Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transcriptomic data analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transcriptomic data analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transcriptomic data analysis"
Gorbunova, Vera. „COMPARATIVE TRANSCRIPTOMIC OF LONGEVITY“. Innovation in Aging 7, Supplement_1 (01.12.2023): 432. http://dx.doi.org/10.1093/geroni/igad104.1423.
Der volle Inhalt der QuelleDries, Ruben, Jiaji Chen, Natalie del Rossi, Mohammed Muzamil Khan, Adriana Sistig und Guo-Cheng Yuan. „Advances in spatial transcriptomic data analysis“. Genome Research 31, Nr. 10 (Oktober 2021): 1706–18. http://dx.doi.org/10.1101/gr.275224.121.
Der volle Inhalt der QuelleNesterenko, Maksim, und Aleksei Miroliubov. „From head to rootlet: comparative transcriptomic analysis of a rhizocephalan barnacle Peltogaster reticulata (Crustacea: Rhizocephala)“. F1000Research 11 (27.05.2022): 583. http://dx.doi.org/10.12688/f1000research.110492.1.
Der volle Inhalt der QuelleNesterenko, Maksim, und Aleksei Miroliubov. „From head to rootlet: comparative transcriptomic analysis of a rhizocephalan barnacle Peltogaster reticulata (Crustacea: Rhizocephala)“. F1000Research 11 (09.01.2023): 583. http://dx.doi.org/10.12688/f1000research.110492.2.
Der volle Inhalt der QuelleMacrander, Jason, Jyothirmayi Panda, Daniel Janies, Marymegan Daly und Adam M. Reitzel. „Venomix: a simple bioinformatic pipeline for identifying and characterizing toxin gene candidates from transcriptomic data“. PeerJ 6 (31.07.2018): e5361. http://dx.doi.org/10.7717/peerj.5361.
Der volle Inhalt der QuelleOchsner, Scott A., Christopher M. Watkins, Apollo McOwiti, Xueping Xu, Yolanda F. Darlington, Michael D. Dehart, Austin J. Cooney, David L. Steffen, Lauren B. Becnel und Neil J. McKenna. „Transcriptomine, a web resource for nuclear receptor signaling transcriptomes“. Physiological Genomics 44, Nr. 17 (01.09.2012): 853–63. http://dx.doi.org/10.1152/physiolgenomics.00033.2012.
Der volle Inhalt der QuelleRiquelme-Perez, Miriam, Fernando Perez-Sanz, Jean-François Deleuze, Carole Escartin, Eric Bonnet und Solène Brohard. „DEVEA: an interactive shiny application for Differential Expression analysis, data Visualization and Enrichment Analysis of transcriptomics data“. F1000Research 11 (24.03.2023): 711. http://dx.doi.org/10.12688/f1000research.122949.2.
Der volle Inhalt der QuelleKriger, Draco, Michael A. Pasquale, Brigitte G. Ampolini und Jonathan R. Chekan. „Mining raw plant transcriptomic data for new cyclopeptide alkaloids“. Beilstein Journal of Organic Chemistry 20 (11.07.2024): 1548–59. http://dx.doi.org/10.3762/bjoc.20.138.
Der volle Inhalt der QuelleParmar, Sourabh. „Transcriptomics Analysis using Galaxy and other Online Servers for Rheumatoid Arthritis“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VII (10.07.2021): 459–66. http://dx.doi.org/10.22214/ijraset.2021.36331.
Der volle Inhalt der QuelleLi, Youcheng, Leann Lac, Qian Liu und Pingzhao Hu. „ST-CellSeg: Cell segmentation for imaging-based spatial transcriptomics using multi-scale manifold learning“. PLOS Computational Biology 20, Nr. 6 (27.06.2024): e1012254. http://dx.doi.org/10.1371/journal.pcbi.1012254.
Der volle Inhalt der QuelleDissertationen zum Thema "Transcriptomic data analysis"
Xu, Huan. „Controlling false positive rate in network analysis of transcriptomic data“. University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin156267322069819.
Der volle Inhalt der QuelleKmetzsch, Virgilio. „Multimodal analysis of neuroimaging and transcriptomic data in genetic frontotemporal dementia“. Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS279.pdf.
