Dissertationen zum Thema „Transmission electron microscopy (TEM)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Transmission electron microscopy (TEM)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
TIYYAGURA, MADHAVI. „TRANSMISSION ELECTRON MICROSCOPY STUDIES IN SHAPE MEMORY ALLOYS“. Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3913.
Der volle Inhalt der QuelleM.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science and Engineering
Karlsson, Linda. „Transmission Electron Microscopy of 2D Materials : Structure and Surface Properties“. Doctoral thesis, Linköpings universitet, Tunnfilmsfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127526.
Der volle Inhalt der QuelleWan, Qian. „Transmission electron microscopy study of heterostructures grown on GaAs (110)“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16949.
Der volle Inhalt der QuelleIn the work, we systematically investigate the microstructural properties of (110) oriented heterostructures on GaAs substrates by means of different transmission electron microscopy techniques. Fcc-type (Al,Ga)As/AlAs/GaAs multilayer structure on GaAs (110) presents different mismatch strain accommodation mechanisms along the perpendicular in-plane directions. Defect-free structures are successfully acquired by an appropriate type of AlAs/GaAs short period superlattice. Finally, artificial defects are intentionally produced by nano-indentation to the defect-free sample to verify the effect of short period superlattices. Hcp-type MnAs on GaAs (110) system is characterized by anisotropic lattice mismatches of -7.5% and 0.7% along the [11-20] and [0001] direction, respectively. A wetting layer is observed prior to the formation of islands, indicating a Stranski-Krastanov growth mode of MnAs. The strain corresponding to the 0.7% lattice misfit is accommodated elastically, whereas the mismatch stress along perpendicular [11-20] direction is relived by the formation of a periodic array of perfect misfit dislocations with a stand-off position in MnAs lattice. The long range strain field associated with the dislocation array is constrained at the interface within a thickness of about 3.4 nm. An interfacial atomic configuration is also proposed based on the comparison between HRTEM image and the simulations. B2-type CoAl alloys are realized on (001) and (110) oriented GaAs substrates for comparison. They are both characterized by a coexistence of B2 phase and its disordered version bcc phase. The disordering is induced partially by the epitaxial strain and partially by the diffusion of point defects.
Asaulenko, L. G., L. M. Purish und D. R. Abdulina. „Use of the Transmission Electron Microscopy for Examination of Biofilms Structure“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35267.
Der volle Inhalt der QuelleCardoch, Sebastian. „Studying Atomic Vibrations by Transmission Electron Microscopy“. Thesis, Uppsala universitet, Materialteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305370.
Der volle Inhalt der QuelleAgnese, Fabio. „Advanced transmission electron microscopy studies of semiconductor nanocrystals synthesized by colloidal methods“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY043/document.
Der volle Inhalt der QuelleThe investigations of semiconductor nanocrystals (NCs) led to fascinating scientific results in optoelectronic devices. In order to fulfill certain requirements, i.e. cheaper costs, higher efficiencies, environmental friendly components etc., new methods are explored in solution-processing, band gap and energy level engineering. Particularly, the method of synthesis can alter the optoelectronic properties. Therefore, a better understanding of the intricate factors during synthesis will lead to improved performances. Advanced electron microscopy provides a precise way to gather information about morphology, crystal structure and chemical composition of materials with a spatial resolution down to the atomic level. The first part of this thesis deals with the optimization of the synthesis and sample preparation for high resolution transmission electron microscopy (HRTEM).The second part deals with the growth mechanism of Cu2ZnSnS4 NCs synthesized by a colloidal method. The morphology and stoichiometry of the samples extracted after different time intervals are characterized by HRTEM and electron dispersion spectroscopy (EDS). Two complementary methods, Nanobeam Precession Electron Diffraction (NPED) and High Resolution Scanning Transmission Electron Microscopy by High Angle Annular Dark-Field Imaging (HRSTEM-HAADF), provide an in-depth crystal structure characterization.Moreover, the crystal structure of CsPbBr3 NCs is solved by probing STEM-HAADF simulations. This approach is able to differentiate cubic and orthorhombic crystal structures, which is otherwise impossible by diffraction techniques. Finally, the influence of synthesis methods on the morphology and crystal structure of CuFeS2 NCs is investigated by HRTEM for thermoelectric applications
Sharp, Joanne. „Electron tomography of defects“. Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/228638.
