Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transmission electron microscopy (TEM)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transmission electron microscopy (TEM)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transmission electron microscopy (TEM)"
Winey, Mark, Janet B. Meehl, Eileen T. O'Toole und Thomas H. Giddings. „Conventional transmission electron microscopy“. Molecular Biology of the Cell 25, Nr. 3 (Februar 2014): 319–23. http://dx.doi.org/10.1091/mbc.e12-12-0863.
Der volle Inhalt der Quellevan der Krift, Theo, Ulrike Ziese, Willie Geerts und Bram Koster. „Computer-Controlled Transmission Electron Microscopy: Automated Tomography“. Microscopy and Microanalysis 7, S2 (August 2001): 968–69. http://dx.doi.org/10.1017/s1431927600030919.
Der volle Inhalt der QuelleFerreira, P. J., K. Mitsuishi und E. A. Stach. „In Situ Transmission Electron Microscopy“. MRS Bulletin 33, Nr. 2 (Februar 2008): 83–90. http://dx.doi.org/10.1557/mrs2008.20.
Der volle Inhalt der QuelleSun, Cheng, Erich Müller, Matthias Meffert und Dagmar Gerthsen. „On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope“. Microscopy and Microanalysis 24, Nr. 2 (28.03.2018): 99–106. http://dx.doi.org/10.1017/s1431927618000181.
Der volle Inhalt der QuelleThomas, Edwin L. „Transmission electron microscopy of polymers“. Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 422–25. http://dx.doi.org/10.1017/s0424820100126901.
Der volle Inhalt der QuelleHulskamp, M., B. Schwab, P. Grini und H. Schwarz. „Transmission Electron Microscopy (TEM) of Plant Tissues“. Cold Spring Harbor Protocols 2010, Nr. 7 (01.07.2010): pdb.prot4958. http://dx.doi.org/10.1101/pdb.prot4958.
Der volle Inhalt der QuelleLee, M. R. „Transmission electron microscopy (TEM) of Earth and planetary materials: A review“. Mineralogical Magazine 74, Nr. 1 (Februar 2010): 1–27. http://dx.doi.org/10.1180/minmag.2010.074.1.1.
Der volle Inhalt der QuelleSaka, Hiroyasu, Takeo Kamino, Shigeo Ara und Katsuhiro Sasaki. „In Situ Heating Transmission Electron Microscopy“. MRS Bulletin 33, Nr. 2 (Februar 2008): 93–100. http://dx.doi.org/10.1557/mrs2008.21.
Der volle Inhalt der QuelleKuokkala, V. T., und T. K. Lepistö. „TEMTUTOR - a Teaching Multimedia Program for TEM“. Microscopy and Microanalysis 3, S2 (August 1997): 1161–62. http://dx.doi.org/10.1017/s1431927600012691.
Der volle Inhalt der QuelleDumančić, Ena, Lea Vojta und Hrvoje Fulgosi. „Beginners guide to sample preparation techniques for transmission electron microscopy“. Periodicum Biologorum 125, Nr. 1-2 (25.10.2023): 123–31. http://dx.doi.org/10.18054/pb.v125i1-2.25293.
Der volle Inhalt der QuelleDissertationen zum Thema "Transmission electron microscopy (TEM)"
TIYYAGURA, MADHAVI. „TRANSMISSION ELECTRON MICROSCOPY STUDIES IN SHAPE MEMORY ALLOYS“. Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3913.
Der volle Inhalt der QuelleM.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science and Engineering
Karlsson, Linda. „Transmission Electron Microscopy of 2D Materials : Structure and Surface Properties“. Doctoral thesis, Linköpings universitet, Tunnfilmsfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127526.
Der volle Inhalt der QuelleWan, Qian. „Transmission electron microscopy study of heterostructures grown on GaAs (110)“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16949.
