Auswahl der wissenschaftlichen Literatur zum Thema „Transmission electron“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transmission electron" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Transmission electron":

1

KONNO, Mitsuru, Toshie YAGUCHI und Takahito HASHIMOTO. „Transmission Electron Microscop and Scanning Transmission Electron Microscope“. Journal of the Japan Society of Colour Material 79, Nr. 4 (2006): 147–51. http://dx.doi.org/10.4011/shikizai1937.79.147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Moldovan, G., X. Li, P. Wilshaw und AI Kirkland. „Counting Electrons in Transmission Electron Microscopes“. Microscopy and Microanalysis 14, S2 (August 2008): 912–13. http://dx.doi.org/10.1017/s1431927608084912.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shindo, Daisuke. „Transmission Electron Microscope“. Materia Japan 44, Nr. 11 (2005): 932–35. http://dx.doi.org/10.2320/materia.44.932.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yase, Kiyoshi. „Transmission Electron Microscopy.“ Kobunshi 43, Nr. 2 (1994): 94–97. http://dx.doi.org/10.1295/kobunshi.43.94.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bendersky, L. A., und F. W. Gayle. „Electron diffraction using transmission electron microscopy“. Journal of Research of the National Institute of Standards and Technology 106, Nr. 6 (November 2001): 997. http://dx.doi.org/10.6028/jres.106.051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lichte, Hannes. „Electron Holography Improving Transmission Electron Microscopy“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 1 (12.08.1990): 208–9. http://dx.doi.org/10.1017/s0424820100179798.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Generally, the electron object wave o(r) is modulated both in amplitude and phase. In the image plane of an ideal imaging system we would expect to find an image wave b(r) that is modulated in exactly the same way, i. e. b(r) =o(r). If, however, there are aberrations, the image wave instead reads as b(r) =o(r) * FT(WTF) i. e. the convolution of the object wave with the Fourier transform of the wave transfer function WTF . Taking into account chromatic aberration, illumination divergence and the wave aberration of the objective lens, one finds WTF(R) = Echrom(R)Ediv(R).exp(iX(R)) . The envelope functions Echrom(R) and Ediv(R) damp the image wave, whereas the effect of the wave aberration X(R) is to disorder amplitude and phase according to real and imaginary part of exp(iX(R)) , as is schematically sketched in fig. 1.Since in ordinary electron microscopy only the amplitude of the image wave can be recorded by the intensity of the image, the wave aberration has to be chosen such that the object component of interest (phase or amplitude) is directed into the image amplitude. Using an aberration free objective lens, for X=0 one sees the object amplitude, for X= π/2 (“Zernike phase contrast”) the object phase. For a real objective lens, however, the wave aberration is given by X(R) = 2π (.25 Csλ3R4 + 0.5ΔzλR2), Cs meaning the coefficient of spherical aberration and Δz defocusing. Consequently, the transfer functions sin X(R) and cos(X(R)) strongly depend on R such that amplitude and phase of the image wave represent only fragments of the object which, fortunately, supplement each other. However, recording only the amplitude gives rise to the fundamental problems, restricting resolution and interpretability of ordinary electron images:
7

Brydson, R., A. Brown, L. G. Benning und K. Livi. „Analytical Transmission Electron Microscopy“. Reviews in Mineralogy and Geochemistry 78, Nr. 1 (01.01.2014): 219–69. http://dx.doi.org/10.2138/rmg.2014.78.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Doyama, Masao, Yoshiaki Kogure, Miyoshi Inoue, Yoshihiko Hayashi, Toshimasa Yoshiie, Toshikazu Kurihara, Ryuichiro Oshima und Katsushige Tsuno. „Transmission Positron-Electron Microscopes“. Materials Science Forum 445-446 (Januar 2004): 471–73. http://dx.doi.org/10.4028/www.scientific.net/msf.445-446.471.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ischenko, A. A., Yu I. Tarasov, E. A. Ryabov, S. A. Aseyev und L. Schäfer. „ULTRAFAST TRANSMISSION ELECTRON MICROSCOPY“. Fine Chemical Technologies 12, Nr. 1 (28.02.2017): 5–25. http://dx.doi.org/10.32362/2410-6593-2017-12-1-5-25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Ultrafast laser spectral and electron diffraction methods complement each other and open up new possibilities in chemistry and physics to light up atomic and molecular motions involved in the primary processes governing structural transitions. Since the 1980s, scientific laboratories in the world have begun to develop a new field of research aimed at this goal. “Atomic-molecular movies” will allow visualizing coherent dynamics of nuclei in molecules and fast processes in chemical reactions in real time. Modern femtosecond and picosecond laser sources have made it possible to significantly change the traditional approaches using continuous electron beams, to create ultrabright pulsed photoelectron sources, to catch ultrafast processes in the matter initiated by ultrashort laser pulses and to achieve high spatio-temporal resolution in research. There are several research laboratories all over the world experimenting or planning to experiment with ultrafast electron diffraction and possessing electron microscopes adapted to operate with ultrashort electron beams. It should be emphasized that creating a new-generation electron microscope is of crucial importance, because successful realization of this project demonstrates the potential of leading national research centers and their ability to work at the forefront of modern science.
10

