Auswahl der wissenschaftlichen Literatur zum Thema „Transmission electron microscopy (TEM)“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transmission electron microscopy (TEM)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Transmission electron microscopy (TEM)"

1

Winey, Mark, Janet B. Meehl, Eileen T. O'Toole und Thomas H. Giddings. „Conventional transmission electron microscopy“. Molecular Biology of the Cell 25, Nr. 3 (Februar 2014): 319–23. http://dx.doi.org/10.1091/mbc.e12-12-0863.

Der volle Inhalt der Quelle
Annotation:
Researchers have used transmission electron microscopy (TEM) to make contributions to cell biology for well over 50 years, and TEM continues to be an important technology in our field. We briefly present for the neophyte the components of a TEM-based study, beginning with sample preparation through imaging of the samples. We point out the limitations of TEM and issues to be considered during experimental design. Advanced electron microscopy techniques are listed as well. Finally, we point potential new users of TEM to resources to help launch their project.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

van der Krift, Theo, Ulrike Ziese, Willie Geerts und Bram Koster. „Computer-Controlled Transmission Electron Microscopy: Automated Tomography“. Microscopy and Microanalysis 7, S2 (August 2001): 968–69. http://dx.doi.org/10.1017/s1431927600030919.

Der volle Inhalt der Quelle
Annotation:
The integration of computers and transmission electron microscopes (TEM) in combination with the availability of computer networks evolves in various fields of computer-controlled electron microscopy. Three layers can be discriminated: control of electron-optical elements in the column, automation of specific microscope operation procedures and display of user interfaces. The first layer of development concerns the computer-control of the optical elements of the transmission electron microscope (TEM). Most of the TEM manufacturers have transformed their optical instruments into computer-controlled image capturing devices. Nowadays, the required controls for the currents through lenses and coils of the optical column can be accessed by computer software. The second layer of development is aimed toward further automation of instrument operation. For specific microscope applications, dedicated automated microscope-control procedures are carried out. in this paper, we will discuss our ongoing efforts on this second level towards fully automated electron tomography. The third layer of development concerns virtual- or telemicroscopy. Most telemicroscopy applications duplicate the computer-screen (with accessory controls) at the microscope-site to a computer-screen at another site. This approach allows sharing of equipment, monitoring of instruments by supervisors, as well as collaboration between experts at remote locations.Electron tomography is a three-dimensional (3D) imaging method with transmission electron microscopy (TEM) that provides high-resolution 3D images of structural arrangements. with electron tomography a series of images is acquired of a sample that is tilted over a large angular range (±70°) with small angular tilt increments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ferreira, P. J., K. Mitsuishi und E. A. Stach. „In Situ Transmission Electron Microscopy“. MRS Bulletin 33, Nr. 2 (Februar 2008): 83–90. http://dx.doi.org/10.1557/mrs2008.20.

Der volle Inhalt der Quelle
Annotation:
AbstractThe articles in this issue of MRS Bulletin provide a sample of what is novel and unique in the field of in situ transmission electron microscopy (TEM). The advent of improved cameras and continued developments in electron optics and stage designs have enabled scientists and engineers to enhance the capabilities of previous TEM analyses. Currently, novel in situ experiments observe and record the behavior of materials in various heating, cooling, straining, or growth environments. In situ TEM techniques are invaluable for understanding and characterizing dynamic microstructural changes. They can validate static TEM experiments and inspire new experimental approaches and new theories.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sun, Cheng, Erich Müller, Matthias Meffert und Dagmar Gerthsen. „On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope“. Microscopy and Microanalysis 24, Nr. 2 (28.03.2018): 99–106. http://dx.doi.org/10.1017/s1431927618000181.

Der volle Inhalt der Quelle
Annotation:
AbstractTransmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Thomas, Edwin L. „Transmission electron microscopy of polymers“. Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 422–25. http://dx.doi.org/10.1017/s0424820100126901.

Der volle Inhalt der Quelle
Annotation:
Transmission electron microscopy continues to play a major role in micro-structural characterization of polymers. Additionally, as evidenced by the special symposium on electron crystallography at this EMSA meeting, electron diffraction, as applied to polymer crystals, is also a vigorous area of research. Because many of the interesting morphological features of polymer systems are at and below the micron scale, TEM is a most fruitful technique. Applications range from simple assessment of dispersed phase particle size in blends to HREM molecular imaging of defects in crystals. Thus polymer scientists probe structures over about 4 orders of magnitude in size, and the versatility of the TEM in such endeavors is evident from its essentially ubiquitous appearance in all modern physical sciences laboratories.While there are a host of standard and advanced texts on the application of TEM to metals and to biology, there are only a few review papers on polymer microscopy and one just-published book.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hulskamp, M., B. Schwab, P. Grini und H. Schwarz. „Transmission Electron Microscopy (TEM) of Plant Tissues“. Cold Spring Harbor Protocols 2010, Nr. 7 (01.07.2010): pdb.prot4958. http://dx.doi.org/10.1101/pdb.prot4958.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lee, M. R. „Transmission electron microscopy (TEM) of Earth and planetary materials: A review“. Mineralogical Magazine 74, Nr. 1 (Februar 2010): 1–27. http://dx.doi.org/10.1180/minmag.2010.074.1.1.