Der volle Inhalt der QuelleIn the work, we systematically investigate the microstructural properties of (110) oriented heterostructures on GaAs substrates by means of different transmission electron microscopy techniques. Fcc-type (Al,Ga)As/AlAs/GaAs multilayer structure on GaAs (110) presents different mismatch strain accommodation mechanisms along the perpendicular in-plane directions. Defect-free structures are successfully acquired by an appropriate type of AlAs/GaAs short period superlattice. Finally, artificial defects are intentionally produced by nano-indentation to the defect-free sample to verify the effect of short period superlattices. Hcp-type MnAs on GaAs (110) system is characterized by anisotropic lattice mismatches of -7.5% and 0.7% along the [11-20] and [0001] direction, respectively. A wetting layer is observed prior to the formation of islands, indicating a Stranski-Krastanov growth mode of MnAs. The strain corresponding to the 0.7% lattice misfit is accommodated elastically, whereas the mismatch stress along perpendicular [11-20] direction is relived by the formation of a periodic array of perfect misfit dislocations with a stand-off position in MnAs lattice. The long range strain field associated with the dislocation array is constrained at the interface within a thickness of about 3.4 nm. An interfacial atomic configuration is also proposed based on the comparison between HRTEM image and the simulations. B2-type CoAl alloys are realized on (001) and (110) oriented GaAs substrates for comparison. They are both characterized by a coexistence of B2 phase and its disordered version bcc phase. The disordering is induced partially by the epitaxial strain and partially by the diffusion of point defects.
Asaulenko, L. G., L. M. Purish und D. R. Abdulina. „Use of the Transmission Electron Microscopy for Examination of Biofilms Structure“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35267.
Der volle Inhalt der QuelleCardoch, Sebastian. „Studying Atomic Vibrations by Transmission Electron Microscopy“. Thesis, Uppsala universitet, Materialteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305370.
Der volle Inhalt der QuelleAgnese, Fabio. „Advanced transmission electron microscopy studies of semiconductor nanocrystals synthesized by colloidal methods“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY043/document.
Der volle Inhalt der QuelleThe investigations of semiconductor nanocrystals (NCs) led to fascinating scientific results in optoelectronic devices. In order to fulfill certain requirements, i.e. cheaper costs, higher efficiencies, environmental friendly components etc., new methods are explored in solution-processing, band gap and energy level engineering. Particularly, the method of synthesis can alter the optoelectronic properties. Therefore, a better understanding of the intricate factors during synthesis will lead to improved performances. Advanced electron microscopy provides a precise way to gather information about morphology, crystal structure and chemical composition of materials with a spatial resolution down to the atomic level. The first part of this thesis deals with the optimization of the synthesis and sample preparation for high resolution transmission electron microscopy (HRTEM).The second part deals with the growth mechanism of Cu2ZnSnS4 NCs synthesized by a colloidal method. The morphology and stoichiometry of the samples extracted after different time intervals are characterized by HRTEM and electron dispersion spectroscopy (EDS). Two complementary methods, Nanobeam Precession Electron Diffraction (NPED) and High Resolution Scanning Transmission Electron Microscopy by High Angle Annular Dark-Field Imaging (HRSTEM-HAADF), provide an in-depth crystal structure characterization.Moreover, the crystal structure of CsPbBr3 NCs is solved by probing STEM-HAADF simulations. This approach is able to differentiate cubic and orthorhombic crystal structures, which is otherwise impossible by diffraction techniques. Finally, the influence of synthesis methods on the morphology and crystal structure of CuFeS2 NCs is investigated by HRTEM for thermoelectric applications
Sharp, Joanne. „Electron tomography of defects“. Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/228638.
Der volle Inhalt der QuelleLai, Pooi-fun. „TEM and structural investigations of synthesized and modified carbon materials /“. Connect to thesis, 1999. http://eprints.unimelb.edu.au/archive/00000770.
Der volle Inhalt der QuelleCaballero-Alias, Ana Maria. „The role of silica in mineralising tissues“. Thesis, Nottingham Trent University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302515.
Der volle Inhalt der QuelleXin, Renlong. „TEM studies of calcium phosphates for the understanding of biomineralization /“. View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20XIN.
Der volle Inhalt der QuelleBücher zum Thema "Transmission electron microscopy (TEM)"
United States. National Aeronautics and Space Administration., Hrsg. Soot precursor material: Visualization via simultaneous LIF-LII and characterization via TEM. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenReimer, Ludwig. Transmission Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-14824-2.