Der volle Inhalt der QuelleLai, Pooi-fun. „TEM and structural investigations of synthesized and modified carbon materials /“. Connect to thesis, 1999. http://eprints.unimelb.edu.au/archive/00000770.
Der volle Inhalt der QuelleCaballero-Alias, Ana Maria. „The role of silica in mineralising tissues“. Thesis, Nottingham Trent University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302515.
Der volle Inhalt der QuelleXin, Renlong. „TEM studies of calcium phosphates for the understanding of biomineralization /“. View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20XIN.
Der volle Inhalt der QuelleMelichárek, Václav. „Návrh manipulátoru pro TEM“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417138.
Der volle Inhalt der QuelleVaughn, Joel M. „Manipulation Of Nanoscale Objects in the Transmission Electron Microscope“. Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1191525305.
Der volle Inhalt der QuelleTyborowski, Tobias. „Determining the interwall spacing in carbon nanotubes by using transmission electron microscopy“. Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-45754.
Der volle Inhalt der QuelleBarrett, Heather A. „A COMPARATIVE TRANSMISSION ELECTRON MICROSCOPY INVESTIGATION OF DEFECTS AND TEXTURES IN CRYPTOMELANE“. Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1375787636.
Der volle Inhalt der QuelleNukala, Haritha. „QUANTITATIVE THICKNESS MAPPING IN HIGH-ANGLE ANNULAR DARK-FIELD (HAADF) SCANNING TRANSMISSION ELECTRON MICROSCOPY (STEM)“. Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4292.
Der volle Inhalt der QuelleM.S.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr MSMSE
Wu, Mingjian. „Advanced transmission electron microscopy investigation of nano-clustering in Gd-doped GaN“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16950.
Der volle Inhalt der QuelleThe central goal of this dissertation is (1) to clarify the distribution of Gd atoms in GaN:Gd with Gd concentration in the range between 10^16–10^19 cm^-3 by means of advanced (scanning) transmission electron microscopy [(S)TEM]; and based on that, (2) to understand the mechanisms that control such distribution. We discuss in detail the application and limitations of (S)TEM imaging and analysis techniques and modeling methods dedicated to the study of embedded nano-clusters. Besides, two case studies of semiconductor material systems that contain apparently observable nano-clusters are considered. One is about intentionally grown InAs nano-clusters embedded in Si and the other study the formation and phase transformation of Bi-containing clusters in annealed GaAsBi epilayers. Finally, we are able to identify the occurrence of GdN clusters in GaN:Gd samples and to determine their atomic structure. Strain contrast imaging in conjunction with contrast simulation unambiguously identifies the occurrence of small, platelet-shaped GdN clusters. These clusters are nearly uniform in size with their broader face parallel to the GaN (0001) basal plane. The result is confirmed by dark-field STEM Z-contrast imaging. The strong local lattice distortion (displacement field) induced by the clusters is recorded by HRTEM images and quantitatively analyzed. By comparing the displacement fields which are analyzed experimentally with these fields that are derived from energetically favored models, we conclude that the clusters are bilayer GdN with platelet diameter of only few Gd atoms; their internal structure is close to rocksalt GdN. This atomic structure model enables our discussion about the energetics of the clusters. The results indicate that the driving force for the formation of observed platelet in specific size is a compromise between the gain in cohesive energy and the penalty from interfacial strain energy due to lattice mismatch between the GdN cluster and GaN host.
Lozano-Perez, Sergio. „TEM crack tip investigations of SCC“. Thesis, University of Oxford, 2002. http://ora.ox.ac.uk/objects/uuid:7e503ff9-782a-4f74-b184-dddaa96e03e2.
Der volle Inhalt der QuelleToth-Antal, Bence Materials Science & Engineering Faculty of Science UNSW. „Development of copper-alumina composites for abrasive wear applications“. Awarded By:University of New South Wales. Materials Science & Engineering, 2008. http://handle.unsw.edu.au/1959.4/44504.
Der volle Inhalt der QuelleNarangifard, Ali. „The multislice method in transmission electron microscopy simulation : An implementation in the TEM-simulator software package“. Thesis, KTH, Skolan för teknik och hälsa (STH), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134189.