Der volle Inhalt der Quelle
Annotation:
AbstractUsing high intensity beams of fast electrons, the transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) enable comprehensive characterization of rocks and minerals at micrometre to sub-nanometre scales. This review outlines the ways in which samples of Earth and planetary materials can be rendered sufficiently thin for TEM and STEM work, and highlights the significant advances in site-specific preparation enabled by the focused ion beam (FIB) technique. Descriptions of the various modes of TEM and STEM imaging, electron diffraction and X-ray and electron spectroscopy are outlined, with an emphasis on new technologies that are of particular relevance to geoscientists. These include atomic-resolution Z-contrast imaging by high-angle annular dark-field STEM, electron crystallography by precession electron diffraction, spectrum mapping using X-rays and electrons, chemical imaging by energy-filtered TEM and true atomic-resolution imaging with the new generation of aberration-corrected microscopes. Despite the sophistication of modern instruments, the spatial resolution of imaging, diffraction and X-ray and electron spectroscopy work on many natural materials is likely to remain limited by structural and chemical damage to the thin samples during TEM and STEM.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Saka, Hiroyasu, Takeo Kamino, Shigeo Ara und Katsuhiro Sasaki. „In Situ Heating Transmission Electron Microscopy“. MRS Bulletin 33, Nr. 2 (Februar 2008): 93–100. http://dx.doi.org/10.1557/mrs2008.21.

Der volle Inhalt der Quelle
Annotation:
AbstractTemperature is one of the most important factors affecting the state and behavior of materials. In situ heating transmission electron microscopy (TEM) is a powerful tool for understanding such temperature effects, and recently in situ heating TEM has made significant progress in terms of temperature available and resolution attained. This article briefly describes newly developed specimen-heating holders, which are useful in carrying out in situ heating TEM experiments. It then focuses on three main applications of these specimen holders: solid–solid reactions, solid–liquid reactions (including highresolution observation of a solid–liquid interface, size dependence of the melting temperatures of one-, two- and three-dimensionally reduced systems, size dependence of the contact angle of fine metal liquid, and wetting of Si with liquid Au or Al) and solid–gas reactions. These results illustrate the benefit of in situ heating TEM for providing fundamental information on temperature effects on materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kuokkala, V. T., und T. K. Lepistö. „TEMTUTOR - a Teaching Multimedia Program for TEM“. Microscopy and Microanalysis 3, S2 (August 1997): 1161–62. http://dx.doi.org/10.1017/s1431927600012691.

Der volle Inhalt der Quelle
Annotation:
Teaching of transmission electron microscopy usually includes both lectures on the contrast theories, electron diffraction, etc., and practical hands-on operation of the microscope. The number of students attending the lectures is normally unlimited, but at the microscope, only a few persons can work at the same time. Since the microscopes are expensive, it would be of a great help if cheaper 'training' microscopes with basic imaging and diffraction capabilities were available. These functions, in fact, can quite easily be realized with fast personal computers and work stations, where the simulation of transmission electron micrographs and related diffraction patterns can help the student better understand the image formation processes. Adding text, audio and video help capabilities to the program, it can be made an efficient supplemental teaching tool.TemTutor for Windows is based on microScope for Windows, which is a BF/DF TEM micrograph simulation program for dislocations and stacking faults.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dumančić, Ena, Lea Vojta und Hrvoje Fulgosi. „Beginners guide to sample preparation techniques for transmission electron microscopy“. Periodicum Biologorum 125, Nr. 1-2 (25.10.2023): 123–31. http://dx.doi.org/10.18054/pb.v125i1-2.25293.

Der volle Inhalt der Quelle
Annotation:
Background purpose: The revolution in microscopy came in 1930 with the invention of electron microscope. Since then, we can study specimens on ultrastructural and even atomic level. Besides transmission electron microscopy (TEM), for which specimen preparation techniques will be described in this article, there are also other types of electron microscopes that are not discussed in this review. Materials and methods: Here, we have described basic procedures for TEM sample preparation, which include tissue sample preparation, chemical fixation of tissue with fixatives, cryo-fixation performed by quick freezing, dehydration with ethanol, infiltration with transitional solvents, resin embedding and polymerization, processing of embedded specimens, sectioning of samples with ultramicrotome, positive and negative contrasting of samples, immunolabeling, and imaging. Conclusion: Such collection of methods can be useful for novices in transmission electron microscopy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Transmission electron microscopy (TEM)"

1

TIYYAGURA, MADHAVI. „TRANSMISSION ELECTRON MICROSCOPY STUDIES IN SHAPE MEMORY ALLOYS“. Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3913.