Der volle Inhalt der QuelleFrontotemporal dementia (FTD) represents the second most common type of dementia in adults under the age of 65. Currently, there are no treatments that can cure this condition. In this context, it is essential that biomarkers capable of assessing disease progression are identified. This thesis has two objectives. First, to analyze the expression patterns of microRNAs taken from blood samples of patients, asymptomatic individuals who have certain genetic mutations causing FTD, and controls, to identify whether the expressions of some microRNAs correlate with mutation status and disease progression. Second, this work aims at proposing methods for integrating cross-sectional data from microRNAs and neuroimaging to estimate disease progression. We conducted three studies. Initially, we focused on plasma samples from C9orf72 expansion carriers. We identified four microRNAs whose expressions correlated with the clinical status of the participants. Next, we tested all microRNA signatures identified in the literature as potential biomarkers of FTD or amyotrophic lateral sclerosis (ALS), in two groups of individuals. Finally, in our third work, we proposed a new approach, using a supervised multimodal variational autoencoder, that estimates a disease progression score from cross-sectional microRNA expression and neuroimaging datasets with small sample sizes. The work conducted in this interdisciplinary thesis showed that it is possible to use non-invasive biomarkers, such as circulating microRNAs and magnetic resonance imaging, to assess the progression of rare neurodegenerative diseases such as FTD and ALS
Caterino, Cinzia. „The aging synapse: an integrated proteomic and transcriptomic analysis“. Doctoral thesis, Scuola Normale Superiore, 2019. http://hdl.handle.net/11384/86004.
Der volle Inhalt der QuelleCaptier, Nicolas. „Multimodal analysis of radiological, pathological, and transcriptomic data for the prediction of immunotherapy outcome in Non-Small Cell Lung Cancer patients“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS012.
Der volle Inhalt der QuelleOverall survival of patients with metastatic non-small cell lung cancer (NSCLC) has been increasing with the use of anti-PD-1 immune checkpoint inhibitors. However, the duration of response remains highly variable between patients, and only 20-30% of patients are alive at 2 years. Thus, new biomarkers for predicting response to treatment and patient outcomes are still needed to guide therapeutic decision. In my PhD, we investigated machine learning approaches to leverage radiological, transcriptomic, and pathological data, integrating them into powerful multimodal models that might improve the limited predictive power of routine clinical data.My doctoral research stood at the heart of a multidisciplinary project funded by Fondation ARC call «SIGN’IT 2020—Signatures in Immunotherapy». It brought together several research teams of Institut Curie alongside a team from Institut du thorax, led by Professor Nicolas Girard, in charge of patient management and data collection. We built a new multimodal cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy alone or combined with chemotherapy. At baseline, we collected clinical information from routine care, 18F-FDG PET/CT scans, digitized pathological slides from the initial diagnosis, and bulk RNA-seq profiles from solid biopsies. Immunotherapy outcome was monitored with Overall Survival (OS) and Progression-Free Survival (PFS).Together with Irène Buvat and Emmanuel Barillot, whose teams hold significant expertise in the analysis of medical images and RNAseq tumor profiles, respectively, we initially focused on designing computational tools to extract relevant and interpretable information from these two data modalities. We notably developed a Python tool to apply Independent Component Analysis (ICA) on omics data and stabilize the results through multiple runs. We then explored the potential of stabilized ICA to extract powerful and biologically relevant transcriptomic features for the prediction of patient outcome. For medical images, and in particular 18F-FDG PET scans, we investigated the potential of radiomic approaches to characterize the metastatic disease at the whole-body level and design novel predictive features. We designed a Python explanation tool, based on Shapley values, to highlight the contribution of each individual metastasis to the prediction of radiomic models that use as input such whole-body features. A substantial portion of my PhD was devoted to the integration of clinical, radiomic, and transcriptomic features, as well as pathomic features extracted from digitized pathological slides (with the assistance of Thomas Walter’s team). We conducted a thorough comparison of the predictive capabilities of the different multimodal combinations using various state-of-the-art learning algorithms and integration methods. We devised strategies to overcome the many challenges associated to multimodal integration within our dataset, including handling missing modalities for numerous patients, dealing with a modest cohort size in comparison to the high dimensionality of the data, or ensuring a fair comparison of all the possible multimodal combinations. We especially focused on highlighting the potential of multimodal approaches to enhance patient risk stratification with respect to models using only clinical information collected during routine care
Schmidt, Florian [Verfasser], und Marcel Holger [Akademischer Betreuer] Schulz. „Applications, challenges and new perspectives on the analysis of transcriptional regulation using epigenomic and transcriptomic data / Florian Schmidt ; Betreuer: Marcel Holger Schulz“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2019. http://d-nb.info/1196090173/34.