Urban, K. „Picometer Transmission Electron Microscopy“. Microscopy and Microanalysis 17, S2 (Juli 2011): 1314–15. http://dx.doi.org/10.1017/s1431927611007446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Transmission electron":

1

Jin, Liang. „Direct electron detection in transmission electron microscopy“. Diss., [La Jolla, Calif.] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3344737.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed April 3, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 148-151).
2

McKeown, Karen. „Using scanning electron microscopy (SEM) and transmission electron nncroscopy“. Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Electron impact excitation collisions are important processes for spectral line formation of plasmas. The work undertaken in this thesis focuses on such collisions involving Li-like ions, important in both astrophysical and magnetically confined plasmas. By having reliable atomic and collisional data, such as energy levels, radiative rates and excitation rate coefficients, it is possible to generate models to describe such plasmas. The atomic data were calculated using the General-Purpose Relativistic Structure Program (GRASP; Dyall et al 1989), for several Li-like ions, namely S XIV, Ar XVI, Ca XVIII, Ti XX, Cr XXII, Fe XXIV and Ni XXVI. Including relativistic effects in the calculations leads to the generation of 24 fine-structure energy levels when orbitals with 11,/ =:; 5 are considered. Oscillator strengths, were generated for all 276 transitions arising amongst these levels when maintaining a frozen core of Is2 • Comparisons were made with both theoretical and experimental data available from the publications of Nahar & Pradhan (1999), Nahar (2002), Whiteford et al (2002) and Del Zanna (2006), along with NIST data. Collisional calculations were performed for Fe XXIV, an abundant ion in solar and fusion plasmas, which has the potential to be employed in photo-pumping schemes for X-ray lasers. The calculations were performed using the Dirac Atomic Relativistic Code (DARC; Ait-Tahar, Grant & Norrington 1996), which is a fully relativistic code based on R-matrix theory. In addition to carrying out these calculations, DARC was further developed to provide a solution to the problem of convergence which affects optically allowed transitions in the above threshold energy region. Comparison of these results was made with data already available in the literature, with discrepancies being highlighted and discussed. The work of Berrington & Tully (1997) did not include the n=5 orbital, and comparisons with the results presented here showed how important these are for low temperatures. Discrepancies between this work and that of Whiteford et al (2002) were also identified. Despite being given access to their unpublished data, the source of the identified discrepancies remains elusive. The problems identified require further investigation which lies beyond the scope and resources of the present work.
3

Worden, R. H. „Transmission electron microscopy of metamorphic reactions“. Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234381.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chan, Yu Fai. „Nanostructure characterization by transmission electron microscopy /“. View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202002%20CHAN.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2002.
Includes bibliographical references (leaves 62-63). Also available in electronic version. Access restricted to campus users.
5

Löfgren, André. „Detection of electron vortex beams : Using a scanning transmission electron microscope“. Thesis, Uppsala universitet, Materialteori, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Electron vortex beams (EVBs) are electron beams with a doughnut-like intensity profile, carrying orbital angular momentum due to their helical phase shift distribution. When employed in an electron microscope, they are expected to be efficient for the detection of magnetic signals. In this report I have investigated high angle annular dark field (HAADF) images obtained using EVBs. This was done for 300 K and 5K. For 5 K,  I also compared HAADF images from an ordinary electron beam with HAADF images from an electron vortex beam. What was found was that EVBs produced doughnuts around the atomic columns. However, when taking the size of the electron source into account, this phenomena could no longer  be observed. When comparing images from EVBs with images from ordinary electron beams, I found that the intensity of scattered electrons around atomic columns was broader for EVBs. This was persistent even after taking the source size into account.
Elektronvirvelstrålar (EVS) är elektronstrålar med en munk-liknande intensitetsprofil. Dessa bär på rörelsemängdsmoment på grund av sin fasdistribution. När de används i ett elektronmikroskop förväntas de vara effektiva för detektering av magnetiska signaler. I denna uppsats har jag undersökt high angle annular dark field (HAADF) bilder som erhållits med hjälp av EVS. Detta gjordes för 300 K och 5K. För 5 K, jämförde jag även HAADF bilder från en vanlig elektronstråle med HAADF bilder från en elektronvirvelstråle. Vad jag fann var att EVS producerade en munkformad intensitetsfördelning runt atomerna. Men när hänsyn till storleken på elektronkällan togs i beaktande kunde inte detta fenomen observeras längre. När bilder från EVS jämfördes med bilder från vanliga elektronstrålar, fann jag att intensiteten av spridda elektroner runt atomkolumnerna var bredare för EVS. Detta kunde observeras även efter att jag tagit hänsyn till elektronkällans storlek.
6