Der volle Inhalt der QuelleRooney, Aidan. „Characterisation of buried interfaces in van der Waals materials by cross sectional scanning transmission electron microscopy“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/characterisation-of-buried-interfaces-in-van-der-waals-materials-by-cross-sectional-scanning-transmission-electron-microscopy(dd5565b9-1709-4d28-b4ce-9cd675fb36eb).html.
Der volle Inhalt der QuelleBerlin, Katja. „In-situ transmission electron microscopy on high-temperature phase transitions of Ge-Sb-Te alloys“. Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19219.
Der volle Inhalt der QuelleHigh-temperature behavior influence many different processes ranging from material processing to device applications. In-situ transmission electron microscopy (TEM) provides the means for direct observation of atomic processes during structural phase transitions in real time. In this thesis, in-situ TEM is applied to investigate the reversibility of the melting and solidification processes as well as the anisotropic sublimation behavior of Ge-Sb-Te (GST) thin films. The purposeful sample preparation for the successful observation of the high-temperature phase transitions is emphasized. The required encapsulation for the observation of the liquid phase inside the vacuum conditions and the necessary clean surface for sublimation process are discussed in detail. Additionally electron energy-loss spectroscopy in the TEM is used to determine the local chemical composition before and after the phase transitions. The analysis of the interface structure and dynamic during the solid-to-liquid as well as the liquid-to-solid phase transition shows differences between both processes. The trigonal phase of GST exhibits a partially ordered transition zone at the solid-liquid interface during melting while such an intermediate state does not form during solidification. Additionally the melting process proceeds with linear dependence on time, whereas crystallization can be described as having a square-root time-dependency featuring a superimposed start-stop motion. The influence of the interface is addressed and the surface energies of GST are determined. The anisotropic dynamic of the solid-to-gas phase transition of the cubic GST phase leads to the formation of stable {111} facets. This happens via kink and step nucleation on stable terraces. The nucleation rates and the preferred kink nucleation sites are identified and are in accordance with the predictions of terrace-step-kink model.
Ben, ammar Hichem. „Investigation of ternary ΑlΙnΝ and quaternary ΑlGaΙnΝ alloys for high electron mobility transistors by transmission electron microscopy“. Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC241/document.
Der volle Inhalt der QuelleGroup III-Nitrides and their alloys exhibit outstanding properties and are being extensively investigated since the 90’s. In comparison to other III-V semiconductors, III-nitrides (AlGaN, InGaN, and AlInN) cover from deep ultraviolet (UV) to near infrared (IR) across the visible range of wavelengths. Thus, they are suitable for numerous applications both in civilian and military fields showing higher performances. Moreover, the quaternary alloy AlGaInN shows versatile properties as it can grow either lattice or polarization or bandgap matched to GaN. Alongside to AlInN, these two alloys are expected to replace conventional AlGaN/GaN High Electron Mobility Transistors (HEMT) barriers as higher performances have been theoretically demonstrated.In this work, we have studied AlInN and AlGaInN grown by metal organic vapor phase epitaxy (MOVPE) using mainly TEM. The aim was to characterize defects and the MOVPE growth alloying process. In this instance, the gallium incorporation in the barrier due to the geometry of the growth chamber leading to a quaternary alloy was studied. The control of the gallium content is achieved by a cleaning process between runs or by the growth condition. Defects were then differentiated as extrinsic and intrinsic. In this way, dislocations and inversion domains from the GaN buffer layer generate extrinsic defects, while, pinhole not connected to dislocations and individual hillocks responsible of surface roughening are termed as intrinsic. The origins of the latter defects depend strongly on the physical mismatches of the end-binary compound. These systematic degradations happen also with optimized growth conditions as soon as the nominal composition is changed and/or the thickness is increased.Our work proposes different mechanisms to explain defects generation processes which constitutes a forward step for higher quality HEMTs
Hurm, Christian. „Towards an unambiguous electron magnetic chiral dichroism (EMCD) measurement in a transmission electron microscope (TEM)“. Berlin Logos-Verl, 2008. http://d-nb.info/992155444/04.
Der volle Inhalt der QuelleLiu, Yang. „‘Tri-3D’ electron microscopy tomography by FIB, SEM and TEM : Application to polymer nanocomposites“. Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0076/document.