Der volle Inhalt der QuelleSchmidt, Florian Verfasser], und Marcel Holger [Akademischer Betreuer] [Schulz. „Applications, challenges and new perspectives on the analysis of transcriptional regulation using epigenomic and transcriptomic data / Florian Schmidt ; Betreuer: Marcel Holger Schulz“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2019. http://nbn-resolving.de/urn:nbn:de:bsz:291--ds-287773.
Der volle Inhalt der QuelleCzerwińska, Urszula. „Unsupervised deconvolution of bulk omics profiles : methodology and application to characterize the immune landscape in tumors Determining the optimal number of independent components for reproducible transcriptomic data analysis Application of independent component analysis to tumor transcriptomes reveals specific and reproducible immune-related signals A multiscale signalling network map of innate immune response in cancer reveals signatures of cell heterogeneity and functional polarization“. Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB075.
Der volle Inhalt der QuelleTumors are engulfed in a complex microenvironment (TME) including tumor cells, fibroblasts, and a diversity of immune cells. Currently, a new generation of cancer therapies based on modulation of the immune system response is in active clinical development with first promising results. Therefore, understanding the composition of TME in each tumor case is critically important to make a prognosis on the tumor progression and its response to treatment. However, we lack reliable and validated quantitative approaches to characterize the TME in order to facilitate the choice of the best existing therapy. One part of this challenge is to be able to quantify the cellular composition of a tumor sample (called deconvolution problem in this context), using its bulk omics profile (global quantitative profiling of certain types of molecules, such as mRNA or epigenetic markers). In recent years, there was a remarkable explosion in the number of methods approaching this problem in several different ways. Most of them use pre-defined molecular signatures of specific cell types and extrapolate this information to previously unseen contexts. This can bias the TME quantification in those situations where the context under study is significantly different from the reference. In theory, under certain assumptions, it is possible to separate complex signal mixtures, using classical and advanced methods of source separation and dimension reduction, without pre-existing source definitions. If such an approach (unsupervised deconvolution) is feasible to apply for bulk omic profiles of tumor samples, then this would make it possible to avoid the above mentioned contextual biases and provide insights into the context-specific signatures of cell types. In this work, I developed a new method called DeconICA (Deconvolution of bulk omics datasets through Immune Component Analysis), based on the blind source separation methodology. DeconICA has an aim to decipher and quantify the biological signals shaping omics profiles of tumor samples or normal tissues. A particular focus of my study was on the immune system-related signals and discovering new signatures of immune cell types. In order to make my work more accessible, I implemented the DeconICA method as an R package named "DeconICA". By applying this software to the standard benchmark datasets, I demonstrated that DeconICA is able to quantify immune cells with accuracy comparable to published state-of-the-art methods but without a priori defining a cell type-specific signature genes. The implementation can work with existing deconvolution methods based on matrix factorization techniques such as Independent Component Analysis (ICA) or Non-Negative Matrix Factorization (NMF). Finally, I applied DeconICA to a big corpus of data containing more than 100 transcriptomic datasets composed of, in total, over 28000 samples of 40 tumor types generated by different technologies and processed independently. This analysis demonstrated that ICA-based immune signals are reproducible between datasets and three major immune cell types: T-cells, B-cells and Myeloid cells can be reliably identified and quantified. Additionally, I used the ICA-derived metagenes as context-specific signatures in order to study the characteristics of immune cells in different tumor types. The analysis revealed a large diversity and plasticity of immune cells dependent and independent on tumor type. Some conclusions of the study can be helpful in identification of new drug targets or biomarkers for immunotherapy of cancer
Owen, Anne M. „Widescale analysis of transcriptomics data using cloud computing methods“. Thesis, University of Essex, 2016. http://repository.essex.ac.uk/16125/.
Der volle Inhalt der QuelleHernandez-Ferrer, Carles 1987. „Bioinformatic tools for exposome data analysis : application to human molecular signatures of ultraviolet light effects“. Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/572046.