Agarwal, Akshay. „A nanofabricated amplitude-division electron interferometer in a transmission electron microscope“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
"September 2016." Cataloged from PDF version of thesis.
Includes bibliographical references (pages 56-62).
Wavefront-division electron interferometry with the electron biprism has enabled many applications such as electron holography, exit-wave reconstruction, and demonstration of the Aharonov-Bohm effect. However, wavefront-division interferometry is limited by the requirement of high source coherence. Amplitude-division electron interferometers, first demonstrated by Marton and co-workers in 1954, can overcome this limitation. The implementation of these interferometers is hindered by the precise rotational and translational alignment required. This thesis develops a self-aligned, monolithic electron interferometer consisting of two 45 nm thick silicon layers separated by 20 gm and fabricated from a single crystal silicon cantilever on a transmission electron microscope grid by gallium focused ion-beam milling. Using this interferometer, beam path-separation and interference fringes of lattice periodicity and a maximum contrast of 15% in an unmodified 200 kV transmission electron microscope was demonstrated. This interferometer design can potentially be scaled to millimeter-scale and used in electron holography. It can also be applied to perform fundamental physics experiments such as interaction-free measurement with electrons, with the aim of significantly reducing the damage suffered by biological samples during high-resolution microscopy. Thus, the interferometer can serve as a proof-of-concept of the recently proposed 'Quantum Electron Microscope'.
by Akshay Agarwal.
S.M.
7

Johnson, Lars. „Nanoindentation in situ a Transmission Electron Microscope“. Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8333.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

The technique of Nanoindentation in situ Transmission Electron Microscope has been implemented on a Philips CM20. Indentations have been performed on Si and Sapphire (α-Al2O3) cut from wafers; Cr/Sc multilayers and Ti3SiC2 thin films. Different sample geometries and preparation methods have been evaluated. Both conventional ion and Focused Ion Beam milling were used, with different ways of protecting the sample during milling. Observations were made of bending and fracture of samples, dislocation nucleation and dislocation movement. Basal slip was observed upon unloading in Sapphire. Dislocation movement constricted along the basal planes were observed in Ti3SiC2. Post indentation electron microscopy revealed kink formation in Ti3SiC2 and layer rotation and slip across layers in Cr/Sc multilayer stacks. Limitations of the technique are presented and discussed.

8

Findlay, Scott David. „Theoretical aspects of scanning transmission electron microscopy /“. Connect to thesis, 2005. http://eprints.unimelb.edu.au/archive/00001057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Koda, Nobuko. „Transmission electron microscopy studies of fega alloys“. College Park, Md. : University of Maryland, 2003. http://hdl.handle.net/1903/167.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (M.S.) -- University of Maryland, College Park, 2003.
Thesis research directed by: Dept. of Material, Science and Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
10

Hetherington, C. „Transmission electron microscopy of GaAs/AlGaAs multilayers“. Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Transmission electron":

1

Reimer, Ludwig. Transmission Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-14824-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Reimer, Ludwig. Transmission Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-21556-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Reimer, Ludwig. Transmission Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-21579-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Carter, C. Barry, und David B. Williams, Hrsg. Transmission Electron Microscopy. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26651-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Williams, David B., und C. Barry Carter. Transmission Electron Microscopy. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76501-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Williams, David B., und C. Barry Carter. Transmission Electron Microscopy. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Thomas, Jürgen, und Thomas Gemming. Analytical Transmission Electron Microscopy. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8601-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zuo, Jian Min, und John C. H. Spence. Advanced Transmission Electron Microscopy. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6607-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Deepak, Francis Leonard, Alvaro Mayoral und Raul Arenal, Hrsg. Advanced Transmission Electron Microscopy. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15177-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pennycook, Stephen J., und Peter D. Nellist, Hrsg. Scanning Transmission Electron Microscopy. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7200-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Transmission electron":