Der volle Inhalt der QuelleReimer, Ludwig. Transmission Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-21556-2.
Der volle Inhalt der QuelleReimer, Ludwig. Transmission Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-21579-1.
Der volle Inhalt der QuelleWilliams, David B., und C. Barry Carter. Transmission Electron Microscopy. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76501-3.
Der volle Inhalt der QuelleCarter, C. Barry, und David B. Williams, Hrsg. Transmission Electron Microscopy. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26651-0.
Der volle Inhalt der QuelleWilliams, David B., und C. Barry Carter. Transmission Electron Microscopy. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3.
Der volle Inhalt der QuelleZuo, Jian Min, und John C. H. Spence. Advanced Transmission Electron Microscopy. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6607-3.
Der volle Inhalt der QuellePennycook, Stephen J., und Peter D. Nellist, Hrsg. Scanning Transmission Electron Microscopy. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7200-2.
Der volle Inhalt der QuelleDeepak, Francis Leonard, Alvaro Mayoral und Raul Arenal, Hrsg. Advanced Transmission Electron Microscopy. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15177-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Transmission electron microscopy (TEM)"
Williams, David B., und C. Barry Carter. „Diffraction in TEM“. In Transmission Electron Microscopy, 197–209. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76501-3_11.
Der volle Inhalt der QuelleWilliams, David B., und C. Barry Carter. „High-Resolution TEM“. In Transmission Electron Microscopy, 483–509. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76501-3_28.
Der volle Inhalt der QuelleWilliams, David B., und C. Barry Carter. „High-Resolution TEM“. In Transmission Electron Microscopy, 457–82. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_28.
Der volle Inhalt der QuelleWilliams, David B., und C. Barry Carter. „Imaging in the TEM“. In Transmission Electron Microscopy, 349–66. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_22.
Der volle Inhalt der QuelleWilliams, David B., und C. Barry Carter. „The XEDS-TEM Interface“. In Transmission Electron Microscopy, 573–85. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_33.
Der volle Inhalt der QuelleChen, Bin, Jianming Cao und Dongping Zhong. „4D Ultrafast TEM“. In In-Situ Transmission Electron Microscopy, 327–71. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6845-7_10.
Der volle Inhalt der QuelleCosta, Pedro M. F. J., und Paulo J. Ferreira. „In Situ TEM of Carbon Nanotubes“. In Advanced Transmission Electron Microscopy, 207–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15177-9_7.
Der volle Inhalt der QuelleWang, Peng, Feng Xu, Peng Gao, Songhua Cai und Xuedong Bai. „In-Situ Optical TEM“. In In-Situ Transmission Electron Microscopy, 151–86. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6845-7_6.
Der volle Inhalt der QuelleZhong, Li, Lihua Wang, Jiangwei Wang, Yang He, Xiaodong Han, Zhiwei Shan und Xiuliang Ma. „In-Situ Nanomechanical TEM“. In In-Situ Transmission Electron Microscopy, 53–82. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6845-7_3.
Der volle Inhalt der QuelleZheng, Shijian, und Longbing He. „In-Situ Heating TEM“. In In-Situ Transmission Electron Microscopy, 83–104. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6845-7_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transmission electron microscopy (TEM)"
Subramanian, Sam, Khiem Ly und Tony Chrastecky. „Transmission Electron Microscopy (TEM) Techniques for Semiconductor Failure Analysis“. In ISTFA 2022. ASM International, 2022. http://dx.doi.org/10.31399/asm.cp.istfa2022tpl1.
Der volle Inhalt der QuelleDemarest, James J., und Hong-Ying Zhai. „Highly Automated Transmission Electron Microscopy Tomography for Defect Understanding“. In ISTFA 2011. ASM International, 2011. http://dx.doi.org/10.31399/asm.cp.istfa2011p0137.
Der volle Inhalt der QuelleRout, Surya. „Transmission electron microscope (TEM) study of graphite and diamonds in ureilites“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1154.
Der volle Inhalt der QuelleVanderlinde, William E. „STEM (Scanning Transmission Electron Microscopy) in a SEM (Scanning Electron Microscope) for Failure Analysis and Metrology“. In ISTFA 2002. ASM International, 2002. http://dx.doi.org/10.31399/asm.cp.istfa2002p0077.