Der volle Inhalt der QuelleThis work is focused on the characterization and quantification of the 3D distribution of different types of fillers (nanoparticles, nanotubes, etc.) in polymer matrices. We have essentially used tomography techniques in electron microscopy. Multiple approaches to electron tomography were performed: FIB-SEM (focused ion beam/scanning electron microscope) tomography, SEM tomography and TEM (transmission electron microscope) tomography. Polymer nanocomposites are basically synthesized in order to improve the physical properties (mechanical, electric, etc.) of the pure polymer constituting the matrix, by a controlled addition of fillers at the nanoscale. The characterization of such materials and the establishment of accurate correlations between the microstructure and the modified properties require a three-dimensional approach. According to the nanometric size of the fillers, electron microscopy techniques are needed. Two systems of polymer nanocomposites have been studied by multiple electron tomography approaches: P(BuA-stat-S)/MWNTs (statistical copolymer poly(styrene-co-butyl acrylate) reinforced by multi-walled carbon nanotubes) and P(BuA-stat-MMA)/SiO2 (statistical copolymer poly(butyl acrylate-co-methyl methacrylate) reinforced by silica nanoparticles). By combining various techniques, the characterization and the quantification of nanofillers were possible. In particular, statistics about size, distribution and volume fraction of the fillers were measured. This study has then provided 3D information, which contributes to a better understanding of properties of the nanocomposites. Attention has been paid to analyze carefully original data, and artifacts and causes of errors or inaccuracy were considered in the 3D treatments. We also attempted to compare benefits and drawbacks of all techniques employed in this study, and perspectives for future improvements have been proposed
Wang, Hao. „In-situ transmission electron microscopy investigation of deformation-induced microstructural evolution of a FeCoCrNiMn high-entropy alloy“. Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20068.
Der volle Inhalt der QuelleBerthier, Rémy. „Development of characterization methods for in situ annealing and biasing of semiconductor devices in the TEM“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY014/document.
Der volle Inhalt der QuelleIn this work, we address the current challenges encountered during in situ Transmission Electron Microscopy characterization of emerging non volatile data storage technologies. Recent innovation on in situ TEM holders based on silicon micro chips have led to great improvements compared to previous technologies. Still, in situ is a particularly complicated technique and experiments are extremely difficult to implement. This work provides new solutions to perform live observations at the atomic scale during both heating and biasing of a specimen inside the TEM. This was made possible through several improvements performed at different stages of the in situ TEM experiments. The main focus of this PhD concerned the issues faced during in situ biasing of a nanometer size resistive memory device. This was made possible through hardware investigation, sample preparation method developments, and in situ biasing TEM experiments.First, a new sample preparation method has been developed specifically to perform in situ heating experiments. Through this work, live crystallization of a GeTe phase change Memory Material is observed in the TEM. This allowed to obtain valuable information for the development of chalcogenide based Phase Change Resistive Memories. Then, new chips dedicated to in situ biasing experiments have been developed and manufactured. The FIB sample preparation is studied in order to improve electrical operation in the TEM. Quantitative TEM measurements are then performed on a reference PN junction to demonstrate the capabilities of this new in situ biasing experimental setup. By implementing these improvements performed on the TEM in situ biasing technique, results are obtained during live operation of a Conductive Bridge Resistive Memory device. This allowed to present new information on the resistive memories functioning mechanisms, as well as the in situ TEM characterization technique itself
Park, Chun-sŏk. „Structural characterization of hard materials by transmission electron microscopy (TEM) : diamond-silicon carbide composites and yttria-stabilized zirconia /“. May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Der volle Inhalt der QuelleMelinte, Georgian. „Advanced 3D and in-situ TEM approaches applied to carbon-based and zeolitic nanomaterials“. Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE009/document.
Der volle Inhalt der QuelleIn this thesis, advanced Transmission Electron Microscopy (TEM) techniques are used to characterize and fabricate new nanomaterials with applications in nanoelectronics and catalysis. Three types of functionalized materials are investigated: nanopatterned few-layer graphene (FLG), carbon nanotubes(CNTs) and mesoporous zeolites. The nanopatterning process of FLG flakes by iron nanoparticles (NPs) is studied using an approach combining electron tomography (ET) and environmental TEM. The role of the nanoparticle faceting and of the FLG topographic parameters has been quantitatively determined leading to the first determination of the operating mechanism of the patterning process. The mass transfer of metallic-based NPs between two carbon nanostructures was studied as well in real-time by using a TEMSTMholder. The protocol of controlling the mass transfer, the chemical and structural transformations of the NPs, the growth mechanism of the new NPs and other related phenomena were carefully investigated.The last part deals with the low-dose ET investigation of the porosity induced in two classes of zeolites,ZSM-5 and zeolite Y, by an innovative fluoride-based chemical treatment
Haddad, Farah. „Transmission electron microscopy study of low-temperature silicon epitaxy by plasma enhanced chemical vapor deposition“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX107/document.