Der volle Inhalt der Quelle
Annotation:
In NiTi, a reversible thermoelastic martensitic transformation can be induced by temperature or stress between a cubic (B2) austenite phase and a monoclinic (B19') martensite phase. Ni-rich binary compositions are cubic at room temperature (requiring stress or cooling to transform to the monoclinic phase), while Ti-rich binary compositions are monoclinic at room temperature (requiring heating to transform to the cubic phase). The stress induced transformation results in the superelastic effect, while the thermally induced transformation is associated with strain recovery that results in the shape memory effect. Ternary elemental additions such as Fe can additionally introduce an intermediate rhombohedral (R) phase between the cubic and monoclinic phase transformation. This work was initiated with the broad objective of connecting the macroscopic behavior in shape memory alloys with microstructural observations from transmission electron microscopy (TEM). Specifically, the goals were to examine (i) the effect of mechanical cycling and plastic deformation in superelastic NiTi; (ii) the effect of thermal cycling during loading in shape memory NiTi; (iii) the distribution of twins in martensitic NiTi-TiC composites; and (iv) the R-phase in NiTiFe. Both in situ and ex situ lift out focused ion beam (FIB) and electropolishing techniques were employed to fabricate shape memory alloy samples for TEM characterization. The Ni rich NiTi samples were fully austenitic in the undeformed state. The introduction of plastic deformation (8% and 14% in the samples investigated) resulted in the stabilization of martensite in the unloaded state. An interlaying morphology of the austenite and martensite was observed and the martensite needles tended to orient themselves in preferred orientations. The aforementioned observations were more noticeable in mechanically cycled samples. The observed dislocations in mechanically cycled samples appear to be shielded from the external applied stress via mismatch accommodation since they are not associated with unrecoverable strain after a load-unload cycle. On application of stress, the austenite transforms to martensite and is expected to accommodate the stress and strain mismatch through preferential transformation, variant selection, reorientation and coalescence. The stabilized martensite (i.e., martensite that exists in the unloaded state) is expected to accommodate the mismatch through variant reorientation and coalescence. On thermally cycling a martensitic NiTi sample under load through the phase transformation, significant variant coalescence, variant reorientation and preferred variant selection was observed. This was attributed to the internal stresses generated as a result of the thermal cycling. A martensitic NiTi-TiC composite was also characterized and the interface between the matrix and the inclusion was free of twins while significant twins were observed at a distance away from the matrix-inclusion interface. Incorporating a cold stage, diffraction patterns from NiTiFe samples were obtained at temperatures as low as -160ºC. Overall, this work provided insight in to deformation phenomena in shape memory materials that have implications for engineering applications (e.g., cyclic performance of actuators, engineering life of superelastic components, stiffer shape memory composites and low-hysteresis R-phase based actuators). This work was supported in part by an NSF CAREER award (DMR 0239512).
M.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science and Engineering
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Karlsson, Linda. „Transmission Electron Microscopy of 2D Materials : Structure and Surface Properties“. Doctoral thesis, Linköpings universitet, Tunnfilmsfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127526.

Der volle Inhalt der Quelle
Annotation:
During recent years, new types of materials have been discovered with unique properties. One family of such materials are two-dimensional materials, which include graphene and MXene. These materials are stronger, more flexible, and have higher conductivity than other materials. As such they are highly interesting for new applications, e.g. specialized in vivo drug delivery systems, hydrogen storage, or as replacements of common materials in e.g. batteries, bulletproof clothing, and sensors. The list of potential applications is long for these new materials. As these materials are almost entirely made up of surfaces, their properties are strongly influenced by interaction between their surfaces, as well as with molecules or adatoms attached to the surfaces (surface groups). This interaction can change the materials and their properties, and it is therefore imperative to understand the underlying mechanisms. Surface groups on two-dimensional materials can be studied by Transmission Electron Microscopy (TEM), where high energy electrons are transmitted through a sample and the resulting image is recorded. However, the high energy needed to get enough resolution to observe single atoms damages the sample and limits the type of materials which can be analyzed. Lowering the electron energy decreases the damage, but the image resolution at such conditions is severely limited by inherent imperfections (aberrations) in the TEM. During the last years, new TEM models have been developed which employ a low acceleration voltage together with aberration correction, enabling imaging at the atomic scale without damaging the samples. These aberration-corrected TEMs are important tools in understanding the structure and chemistry of two-dimensional materials. In this thesis the two-dimensional materials graphene and Ti3C2Tx MXene have been investigated by low-voltage, aberration-corrected (scanning) TEM. High temperature annealing of graphene covered by residues from the synthesis is studied, as well as the structure and surface groups on single and double Ti3C2Tx MXene. These results are important contributions to the understanding of this class of materials and how their properties can be controlled.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wan, Qian. „Transmission electron microscopy study of heterostructures grown on GaAs (110)“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16949.