1

Williams, David B., und C. Barry Carter. „Electron Sources“. In Transmission Electron Microscopy, 73–89. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76501-3_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kruit, Pieter. „Electron Sources“. In Transmission Electron Microscopy, 1–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26651-0_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Weyland, Matthew, und Paul Midgley. „Electron Tomography“. In Transmission Electron Microscopy, 343–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26651-0_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lehmann, Michael, und Hannes Lichte. „Electron Holography“. In Transmission Electron Microscopy, 215–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26651-0_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Williams, David B., und C. Barry Carter. „Electron Sources“. In Transmission Electron Microscopy, 67–83. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Reimer, Ludwig. „Electron-Specimen Interactions“. In Transmission Electron Microscopy, 143–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-14824-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Reimer, Ludwig. „Electron-Specimen Interactions“. In Transmission Electron Microscopy, 136–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-21556-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Reimer, Ludwig. „Analytical Electron Microscopy“. In Transmission Electron Microscopy, 375–430. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-21556-2_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Reimer, Ludwig. „Electron-Specimen Interactions“. In Transmission Electron Microscopy, 136–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-21579-1_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Reimer, Ludwig. „Analytical Electron Microscopy“. In Transmission Electron Microscopy, 375–430. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-21579-1_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Transmission electron":

1

Krysztof, Michal, Tomasz Grzebyk, Piotr Szyszka, Karolina Laszczyk, Anna Gorccka-Drzazza und Jan Dziuban. „Electron Transparent Anode for MEMS Transmission Electron Microscope“. In 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE). IEEE, 2018. http://dx.doi.org/10.1109/coe.2018.8435173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Krajnak, Matus. „Transforming transmission electron microscopy with MerlinEM electron counting detector“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bach, Nora, Armin Feist, Till Domrose, Marcel Moller, Nara Rubiano da Silva, Thomas Danz, Sascha Schafer und Claus Ropers. „Highly coherent femtosecond electron pulses for ultrafast transmission electron microscopy“. In 2017 30th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2017. http://dx.doi.org/10.1109/ivnc.2017.8051554.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pennycook, S. J. „Transmission Electron Microscopy: Overview and Challenges“. In CHARACTERIZATION AND METROLOGY FOR ULSI TECHNOLOGY: 2003 International Conference on Characterization and Metrology for ULSI Technology. AIP, 2003. http://dx.doi.org/10.1063/1.1622537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Leth Larsen, Matthew Helmi. „Deep learning assisted transmission electron microscopy“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.924.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nicholls, Daniel. „Distributing the Electron Dose to Minimise Electron Beam Damage in Scanning Transmission Electron Microscopy“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Feist, Armin, Katharina E. Echternkamp, Reiner Bormann, Nara Rubiano da Silva, Marcel Möller, Wenxi Liang, Sascha Schäfer und Claus Ropers. „Few-nanometer femtosecond electron probe pulses in ultrafast transmission electron microscopy“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/up.2016.uth2b.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

De Graef, Marc. „Recent Progress in Lorentz Transmission Electron Microscopy“. In ESOMAT 2009 - 8th European Symposium on Martensitic Transformations. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/esomat/200901002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Xie, Wenkai, Xi Chen, Lin Meng, Xinyan Gao und Shenggang Liu. „Electron-beam transmission properties in plasma channel“. In AeroSense 2002, herausgegeben von Howard E. Brandt. SPIE, 2002. http://dx.doi.org/10.1117/12.469835.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Merrill, F. E., A. J. Clarke, J. Goett, J. W. Gibbs, C. Hast, S. D. Imhoff, K. Jobe et al. „Demonstration of transmission high energy electron microscopy“. In SHOCK COMPRESSION OF CONDENSED MATTER - 2019: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Publishing, 2020. http://dx.doi.org/10.1063/12.0000952.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Transmission electron":

1

Ren, Z. F. Purchase of Transmission Electron Microscope. Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada392051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Libera, Matthew R. Transmission Electron Holography of Polymer Microstructure. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada344467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fraser, Hamish L. Request for an Analytical Transmission Electron Microscope. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1987. http://dx.doi.org/10.21236/ada189111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pennycook, S. J., und A. R. Lupini. Image Resolution in Scanning Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), Juni 2008. http://dx.doi.org/10.2172/939888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Minor, Andrew M. In situ nanoindentation in a transmission electron microscope. Office of Scientific and Technical Information (OSTI), Januar 2002. http://dx.doi.org/10.2172/807441.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Reed, B., M. Armstrong, K. Blobaum, N. Browning, A. Burnham, G. Campbell, R. Gee et al. Time Resolved Phase Transitions via Dynamic Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), Februar 2007. http://dx.doi.org/10.2172/902321.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dietz, N. L. Transmission electron microscopy analysis of corroded metal waste forms. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/861616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Clark, Waylon T., Michael D. Pelock, Jeremy Paul Martin, Daniel Peter Jr Jackson, Mark Edward Savage, Brian Scott Stoltzfus, Clifford Will, Jr Mendel und Timothy David Pointon. Precision electron flow measurements in a disk transmission line. Office of Scientific and Technical Information (OSTI), Januar 2008. http://dx.doi.org/10.2172/932880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tosten, M. H. Transmission electron microscopy of Al-Li control rod pins. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10170120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tosten, M. H. Transmission electron microscopy of Al-Li control rod pins. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6282616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie