 IEEE 24th International Conference on Software Quality, Reliability, and Security Companion (QRS-C), 170–76. IEEE, 2024. http://dx.doi.org/10.1109/qrs-c63300.2024.00032.
Der volle Inhalt der QuelleZhu, Xiangming, Yong LI, Depeng Jin und Pan Hui. „Temporal capacity graphs for time-varying mobile networks“. In the 23rd International Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2567948.2579362.
Der volle Inhalt der QuelleBouterse, Brian, Harry Perros und David Thuente. „Multiobjective cloud capacity planning for time-varying customer demand“. In 2014 11th Annual High-capacity Optical Networks and Emerging/Enabling Technologies (HONET). IEEE, 2014. http://dx.doi.org/10.1109/honet.2014.7029367.
Der volle Inhalt der QuelleTaylor, Stephen, und Parastoo Sadeghi. „Capacity analysis of time-varying flat-fading channels using particle methods“. In 2007 Australasian Telecommunication Networks and Applications Conference (ATNAC 2007). IEEE, 2007. http://dx.doi.org/10.1109/atnac.2007.4665274.
Der volle Inhalt der QuelleWu, Meng, Wenda Ni, Yabin Ye, Xiaoping Zheng, Yili Guo und Hanyi Zhang. „Capacity allocation for time-varying traffic in survivable WDM mesh networks“. In Asia Pacific Optical Communications, herausgegeben von Weisheng Hu, Shoa-Kai Liu, Ken-ichi Sato und Lena Wosinska. SPIE, 2008. http://dx.doi.org/10.1117/12.804301.
Der volle Inhalt der QuelleBhadra, Sandeep, Yingdong Lu und Mark S. Squillante. „Optimal capacity planning in stochastic loss networks with time-varying workloads“. In the 2007 ACM SIGMETRICS international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1254882.1254909.
Der volle Inhalt der QuelleIosifidis, George, Iordanis Koutsopoulos und Georgios Smaragdakis. „The impact of storage capacity on end-to-end delay in time varying networks“. In IEEE INFOCOM 2011 - IEEE Conference on Computer Communications. IEEE, 2011. http://dx.doi.org/10.1109/infcom.2011.5934938.
Der volle Inhalt der QuelleKhattabi, Yazid, und Mustafa M. Matalgah. „Performance analysis of AF cooperative networks with time-varying links: Error rate and capacity“. In 2014 Wireless Telecommunications Symposium (WTS). IEEE, 2014. http://dx.doi.org/10.1109/wts.2014.6835001.
Der volle Inhalt der QuelleSas, B., E. Bernal-Mor, K. Spaey, V. Pla, C. Blondia und J. Martinez-Bauset. „An analytical model to study the impact of time-varying cell capacity in LTE networks“. In 2011 4th Joint IFIP Wireless and Mobile Networking Conference. IEEE, 2011. http://dx.doi.org/10.1109/wmnc.2011.6097234.
Der volle Inhalt der QuelleKarimi, H. R., N. A. Duffie und S. Dashkovskiy. „Local capacity H∞ control for production networks of autonomous work systems with time-varying delays“. In 2009 European Control Conference (ECC). IEEE, 2009. http://dx.doi.org/10.23919/ecc.2009.7074761.
Der volle Inhalt der Quelle