Der volle Inhalt der QuelleThis thesis focuses on low temperature (LT, ~200°C) epitaxial growth of silicon thin films by plasma enhanced chemical vapor deposition (PECVD) for solar cell applications. Our starting goal was to acquire a better understanding of epitaxial growth, by using transmission electron microscopy (TEM) as the main experimental tool. First, we investigated the initial stages of epitaxial growth using SiF4/H2/Ar chemistry by performing a series of short depositions – from few tens to few hundred of seconds – on different types of substrates. We made a correlation between cross-sectional and plan-view TEM images and in-situ ellipsometry measurements. We discussed the growth mechanisms under the hypotheses of the traditional growth mediated by atoms, radicals and ions and the relatively new approach based on the melting of plasma generated nanoparticles upon impact with the substrate. Additionally, in order to understand how epitaxy by LT-PECVD is sustained, we studied how it is lost or how it breaks down. For that, experiments of intentional breakdown of epitaxy were performed by either increasing the RF power or the hydrogen flow rate using the same SiF4/H2/Ar chemistry. In both cases, the breakdown mechanism was based on the development of twins and stacking faults thus disrupting epitaxial configuration; this was accommodated with surface roughening. Thanks to this new understanding of epitaxy breakdown, we can propose some ways to sustain epitaxy for higher thicknesses. Moreover, we fascinatingly observed a quasi-fivefold symmetry in the diffraction patterns for these layers and for layers deposited using SiH4/H2/HMDSO/B2H6/Ar plasma chemistry as well. We attributed such symmetry to the breakdown of epitaxy through multiple twinning. We developed a quantitative analysis method to discriminate twin positions from random microcrystalline ones in the diffraction patterns and to estimate the number of twin operations. We also discussed some probable reasons for the occurrence of twinning and multiple twinning in a fivefold symmetry fashion. Finally, one important achievement to the TEM world is the optimization, during this doctoral work, of the traditional TEM sample preparation (tripod polishing), transforming it from a long and boring method to a fast method that is competitive with the relatively expensive focus ion beam (FIB) technique
Kylberg, Gustaf. „Automatic Virus Identification using TEM : Image Segmentation and Texture Analysis“. Doctoral thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-217328.
Der volle Inhalt der QuelleNováková, Kateřina. „Využitie slepej filtrácie obrazu pre snímky z TEM mikroskopov“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377660.
Der volle Inhalt der QuelleAmaduci, Marcia Regina Lombardo. „Efeitos do campo eletromagnetico em celulas e bacterias“. [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259947.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-11T09:59:32Z (GMT). No. of bitstreams: 1 Amaduci_MarciaReginaLombardo_M.pdf: 2445338 bytes, checksum: 4bb1cb55957a33fb2a440282e189204d (MD5) Previous issue date: 2007
Resumo: Este trabalho refere-se a alguns efeitos de um campo eletromagnético aplicados em colônias bacterianas. A bactéria escolhida é bastante conhecida no mundo científico e tratase da Escherichia coli (E. coli). A parte experimental divide-se entre a análise quantitativa, qualitativa e morfológica sobre o ciclo de vida da E. coli. O circuito eletromagnético foi gerado a partir de uma freqüência de 60Hz. Durante um período de 18h, as bactérias acopladas ao circuito eletromagnético se proliferaram em meio aquoso e a cada fase do ciclo de vida da E. coli, foram realizadas diluições em tubos de ensaio para a análise da absorbância e contagem de bactérias viáveis. Ao mesmo tempo foram colocados em uma estufa, na mesma temperatura do circuito, tubos contendo a mesma amostra em quantidade e qualidade, para uma análise paralela do seu ciclo de vida. O trabalho inclui análise morfológica, com a utilização da microscopia eletrônica de transmissão (MET) e da microscopia eletrônica de varredura (MEV)
Abstract: This research work studies some effects of an electromagnetic field applied on bacteria. The chosen bacterium is quite known in the scientific world, the Escherichia coli (E. coli). The experimental part was divided into the quantitative, qualitative and morphologic analysis on the life of bacterium Escherichia coli. The electromagnetic circuit was generated from a frequency of 60Hz. During a period of 18h, the bacteria connected to the electromagnetic circuit proliferated in watery way, and for each phase of the life cycle of E. coli LT1, dilutions in test tube were performed for the analysis of the absorbancy and counting of viable bacteria. At the same time, other test tubes holding the same sample in amount and quality were placed in a incubator, at the same temperature of the circuit, for a parallel analysis of its cycle of life. The work includes morphologic analysis, with the use of transmission electronic microscopy (TEM), and scanning electronic microscopy (SEM)
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
Lin, Hong. „Etude couplée par TEM/EELS et STM/STS des propriétés structurales et électroniques des nanotubes C et CNx“. Paris 6, 2009. http://www.theses.fr/2009PA066494.