Der volle Inhalt der Quelle
Annotation:
In der Arbeit werden die mikrostrukturellen Eigenschaften von an (110)-Flächen orientierten Heterostrukturen auf GaAs-Substraten mittels verschiedener Techniken der Transmissionselektronenmikroskopie untersucht. Kubisch flächenzentrierte (Al,Ga)As/AlAs/GaAs Mehrschichtstrukturen auf GaAs(110) weisen in orthogonalen Richtungen parallel zur Substratoberfläche verschiedene Mechanismen zur Aufnahme der Verspannungen aufgrund von Fehlanpassungen auf. Defektfreie Strukturen sind durch eine geeignete, kurz periodische AlAs/GaAs-Überstruktur erfolgreich realisiert worden. Abschließend sind künstliche Defekte per Nanoindentation in den defektfreien Proben erzeugt worden, um die Auswirkung kurzperiodischer Übergitter zu prüfen. Das System aus hexagonal dicht gepacktem MnAs auf GaAs(110) zeichnet sich durch anisotrope Gitterfehlanpassung von -7.5% und 0.7% entsprechend der [11-20] und der [0001] Richtungen aus. Eine Benetzungsschicht, die der Entstehung von Inseln vorausgeht, wird beobachtet, was das Stranski-Krastanov-Wachstum von MnAs belegt. Die Dehnung durch die Gitterfehlpassung von 0.7% wird elastisch eingebaut, während die Spannung durch die Gitterfehlanpassung in der senkrechten [11-20] Richtung durch die Entstehung einer periodischen Anordnung, vollständiger Gitterfehlanpassungsversetzungen abgebaut wird, die sich von der Grenzfläche entfernt im MnAs-Gitter befinden. Das aus der Versetzungsanordnung resultierende Dehnungsfeld ist auf eine Dicke von 3.4 nm um die Grenzfläche beschränkt. Eine atomare Struktur der Grenzfläche wird basierend auf dem Vergleich von HRTEM-Aufnahmen und Simulationen vorgeschlagen. CoAl-Legierungen in der B2-Phase sind zum Vergleich auf (001) und auf (110) orientierten GaAs-Substraten hergestellt worden. Beide Fälle weisen die Koexistenz der B2-Phase und der ungeordneten, kubisch raumzentrierten Variante auf. Die Unordnung wird teilweise durch die epitaktische Dehnung und teilweise durch Diffusion von Punktdefekten hervorgerufen.
In the work, we systematically investigate the microstructural properties of (110) oriented heterostructures on GaAs substrates by means of different transmission electron microscopy techniques. Fcc-type (Al,Ga)As/AlAs/GaAs multilayer structure on GaAs (110) presents different mismatch strain accommodation mechanisms along the perpendicular in-plane directions. Defect-free structures are successfully acquired by an appropriate type of AlAs/GaAs short period superlattice. Finally, artificial defects are intentionally produced by nano-indentation to the defect-free sample to verify the effect of short period superlattices. Hcp-type MnAs on GaAs (110) system is characterized by anisotropic lattice mismatches of -7.5% and 0.7% along the [11-20] and [0001] direction, respectively. A wetting layer is observed prior to the formation of islands, indicating a Stranski-Krastanov growth mode of MnAs. The strain corresponding to the 0.7% lattice misfit is accommodated elastically, whereas the mismatch stress along perpendicular [11-20] direction is relived by the formation of a periodic array of perfect misfit dislocations with a stand-off position in MnAs lattice. The long range strain field associated with the dislocation array is constrained at the interface within a thickness of about 3.4 nm. An interfacial atomic configuration is also proposed based on the comparison between HRTEM image and the simulations. B2-type CoAl alloys are realized on (001) and (110) oriented GaAs substrates for comparison. They are both characterized by a coexistence of B2 phase and its disordered version bcc phase. The disordering is induced partially by the epitaxial strain and partially by the diffusion of point defects.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Asaulenko, L. G., L. M. Purish und D. R. Abdulina. „Use of the Transmission Electron Microscopy for Examination of Biofilms Structure“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35267.

Der volle Inhalt der Quelle
Annotation:
Combination of transmission electron microscopy technics with colloidal gold labeled lectin staining allowed investigating glycoconjugates in biofilms of the corrosion relevant bacteria. Lectins with the same specificity were found to express different affinity to the compounds of the bacterial biofilms. LBA lectin showed the highest binding capacity to N-acetyl-D-galactosamine in Desulfovibrio sp. 10 and Bacillus subtilis 36 biofilms. For the assessment of N-acetyl-D-glucosamine presence in Bacillus subtilis 36 and Pseudomonas aeruginosa 27 biofilms WGA lectin was the most efficient. Staining with lectins labeled with the colloidal gold was proved to be a promising express technique for the investigations of glycoconjugate distribution and localization in bacterial biofilms. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35267
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cardoch, Sebastian. „Studying Atomic Vibrations by Transmission Electron Microscopy“. Thesis, Uppsala universitet, Materialteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305370.