Der volle Inhalt der QuelleDaPonte, J., T. Sadowski, C. C. Broadbridge, D. Day, A. H. Lehman, D. Krishna, L. Marinella, P. Munhutu und M. Sawicki. „Application of particle analysis to transmission electron microscopy (TEM)“. In Defense and Security Symposium, herausgegeben von Zia-ur Rahman, Stephen E. Reichenbach und Mark A. Neifeld. SPIE, 2007. http://dx.doi.org/10.1117/12.714749.
Der volle Inhalt der QuelleCao, Y., S. Zhu, Y. Xie, J. Key, J. Kacher, R. R. Unocic und C. M. Rouleau. „Sequential Adaptive Detection for In-Situ Transmission Electron Microscopy (TEM)“. In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8461334.
Der volle Inhalt der QuelleKushwaha, Himmat S., Sanju Tanwar, K. S. Rathore und Sumit Srivastava. „De-noising Filters for TEM (Transmission Electron Microscopy) Image of Nanomaterials“. In Communication Technologies (ACCT). IEEE, 2012. http://dx.doi.org/10.1109/acct.2012.41.
Der volle Inhalt der QuelleSung, Ching Shan, Hsiu Ting Lee und Jian Shing Luo. „TEM Sample Preparation Tricks for Advanced DRAMs“. In ISTFA 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.istfa2015p0318.
Der volle Inhalt der QuelleFu, L. F., Y. C. Wang, B. Jiang, F. Shen, M. Strauss, B. Van Leer, C. Senowitz und A. Buxbaum. „Recent Developments in TEM Applications for the IC Industry“. In ISTFA 2008. ASM International, 2008. http://dx.doi.org/10.31399/asm.cp.istfa2008p0014.
Der volle Inhalt der QuelleWang, Yafei, Songyan Hu, Guangxu Cheng, Zaoxiao Zhang und Jianxiao Zhang. „Influence of Quenching-Tempering on the Carbide Precipitation of 2.25Cr-1Mo-0.25V Steel Used in Reactor Pressure Vessels“. In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93054.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Transmission electron microscopy (TEM)"
Pennycook, S. J., und A. R. Lupini. Image Resolution in Scanning Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), Juni 2008. http://dx.doi.org/10.2172/939888.
Der volle Inhalt der QuelleReed, B., M. Armstrong, K. Blobaum, N. Browning, A. Burnham, G. Campbell, R. Gee et al. Time Resolved Phase Transitions via Dynamic Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), Februar 2007. http://dx.doi.org/10.2172/902321.
Der volle Inhalt der QuelleDietz, N. L. Transmission electron microscopy analysis of corroded metal waste forms. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/861616.
Der volle Inhalt der QuelleTosten, M. H. Transmission electron microscopy of Al-Li control rod pins. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6282616.
Der volle Inhalt der QuelleTosten, M. H. Transmission electron microscopy of Al-Li control rod pins. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10170120.
Der volle Inhalt der QuelleIsaacs, H. S., Y. Zhu, R. L. Sabatini und M. P. Ryan. Transmission electron microscopy of undermined passive films on stainless steel. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/353181.
Der volle Inhalt der QuelleTOSTEN, MICHAEL. Transmission Electron Microscopy Study of Helium-Bearing Fusion Welds(U). Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/882713.
Der volle Inhalt der QuelleScott, Keana C., und Lucille A. Giannuzzi. Strategies for transmission electron microscopy specimen preparation of polymer composites. National Institute of Standards and Technology, September 2015. http://dx.doi.org/10.6028/nist.sp.1200-16.
Der volle Inhalt der QuelleWatt, John Daniel. Soft matter and nanomaterials characterization by cryogenic transmission electron microscopy. Office of Scientific and Technical Information (OSTI), Januar 2020. http://dx.doi.org/10.2172/1593111.
Der volle Inhalt der QuelleBatra, Ravi. Transmission Electron Microscopy of Rapidly Solidified Du-5% W Alloy. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada231449.
Der volle Inhalt der Quelle