Der volle Inhalt der QuelleNemavhulani, Shonisani. „Bacteriophage diversity in haloalkaline environments“. University of the Western Cape, 2013. http://hdl.handle.net/11394/4313.
Der volle Inhalt der QuelleThere are limited reports on virus population in haloalkaline environments; therefore the aim of this study was to investigate the genetic diversity and biology of bacteriophage communities in these environments. Bacteria were isolated to be used as phage hosts. One bacterium from Lake Magadi and four bacteria from Lake Shala were successfully isolated from sediment samples. A further two Lake Shala bacterial hosts from the IMBM culture collection were also used to isolate bacteriophages. Bacterial isolates were identified to be most closely related to Bacillius halodurans, Halomonas axialensis, Virgibacillus salarius, Bacillus licheniformis, Halomonas venusta, Bacillus pseudofirmus and Paracoccus aminovorans. Bacteriophages were screened using all bacteria against sediment samples from both Lake Shala and Lake Magadi. One phage was identified from Lake Magadi sediments (MGBH1) and two phages from Lake Shala sediments (SHBH1 and SHPA). TEM analysis showed that these phages belong to three different dsDNA phage families; Siphoviridae (MGBH1), Myoviridae (SHBH1) and Podoviridae (SHPA). All phages showed different genome sizes on agarose gel. Due to the small genome size, phage SHPA was chosen for further investigation. Partial, genome sequence analysis showed homology to both bacterial and phage proteins. A further investigation of phage diversity in this environment is essential using metagenomic approaches to understand these unique communities.
Stempinski, Erin S. „SYN3 in Chloroplasts of Arabidopsis thaliana: Effects of Knockdown and Overexpression and Localization Techniques“. Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1376057385.
Der volle Inhalt der QuelleYoo, Kyung-Dong. „Two-dimensional dopant profiling for shallow junctions by TEM and AFM“. Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342122.
Der volle Inhalt der QuelleLidbaum, Hans. „Transmission Electron Microscopy for Characterization of Structures, Interfaces and Magnetic Moments in Magnetic Thin Films and Multilayers“. Doctoral thesis, Uppsala universitet, Experimentell fysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107941.
Der volle Inhalt der QuelleCikánek, Martin. „Detekce biologických struktur ve snímcích z TEM mikroskopu“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400528.
Der volle Inhalt der QuelleCenker, Emre. „Imaging measurements of soot particle size and soot volume fraction with laser-induced incandescence at Diesel engine conditions“. Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0049/document.