Der volle Inhalt der Quelle
Annotation:
We employ the empirical potential function Airebo to computationally model free-standing Carbon-12 graphene in a classical setting. Our objective is to measure the mean square displacement (MSD) of atoms in the system for different average temperatures and Carbon-13 isotope concentrations. From results of the MSD we aim to develop a technique that employs Transmission Electron Microscopy (TEM), using high-angle annular dark filed (HAADF) detection, to obtain atomic-resolution images. From the thermally diffusive images, produced by the vibrations of atoms, we intent to resolve isotopes types in graphene. For this, we establish a relationship between the full width half maximum (FWHM) of real-space intensity images and MSD for temperature and isotope concentration changes. For the case of changes in the temperature of the system, simulation results show a linear relationship between the MSD as a function of increased temperature in the system, with a slope of 7.858×10-6 Å2/K. We also note a power dependency for the MSD in units of [Å2] with respect to the FWHM in units of [Å] given by FWHM(MSD)=0.20MSD0.53+0.67. For the case of increasing isotope concentration, no statistically significant changes to the MSD of 12C and 13C are noted for graphene systems with 2,000 atoms or more. We note that for the experimental replication of results, noticeable differences in the MSD for systems with approximately 320,000 atoms must be observable. For this, we conclude that isotopes in free-standing graphene cannot be distinguished using TEM.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Agnese, Fabio. „Advanced transmission electron microscopy studies of semiconductor nanocrystals synthesized by colloidal methods“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY043/document.

Der volle Inhalt der Quelle
Annotation:
Les recherches sur les nanocristaux semiconducteur (NCs) ont conduit à des résultats scientifiques fascinants, spécialement pour l'application en dispositifs optoelectroniques. Afin de répondre à certaines exigences comme des coûts mineurs, des gains d'efficacité, des composants respectueux de l'environnement, etc., des nouvelles méthodes sont explorées: dans les procédés en solution, dans l'ingénierie de bande et des niveaux d'énergie. En particulier, la méthode de synthèse peut influencer les propriétés optoélectroniques. Par conséquent, une meilleure compréhension des facteurs complexes pendant la synthèse entraînera une amélioration des performances.La microscopie électronique avancée fournit un moyen précis de recueillir des informations sur la morphologie, la structure cristalline et la composition chimique des matériaux avec une résolution spatiale au niveau atomique. La première partie de cette thèse traite de la synthèse et de la préparation des échantillons pour la microscopie électronique à transmission en haute résolution (HRTEM).La deuxième partie traite du mécanisme de croissance des NCs Cu2ZnSnS4 synthétisés par une méthode colloïdale. La morphologie et la stoechiométrie des intermédiaires de réaction extraits après différents intervalles de temps sont déterminés par HRTEM et analyse dispersive en énergie (EDS).Deux méthodes complémentaires, la diffraction par nanofaisceau d’électrons en précession (NPED) et la microscope électronique en transmission par balayage à haute résolution avec imagerie en champ sombre avec détecteur annulaire à grand angle (HRSTEM-HAADF) permettent une profonde caractérisation de la structure cristalline.En outre, la structure cristalline de NCs CsPbBr3 est résolue avec simulations de STEM-HAADF. Cet approche peut différencier entre structures cristallines cubiques et orthorhombiques, impossible avec techniques de diffraction traditionnelles. Enfin, l'influence des méthodes de synthèse sur la morphologie et sur la structure cristalline de NCs CuFeS2 pour applications dans le domaine de la thermoélectricité est analysée par HRTEM
The investigations of semiconductor nanocrystals (NCs) led to fascinating scientific results in optoelectronic devices. In order to fulfill certain requirements, i.e. cheaper costs, higher efficiencies, environmental friendly components etc., new methods are explored in solution-processing, band gap and energy level engineering. Particularly, the method of synthesis can alter the optoelectronic properties. Therefore, a better understanding of the intricate factors during synthesis will lead to improved performances. Advanced electron microscopy provides a precise way to gather information about morphology, crystal structure and chemical composition of materials with a spatial resolution down to the atomic level. The first part of this thesis deals with the optimization of the synthesis and sample preparation for high resolution transmission electron microscopy (HRTEM).The second part deals with the growth mechanism of Cu2ZnSnS4 NCs synthesized by a colloidal method. The morphology and stoichiometry of the samples extracted after different time intervals are characterized by HRTEM and electron dispersion spectroscopy (EDS). Two complementary methods, Nanobeam Precession Electron Diffraction (NPED) and High Resolution Scanning Transmission Electron Microscopy by High Angle Annular Dark-Field Imaging (HRSTEM-HAADF), provide an in-depth crystal structure characterization.Moreover, the crystal structure of CsPbBr3 NCs is solved by probing STEM-HAADF simulations. This approach is able to differentiate cubic and orthorhombic crystal structures, which is otherwise impossible by diffraction techniques. Finally, the influence of synthesis methods on the morphology and crystal structure of CuFeS2 NCs is investigated by HRTEM for thermoelectric applications
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sharp, Joanne. „Electron tomography of defects“. Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/228638.