Der volle Inhalt der QuelleMost common diseases are caused by a combination of genetic, environmental and lifestyle factors. These diseases are referred to as complex diseases. Examples of this type of diseases are obesity, asthma, hypertension or diabetes. Several empirical evidence suggest that exposures are necessary determinants of complex disease operating in a causal background of genetic diversity. Moreover, environmental factors have long been implicated as major contributors to the global disease burden. This leads to the formulation of the exposome, that contains any exposure to which an individual is subjected from conception to death. The study of the underlying mechanics that links the exposome with human health is an emerging research field with a strong potential to provide new insights into disease etiology. The first part of this thesis is focused on ultraviolet radiation (UVR) exposure. UVR exposure occurs from both natural and artificial sources. UVR includes three subtypes of radiation according to its wavelength (UVA 315-400 nm, UVB 315-295 nm, and UVC 295-200 nm). While the main natural source of UVR is the Sun, UVC radiation does not reach Earth's surface because of its absorption by the stratospheric ozone layer. Then, exposures to UVR typically consist of a mixture of UVA (95%) and UVB (5%). Effects of UVR on human can be both beneficial and detrimental, depending on the amount and form of UVR. Detrimental and acute effects of UVR include erythema, pigment darkening, delayed tanning and thickening of the epidermis. Repeated UVR-induced injury to the skin, may ultimately predispose one to the chronic effects photoaging, immunosuppression, and photocarcinogenesis. The beneficial effect of UVR is the cutaneous synthesis of vitamin D. Vitamin D is necessary to maintain physiologic calcium and phosphorous for normal bone mineralization and to prevent rickets, osteomalacia, and osteoporosis. But the exposome paradigm is to work with multiple exposures at a time and with one or more health outcomes rather focus in a single exposures analysis. This approach tends to be a more accurate snapshot of the reality that we live in complex environments. Then, the second part is focused on the tools to explore how to characterize and analyze the exposome and how to test its effects in multiple intermediate biological layers to provide insights into the underlying molecular mechanisms linking environmental exposures to health outcomes.
Daub, Carsten O. „Analysis of integrated transcriptomics and metabolomics data a systems biology approach /“. [S.l. : s.n.], 2004. http://pub.ub.uni-potsdam.de/2004/0025/daub.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Transcriptomic data analysis"
Wang, Yejun, und Ming-an Sun, Hrsg. Transcriptome Data Analysis. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7710-9.
Der volle Inhalt der QuelleAzad, Rajeev K., Hrsg. Transcriptome Data Analysis. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3886-6.
Der volle Inhalt der Quelleauthor, Tuimala Jarno, Somervuo Panu author, Huss Mikael author und Wong Garry author, Hrsg. RNA-seq data analysis: A practical approach. Boca Raton: CRC Press, Taylor & Francis Group, 2015.
Den vollen Inhalt der Quelle findenTranscriptome Data Analysis: Methods and Protocols. Humana, 2018.
Den vollen Inhalt der Quelle findenWang, Yejun, und Ming-an Sun. Transcriptome Data Analysis: Methods and Protocols. Springer New York, 2019.
Den vollen Inhalt der Quelle findenGu, Xun. Statistical Analysis of Molecular and Genomic Evolution. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198816515.001.0001.
Der volle Inhalt der QuelleTuimala, Jarno, Eija Korpelainen, Panu Somervuo, Mikael Huss und Garry Wong. RNA-Seq Data Analysis: A Practical Approach. Taylor & Francis Group, 2014.
Den vollen Inhalt der Quelle findenTuimala, Jarno, Eija Korpelainen, Panu Somervuo, Mikael Huss und Garry Wong. RNA-Seq Data Analysis: A Practical Approach. Taylor & Francis Group, 2014.
Den vollen Inhalt der Quelle findenTuimala, Jarno, Eija Korpelainen, Panu Somervuo, Mikael Huss und Garry Wong. RNA-Seq Data Analysis: A Practical Approach. Taylor & Francis Group, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Transcriptomic data analysis"
Purdom, Elizabeth, und Sach Mukherjee. „Transcriptomic Technologies and Statistical Data Analysis“. In Handbook of Statistical Systems Biology, 133–62. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119970606.ch7.
Der volle Inhalt der QuelleCassese, Alberto, Michele Guindani und Marina Vannucci. „iBATCGH: Integrative Bayesian Analysis of Transcriptomic and CGH Data“. In Statistical Analysis for High-Dimensional Data, 105–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27099-9_6.