Der volle Inhalt der QuelleThis work focuses on measurements of soot particle size and volume fraction at Diesel engine conditions. A combination of laser-Induced incandescence (LII) imaging, line-Of-Sight laser extinction, soot pyrometry, and transmission electron microscopy (TEM) measurements of thermophoretically-Sampled soot was used. Particle sizing strategies were developed with LII model for the analysis of particle-Size poly-Dispersity with time-Resolved LII signal that is suitable for point-Wise measurements at atmospheric pressure, and for spatially-Resolved characterization with two-Time-Step LII imaging. Measurements were performed with these strategies in a flame at atmospheric pressure and in Diesel engine combustion to investigate their applicability. Additional measurements were performed for temperature and soot volume fraction.A novel method, called two-Exponential reverse fitting (TERF), is introduced to extract information about the size distribution. The method is based on mono-Exponential fits to the LII signal decay at a delayed time. It approximates the particle-Size distribution as a combination of one large and one small mono-Disperse equivalent mean particle size and does not require a distribution assumption. It also provides a ratio of the contribution of both size classes. The systematic error caused by de-Scribing LII signals by mono-Exponential decays was calculated as less than 2% for LII signals simulated for mono-Disperse aggregated soot with heat-Up temperatures for which evaporation is negligible. The method was applied to LII data acquired in a laminar non-Premixed ethylene/air flame at various heights above the burner. The particle size of the large particle-Size class evaluated with the method showed good consistency with TEM results, however the size of the small particle-Size class and its relative contribution could not be compared due to insufficient information in the TEM results for small particles. Simultaneous line-Of-Sight laser extinction measurements and LII imaging were performed to de-Rive the soot volume fraction in a high-Temperature high-Pressure constant-Volume pre-Combustion vessel under the Engine Combustion Network’s (ECN) "Spray A" conditions with parametric variations of gas temperature and composition. Extinction measurements were used to calibrate LII images for quantitative soot distribution measurements. OH-Chemiluminescence imaging was used to determine the lift-Off length, and used to interpret the soot measurements. Maximum soot volume fractions around 2–3 ppm were obtained at the nominal ambient temperature defined for Spray A (i.e. 900 K) that rise to 12 ppm at elevated temperature (1030 K). Variations of ambient temperature and oxygen concentration were carried out showing effects on soot formation and oxidation that are consistent with the literature.The method for particle-Size imaging is based on evaluating gated LII signals acquired with two cameras consecutively after the laser pulse and using LII modeling to deduce particle size from the ratio of local signals. A strategy was developed with a model-Based analysis: the dependence of LII particle-Size imaging on the assumed boundary conditions was identified such as bathgas temperature, pressure, particle heat-Up temperature, thermal accommodation coefficients, and soot morphology. Various laser-Fluence regimes and gas pressures were considered. Effects of laser attenuation were evaluated. A combination of one detection gate starting with the particle-Heating and the other starting with 11 ns delay with twice as long gate width was found to provide the highest sensitivity for particle sizing at 60 bar. The optimum gate delays for different pressures were calculated. The effects of timing jitter for laser pulse and poly-Dispersity were investigated. Systematic errors in pyrometry imaging at 60 bar was evaluated. [...]
Andersen, Ingrid Marie. „2D and 3D quantitative TEM mapping of CoNi nanowires“. Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30205.
Der volle Inhalt der QuelleCylindrical magnetic nanowires (NWs) are currently subjects of high interest due to fast domain wall velocities and interaction with spin-waves, which are considered interesting qualities for developing future spintronic devices. This thesis aims to provide a wholesome quantitative and qualitative analysis of the local magnetic configuration in cylindrical Co-rich CoNi NWs with perpendicular magnetocrystalline anisotropy using state-of-the-art transmission electron microscopy (TEM) magnetic imaging techniques, mainly focused on two-dimensional (2D) and three-dimensional (3D) electron holography (EH). A correlative study between the NW's texture, modulation in composition, and magnetic configuration has been conducted. Further, the complex 3D nature of the domain and domain wall configurations have been analyzed using holographic vector field electron tomography (VFET) to retrieve all three components of the magnetic induction. Finally, I have successfully manipulated the magnetic configuration observed by Lorentz microscopy in Fresnel mode by the in situ injection of a current pulse. A TEM study comparing the magnetic configuration to the local NW structure was performed on single NWs. The crystal phase analysis was done by precession electron diffraction assisted automated crystal orientation mapping in the TEM combined with compositional analysis by scanning-TEM (STEM) electron energy loss spectroscopy (EELS) for a detailed correlation with the sample's magnetic configuration. The results reveal a coexistence of fcc grains and hcp phase with its c-axis oriented close to perpendicular to the wire axis in the same NW, which is identified as the origin of drastic local changes in the magnetic configuration. Two main configurations are observed in the NW region: a chain of transversal vortex-like states and a longitudinal curling state. The chain or vortices are linked to the hcp grain with the perpendicular magnetocrystalline anisotropy, as confirmed by micromagnetic simulations. The 3D magnetic structure of the domains and domain walls observed in the hcp grain of the NWs has been studied for two different remnant states: after the application of a saturation field perpendicular (i) and parallel (ii) to the NW axis. The measurements were done using state-of-the-art holographic VFET to extract all three components of the magnetic induction in the sample, as well as a 3D reconstruction of the volume from the measured electric potentials, giving insight into the local morphology of the NW. The results show a stabilization of a vortex chain in the case of perpendicular saturation, but longitudinal curling states separated by transversal domain walls after applying a parallel external field. Finally, preliminary Lorentz microscopy results are presented, documenting the manipulation of magnetic domain walls by the in situ injection of electrical pulses on a single cylindrical CoNi nanowire contacted by focused ion beam induced deposition. This is believed to be the forerunner for quantitative electrical measurements and in situ observations of domain wall dynamics using EH at the CEMES. A detailed protocol focusing on the crucial steps and challenges ahead for such a delicate experiment is presented, together with suggestions for future work to continue the developments
Shipkova, I. G., V. S. Chumak, M. V. Reshetnyak, A. Y. Devizenko und Y. P. Pershyn. „Estimation of interlayer composition in WC/Si multilayer X-ray mirrors (MXMs) at nanometer scale“. Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/28180.