Der volle Inhalt der Quelle
Annotation:
Tomography of crystal defects in the electron microscope was first attempted in 2005 by the author and colleagues. This thesis further develops the technique, using a variety of samples and methods. Use of a more optimised, commercial tomographic reconstruction program on the original GaN weak beam dark-field (WBDF) tilt series gave a finer reconstruction with lower background, line width 10-20 nm. Four WBDF tilt series were obtained of a microcrack surrounded by dislocations in a sample of indented silicon, tilt axes parallel to g = 220, 220, 400 and 040. Moiré fringes in the defect impaired alignment and reconstruction. The effect on reconstruction of moiré fringe motion with tilt was simulated, resulting in an array of rods, not a flat plane. Dislocations in a TiAl alloy were reconstructed from WBDF images with no thickness contours, giving an exceptionally clear reconstruction. The effect of misalignment of the tilt axis with systematic row g(ng) was assessed by simulating tilt series with diffraction condition variation across the tilt range of Δn = 0, 1 and 2. Misalignment changed the inclination of the reconstructed dislocation with the foil surfaces, and elongated the reconstruction in the foil normal direction; this may explain elongation additional to the missing wedge effect in experiments. Tomography from annular dark-field (ADF) STEM dislocation images was also attempted. A tilt series was obtained from the GaN sample; the reconstructed dislocations had a core of bright intensity of comparable width to WBDF reconstructions, with a surrounding region of low intensity to 60 nm width. An ADF STEM reconstruction was obtained from the Si sample at the same microcrack as for WBDF; here automatic specimen drift correction in tomography acquisition software succeeded, a significant improvement. The microcrack surfaces in Si reconstructed as faint planes and dislocations were recovered as less fragmented lines than from the WBDF reconstruction. ADF STEM tomography was also carried out on the TiAl sample, using a detector inner angle (βin) that included the first order Bragg spots (in other series βin had been 4-6θ B). Extinctions occurred which were dependent on tilt; this produced only weak lines in the reconstruction. Bragg scattering in the ADF STEM image was estimated by summing simulated dark-field dislocation images from all Bragg beams at a zone axis; a double line was produced. It was hypothised that choosing the inner detector angle to omit these first Bragg peaks may preclude most dynamical image features. Additional thermal diffuse scattering (TDS) intensity due to dilatation around an edge dislocation was estimated and found to be insignificant. The Huang scattering cross section was estimated and found to be 9Å, ten times thinner than experimental ADF STEM dislocation images. The remaining intensity may be from changes to TDS from Bloch wave transitions at the dislocation; assessing this as a function of tilt is for further work. On simple assessment, only three possible axial channeling orientations were found over the tilt range for GaN; if this is typical, dechanneling contrast probably does not apply to defect tomography.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lai, Pooi-fun. „TEM and structural investigations of synthesized and modified carbon materials /“. Connect to thesis, 1999. http://eprints.unimelb.edu.au/archive/00000770.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Caballero-Alias, Ana Maria. „The role of silica in mineralising tissues“. Thesis, Nottingham Trent University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302515.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xin, Renlong. „TEM studies of calcium phosphates for the understanding of biomineralization /“. View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20XIN.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Transmission electron microscopy (TEM)"

1

United States. National Aeronautics and Space Administration., Hrsg. Soot precursor material: Visualization via simultaneous LIF-LII and characterization via TEM. [Washington, D.C: National Aeronautics and Space Administration, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Reimer, Ludwig. Transmission Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-14824-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Reimer, Ludwig. Transmission Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-21556-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Reimer, Ludwig. Transmission Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-21579-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Williams, David B., und C. Barry Carter. Transmission Electron Microscopy. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76501-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Carter, C. Barry, und David B. Williams, Hrsg. Transmission Electron Microscopy. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26651-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Williams, David B., und C. Barry Carter. Transmission Electron Microscopy. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zuo, Jian Min, und John C. H. Spence. Advanced Transmission Electron Microscopy. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6607-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pennycook, Stephen J., und Peter D. Nellist, Hrsg. Scanning Transmission Electron Microscopy. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7200-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Deepak, Francis Leonard, Alvaro Mayoral und Raul Arenal, Hrsg. Advanced Transmission Electron Microscopy. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15177-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Buchteile zum Thema "Transmission electron microscopy (TEM)"