Der volle Inhalt der QuelleMarshall, Wallace F. „Use of Transcriptomic Data to Support Organelle Proteomic Analysis“. In Organelle Proteomics, 403–14. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-028-7_27.
Der volle Inhalt der QuelleThomas, Russell S., Longlong Yang, Harvey J. Clewell und Melvin E. Andersen. „Analysis of Transcriptomic Dose-Response Data for Toxicology and Risk Assessment“. In Applications of Toxicogenomics in Safety Evaluation and Risk Assessment, 237–50. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118001042.ch11.
Der volle Inhalt der QuelleKushwaha, Swarnima, Sudeshna Mukherjee, Rajdeep Chowdhury und Shibasish Chowdhury. „Analysis of Transcriptomic Data Generated from Drug-Treated Cancer Cell Line“. In Methods in Molecular Biology, 119–29. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2513-2_10.
Der volle Inhalt der QuelleZhang, Shilu, Sara Knaack und Sushmita Roy. „Enabling Studies of Genome-Scale Regulatory Network Evolution in Large Phylogenies with MRTLE“. In Methods in Molecular Biology, 439–55. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2257-5_24.
Der volle Inhalt der QuelleSantos, Thiely Patricia Fabian Dos, Elodia Sánchez-Barrantes, Luiz Filipe Pereira und Andrés Gatica-Arias. „Transcriptomic Data Analysis Using the Galaxy Platform: Coffee (Coffea arabica L.) Flowers as Example“. In Methods in Molecular Biology, 225–43. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3778-4_15.
Der volle Inhalt der QuelleCellerino, Alessandro, und Michele Sanguanini. „RNA-seq raw data processing“. In Transcriptome Analysis, 27–44. Pisa: Scuola Normale Superiore, 2018. http://dx.doi.org/10.1007/978-88-7642-642-1_3.
Der volle Inhalt der QuelleCellerino, Alessandro, und Michele Sanguanini. „A primer on data distributions and their visualisation“. In Transcriptome Analysis, 1–10. Pisa: Scuola Normale Superiore, 2018. http://dx.doi.org/10.1007/978-88-7642-642-1_1.
Der volle Inhalt der QuelleAndleeb, Tayyaba, James Milson und Philippa Borrill. „The Wheat Transcriptome and Discovery of Functional Gene Networks“. In Compendium of Plant Genomes, 75–92. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38294-9_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transcriptomic data analysis"
Khokhar, Maham, Burcu Bakir-Gungor und Malik Yousef. „Enhancing the Efficiency of the Grouping-Scoring-Modeling Framework with Statistical Pre-Scoring Component for Transcriptomic Data Analysis“. In 16th International Conference on Bioinformatics Models, Methods and Algorithms, 479–88. SCITEPRESS - Science and Technology Publications, 2025. https://doi.org/10.5220/0013192600003911.
Der volle Inhalt der QuelleShuai, Jin, Li Yaoyu und Peng Jiawu. „Building Machine Learning Models on Limited Transcriptomic RNA-Seq Data“. In 2024 10th International Conference on Big Data and Information Analytics (BigDIA), 358–63. IEEE, 2024. https://doi.org/10.1109/bigdia63733.2024.10808560.
Der volle Inhalt der QuelleFang, Donghai, Fangfang Zhu und Wenwen Min. „Multi-Slice Spatial Transcriptomics Data Integration Analysis with STG3Net“. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 509–14. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822331.
Der volle Inhalt der QuelleLangston, Michael A., Andy D. Perkins, Arnold M. Saxton, Jon A. Scharff und Brynn H. Voy. „Innovative computational methods for transcriptomic data analysis“. In the 2006 ACM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1141277.1141319.
Der volle Inhalt der Quelle„Ontology analysis of big transcriptomic data and differential gene expression“. In Биоинформатика регуляции и структуры геномов / системная биология. ИЦиГ СО РАН, 2024. http://dx.doi.org/10.18699/bgrs2024-1.4-24.
Der volle Inhalt der QuelleMazur, O. E., I. A. Kutyrev, T. V. Sidorova, L. V. Sukhanova, N. B. Terenina und S. O. Movsesyan. „TRANSCRIPTOME ANALYSIS OF THE SPLEEN OF THE BAIKAL CISCO (LAKE BAIKAL, EASTERN SIBERIA)“. In THEORY AND PRACTICE OF PARASITIC DISEASE CONTROL. VNIIP – FSC VIEV, 2024. http://dx.doi.org/10.31016/978-5-6050437-8-2.2024.25.251-255.