Der volle Inhalt der QuelleMartin, Yannick. „Development of electron microscopy diffraction techniques for the study of two and three dimensional materials“. Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY066/document.
Der volle Inhalt der QuelleThe small dimensions of nanomaterials give them remarkable properties attracting the scientific community. In order to understand and control these properties, it is essential to characterize them at the nanometer scale. This thesis work is based on the development of electron microscopy diffraction techniques for the study of two and three dimensional materials.Convergent Beam Electron Diffraction patterns contain large amount of information on the sample geometry. This information, carried by HOLZ lines, allows to determine the sample thickness, the structure factor, the direction of observation, the electron acceleration voltage and the camera length. Ambiguities in strain measurement arise from the experimental two-dimensional projection of three-dimensional information. During this thesis, it has been possible to reduce these ambiguities and therefore to measure the diagonal components of the deformation gradient tensor from one direction of observation only. By studying the HOLZ lines broadening, due to a non-uniform strain along the electron beam direction, it has been possible to retrieve the displacement field along the beam direction.The second part of this thesis is focused on the study of two-dimensional materials such as Graphene, Boron Nitride (BN) or Molybdenum disulfide (MoS2). The delicate interpretation of the contrast of high-resolution transmission electron microscopy images and especially the importance of aberrations and sample tilt on this contrast is discussed. A method to quantify two-dimensional sample orientation using diffraction spots projection effect is presented. Finally, three thickness measurement techniques are compared by applying them to few-layered MoS2 et BN
Lepot, Kevin. „Recherche et caractérisation de traces fossiles d'activité microbienne archéenne (Pilbara Drilling Project, Australie)“. Paris, Institut de physique du globe, 2007. http://www.theses.fr/2007GLOB0007.
Der volle Inhalt der QuelleMotylenko, Mykhaylo. „Beitrag zur Analyse von Disklinationsstrukturen in plastisch verformten Metallen“. Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2011. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-67416.
Der volle Inhalt der QuelleDickinson, Calum. „Metal oxide porous single crystals and other nanomaterials : an HRTEM study“. Thesis, University of St Andrews, 2007. http://hdl.handle.net/10023/217.
Der volle Inhalt der QuellePolcer, Simon. „Detekce a rozměření elektronového svazku v obrazech z TEM“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413022.
Der volle Inhalt der QuelleKarathanou, Argyro. „Image processing for on-line analysis of electron microscope images : automatic Recognition of Reconstituted Membranes“. Phd thesis, Université de Haute Alsace - Mulhouse, 2009. http://tel.archives-ouvertes.fr/tel-00559800.
Der volle Inhalt der QuelleSong, Haiwen. „Diesel soot oxidation under controlled conditions“. Thesis, Brunel University, 2003. http://bura.brunel.ac.uk/handle/2438/4814.
Der volle Inhalt der QuelleMohseni, Hamidreza. „Tribological Improvements of Carbon-Carbon Composites by Infiltration of Atomic Layer Deposited Lubricious Nanostructured Ceramic Oxides“. Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc84254/.
Der volle Inhalt der QuelleMühlbacher, Marlene. „High-resolution characterization of TiN diffusion barrier layers“. Licentiate thesis, Linköpings universitet, Tunnfilmsfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120394.
Der volle Inhalt der Quelle