1

Williams, David B., und C. Barry Carter. „Diffraction in TEM“. In Transmission Electron Microscopy, 197–209. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76501-3_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Williams, David B., und C. Barry Carter. „High-Resolution TEM“. In Transmission Electron Microscopy, 483–509. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76501-3_28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Williams, David B., und C. Barry Carter. „High-Resolution TEM“. In Transmission Electron Microscopy, 457–82. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Williams, David B., und C. Barry Carter. „Imaging in the TEM“. In Transmission Electron Microscopy, 349–66. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Williams, David B., und C. Barry Carter. „The XEDS-TEM Interface“. In Transmission Electron Microscopy, 573–85. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_33.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chen, Bin, Jianming Cao und Dongping Zhong. „4D Ultrafast TEM“. In In-Situ Transmission Electron Microscopy, 327–71. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6845-7_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Costa, Pedro M. F. J., und Paulo J. Ferreira. „In Situ TEM of Carbon Nanotubes“. In Advanced Transmission Electron Microscopy, 207–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15177-9_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Peng, Feng Xu, Peng Gao, Songhua Cai und Xuedong Bai. „In-Situ Optical TEM“. In In-Situ Transmission Electron Microscopy, 151–86. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6845-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhong, Li, Lihua Wang, Jiangwei Wang, Yang He, Xiaodong Han, Zhiwei Shan und Xiuliang Ma. „In-Situ Nanomechanical TEM“. In In-Situ Transmission Electron Microscopy, 53–82. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6845-7_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zheng, Shijian, und Longbing He. „In-Situ Heating TEM“. In In-Situ Transmission Electron Microscopy, 83–104. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6845-7_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Transmission electron microscopy (TEM)"

1

Subramanian, Sam, Khiem Ly und Tony Chrastecky. „Transmission Electron Microscopy (TEM) Techniques for Semiconductor Failure Analysis“. In ISTFA 2022. ASM International, 2022. http://dx.doi.org/10.31399/asm.cp.istfa2022tpl1.

Der volle Inhalt der Quelle
Annotation:
Abstract This presentation shows how transmission electron microscopy (TEM) is used in semiconductor failure analysis to locate and identify defects based on their physical and elemental characteristics. It covers sample preparation methods for planar, cross-sectional, and elemental analysis, reviews the capabilities of different illumination and imaging modes, and shows how beam-specimen interactions are employed in energy dispersive (EDS) and electron energy loss spectroscopy (EELS). It describes the various ways transmission electron microscopes can be configured for elemental analysis and mapping and reviews the advantages of scanning TEM (STEM) approaches. It also provides an introduction to energy-filtered TEM (EFTEM) and how it compares with other TEM imaging techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Demarest, James J., und Hong-Ying Zhai. „Highly Automated Transmission Electron Microscopy Tomography for Defect Understanding“. In ISTFA 2011. ASM International, 2011. http://dx.doi.org/10.31399/asm.cp.istfa2011p0137.

Der volle Inhalt der Quelle
Annotation:
Abstract Imaging tomography by transmission electron microscopy (TEM) is a technique which has been growing in popularity in recent years, yet it has not been widely applied to semiconductor defect studies and root cause determination [1- 3]. In part this is due to the complex equipment, computing needs, and microscope time required to generate the various images which ultimately compose the data set. However, the latest generation of TEMs—with their high level of stability and automation—are greatly reducing the resource needs to create high quality and informative movies of defects rotating about a central axis. One significant advance is the reduction in time required to fabricate a sample and perform the data acquisition by TEM. Today’s microscopes allow for sample fabrication to take place in a few hours or less and can acquire more than 100 images in about an hour at different sample tilt conditions with minimal analyst intervention. This paper describes using automated TEM sample preparation with dual beam focused ion beams (previously reported [4]) in conjunction with automated tomography software on a state-of-the-art TEM. By using an advanced tomography holder ±70° of tilt can be obtained. This is a powerful way to view defects as the failure can be viewed through more than 90° of rotation. Consequently a more complete understanding of the failure site can be obtained over a typical single projection TEM image. This can greatly facilitate root cause determination in a timely manner.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rout, Surya. „Transmission electron microscope (TEM) study of graphite and diamonds in ureilites“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vanderlinde, William E. „STEM (Scanning Transmission Electron Microscopy) in a SEM (Scanning Electron Microscope) for Failure Analysis and Metrology“. In ISTFA 2002. ASM International, 2002. http://dx.doi.org/10.31399/asm.cp.istfa2002p0077.