Der volle Inhalt der QuellePodpecan, Vid, Dragana Miljkovic, Marko Petek, Tjasa Stare, Kristina Gruden, Igor Mozetic und Nada Lavrac. „Integrating semantic transcriptomic data analysis and knowledge extraction from biological literature“. In 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2013. http://dx.doi.org/10.1109/bibm.2013.6732540.
Der volle Inhalt der Quelle„792 BGRS/SB-2022 Phylostratigraphic analysis of human cancers transcriptomic data“. In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-457.
Der volle Inhalt der QuelleLavorato-Rocha, André M., Beatriz de Melo Maia, Iara S. Rodrigues, Fabio A. Marchi, Gabriel R. Fernandes, Glauco Baiocchi, Fernando A. Soares, Silvia R. Rogatto, Yukie Sato-Kuwabara und Rafael M. Rocha. „Abstract 3427: Uncovering vulvar cancer: Integrated analysis of genomic and transcriptomic data“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3427.
Der volle Inhalt der QuelleJackson, N., S. Sajuthi, C. Rios, M. T. Montgomery, J. L. Everman, A. C. Y. Mak, C. Eng et al. „Machine Learning Analysis of Airway Transcriptomic Data Identifies Distinct Childhood Asthma Endotypes“. In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a1151.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Transcriptomic data analysis"
Westwood, James H., Yaakov Tadmor und Hanan Eizenberg. Identifying the genes involved in host root perception by root parasitic weeds: Genetic and transcriptomic analysis of Orobanche hybrids differing in signal response specificity. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7598145.bard.
Der volle Inhalt der QuelleAharoni, Asaph, Zhangjun Fei, Efraim Lewinsohn, Arthur Schaffer und Yaakov Tadmor. System Approach to Understanding the Metabolic Diversity in Melon. United States Department of Agriculture, Juli 2013. http://dx.doi.org/10.32747/2013.7593400.bard.
Der volle Inhalt der QuelleRon, Eliora, und Eugene Eugene Nester. Global functional genomics of plant cell transformation by agrobacterium. United States Department of Agriculture, März 2009. http://dx.doi.org/10.32747/2009.7695860.bard.
Der volle Inhalt der QuelleKatzir, Nurit, James Giovannoni, Marla Binzel, Efraim Lewinsohn, Joseph Burger und Arthur Schaffer. Genomic Approach to the Improvement of Fruit Quality in Melon (Cucumis melo) and Related Cucurbit Crops II: Functional Genomics. United States Department of Agriculture, Januar 2010. http://dx.doi.org/10.32747/2010.7592123.bard.
Der volle Inhalt der QuelleLers, Amnon, Majid R. Foolad und Haya Friedman. genetic basis for postharvest chilling tolerance in tomato fruit. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7600014.bard.
Der volle Inhalt der QuelleGhanim, Murad, Joe Cicero, Judith K. Brown und Henryk Czosnek. Dissection of Whitefly-geminivirus Interactions at the Transcriptomic, Proteomic and Cellular Levels. United States Department of Agriculture, Februar 2010. http://dx.doi.org/10.32747/2010.7592654.bard.
Der volle Inhalt der QuelleGur, Amit, Edward Buckler, Joseph Burger, Yaakov Tadmor und Iftach Klapp. Characterization of genetic variation and yield heterosis in Cucumis melo. United States Department of Agriculture, Januar 2016. http://dx.doi.org/10.32747/2016.7600047.bard.
Der volle Inhalt der QuelleJander, Georg, und Daniel Chamovitz. Investigation of growth regulation by maize benzoxazinoid breakdown products. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600031.bard.
Der volle Inhalt der QuelleCohen, Yuval, Christopher A. Cullis und Uri Lavi. Molecular Analyses of Soma-clonal Variation in Date Palm and Banana for Early Identification and Control of Off-types Generation. United States Department of Agriculture, Oktober 2010. http://dx.doi.org/10.32747/2010.7592124.bard.
Der volle Inhalt der QuelleHarman, Gary E., und Ilan Chet. Enhancement of plant disease resistance and productivity through use of root symbiotic fungi. United States Department of Agriculture, Juli 2008. http://dx.doi.org/10.32747/2008.7695588.bard.
Der volle Inhalt der Quelle