Der volle Inhalt der Quelle
Annotation:
Abstract Recent developments in transmission electron microscopy (TEM) sample preparation have greatly reduced the time and cost for preparing thin samples. In this paper, a method is demonstrated for viewing thin samples in transmission in an unmodified scanning electron microscope (SEM) using an easily constructed sample holder. Although not a substitute for true TEM analysis, this method allows for spatial resolution that is superior to typical SEM imaging and provides image contrast from material structure that is typical of TEM images. Furthermore, the method can produce extremely high resolution x-ray maps that are typically produced only by scanning transmission electron microscope (STEM) systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

DaPonte, J., T. Sadowski, C. C. Broadbridge, D. Day, A. H. Lehman, D. Krishna, L. Marinella, P. Munhutu und M. Sawicki. „Application of particle analysis to transmission electron microscopy (TEM)“. In Defense and Security Symposium, herausgegeben von Zia-ur Rahman, Stephen E. Reichenbach und Mark A. Neifeld. SPIE, 2007. http://dx.doi.org/10.1117/12.714749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cao, Y., S. Zhu, Y. Xie, J. Key, J. Kacher, R. R. Unocic und C. M. Rouleau. „Sequential Adaptive Detection for In-Situ Transmission Electron Microscopy (TEM)“. In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8461334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kushwaha, Himmat S., Sanju Tanwar, K. S. Rathore und Sumit Srivastava. „De-noising Filters for TEM (Transmission Electron Microscopy) Image of Nanomaterials“. In Communication Technologies (ACCT). IEEE, 2012. http://dx.doi.org/10.1109/acct.2012.41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sung, Ching Shan, Hsiu Ting Lee und Jian Shing Luo. „TEM Sample Preparation Tricks for Advanced DRAMs“. In ISTFA 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.istfa2015p0318.

Der volle Inhalt der Quelle
Annotation:
Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fu, L. F., Y. C. Wang, B. Jiang, F. Shen, M. Strauss, B. Van Leer, C. Senowitz und A. Buxbaum. „Recent Developments in TEM Applications for the IC Industry“. In ISTFA 2008. ASM International, 2008. http://dx.doi.org/10.31399/asm.cp.istfa2008p0014.

Der volle Inhalt der Quelle
Annotation:
Abstract Recent developments in aberration-corrected transmission electron microscopy have drawn much attention from the semiconductor characterization community. Two new developments in transmission electron microscopy, image aberration correctors and probe aberration correctors, are discussed in term of their applications in characterizing gate oxide dielectrics for the IC industry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Yafei, Songyan Hu, Guangxu Cheng, Zaoxiao Zhang und Jianxiao Zhang. „Influence of Quenching-Tempering on the Carbide Precipitation of 2.25Cr-1Mo-0.25V Steel Used in Reactor Pressure Vessels“. In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93054.

Der volle Inhalt der Quelle
Annotation:
Abstract The carbide precipitation of 2.25Cr-1Mo-0.25V steel is studied during the head-fabrication heat treatment process using gold replica technique, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Shapes, structures and sizes of carbides before and after heat treatment are analyzed. The dissolution of strip-shaped carbides and the precipitation of granular carbides are confirmed. Amorphous films at the boundaries of carbides are observed by high-resolution transmission electron microscope (HRTEM), which is formed due to the electron irradiation under TEM.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Transmission electron microscopy (TEM)"

1

Pennycook, S. J., und A. R. Lupini. Image Resolution in Scanning Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), Juni 2008. http://dx.doi.org/10.2172/939888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Reed, B., M. Armstrong, K. Blobaum, N. Browning, A. Burnham, G. Campbell, R. Gee et al. Time Resolved Phase Transitions via Dynamic Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), Februar 2007. http://dx.doi.org/10.2172/902321.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dietz, N. L. Transmission electron microscopy analysis of corroded metal waste forms. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/861616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tosten, M. H. Transmission electron microscopy of Al-Li control rod pins. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6282616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tosten, M. H. Transmission electron microscopy of Al-Li control rod pins. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10170120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Isaacs, H. S., Y. Zhu, R. L. Sabatini und M. P. Ryan. Transmission electron microscopy of undermined passive films on stainless steel. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/353181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

TOSTEN, MICHAEL. Transmission Electron Microscopy Study of Helium-Bearing Fusion Welds(U). Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/882713.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Scott, Keana C., und Lucille A. Giannuzzi. Strategies for transmission electron microscopy specimen preparation of polymer composites. National Institute of Standards and Technology, September 2015. http://dx.doi.org/10.6028/nist.sp.1200-16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Watt, John Daniel. Soft matter and nanomaterials characterization by cryogenic transmission electron microscopy. Office of Scientific and Technical Information (OSTI), Januar 2020. http://dx.doi.org/10.2172/1593111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Batra, Ravi. Transmission Electron Microscopy of Rapidly Solidified Du-5% W Alloy. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada231449.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie