Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „TrnL intron“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "TrnL intron" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "TrnL intron"
Nguyen, Sy Dinh, und Hunseung Kang. „Comprehensive analysis of chloroplast intron-containing genes and conserved splice sites in dicot and monocot plants“. Science and Technology Development Journal - Natural Sciences 1, T1 (31.03.2017): 60–68. http://dx.doi.org/10.32508/stdjns.v1it1.435.
Der volle Inhalt der QuelleWidyatmoko, AYPBC, und Susumu Shiraishi. „Inter- and intraspecific variation of chloroplast mini- and microsatellites DNA in the four closed related Acacia species“. Indonesian Journal of Biotechnology 19, Nr. 1 (31.12.2015): 1. http://dx.doi.org/10.22146/ijbiotech.8639.
Der volle Inhalt der QuelleJarret, Robert L. „DNA Barcoding in a Crop Genebank: The Capsicum annuum Species Complex“. Open Biology Journal 1, Nr. 1 (28.10.2008): 35–42. http://dx.doi.org/10.2174/1874196700801010035.
Der volle Inhalt der QuelleSun, Jianying, Xiaofeng Dong, Qinghe Cao, Tao Xu, Mingku Zhu, Jian Sun, Tingting Dong, Daifu Ma, Yonghua Han und Zongyun Li. „A systematic comparison of eight new plastome sequences from Ipomoea L“. PeerJ 7 (11.03.2019): e6563. http://dx.doi.org/10.7717/peerj.6563.
Der volle Inhalt der QuelleSedláková, V., P. Sedlák, D. Zeka, J. Domkářová, P. Doležal und P. Vejl. „Evaluation of variations in plastid DNA non-coding regions in selected species of the genus Solanum“. Czech Journal of Genetics and Plant Breeding 53, No. 3 (13.09.2017): 127–31. http://dx.doi.org/10.17221/76/2015-cjgpb.
Der volle Inhalt der QuelleHaider, Nadia, und Imad Nabulsi. „Identification of Bread and Durum Wheats from their Diploid Ancestral Species Based on Chloroplast DNA“. Agriculture (Pol'nohospodárstvo) 66, Nr. 2 (01.07.2020): 56–66. http://dx.doi.org/10.2478/agri-2020-0006.
Der volle Inhalt der QuelleOksanen, Ilona, Katileena Lohtander, Kaarina Sivonen und Jouko Rikkinen. „Repeat-type distribution in trnL intron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria“. International Journal of Systematic and Evolutionary Microbiology 54, Nr. 3 (01.05.2004): 765–72. http://dx.doi.org/10.1099/ijs.0.02928-0.
Der volle Inhalt der QuelleZHANG, WEI, JIAO QIN, RUI YANG, YI YANG und SHI-BAO ZHANG. „Two new natural hybrids in the genus Pleione (Orchidaceae) from China“. Phytotaxa 350, Nr. 3 (23.05.2018): 247. http://dx.doi.org/10.11646/phytotaxa.350.3.4.
Der volle Inhalt der QuelleMurphy, Daniel J., Frank Udovicic und Pauline Y. Ladiges. „Phylogenetic analysis of Australian Acacia (Leguminosae: Mimosoideae) by using sequence variations of an intron and two intergenic spacers of chloroplast DNA“. Australian Systematic Botany 13, Nr. 5 (2000): 745. http://dx.doi.org/10.1071/sb99027.
Der volle Inhalt der QuelleMAMONTOV, YURIY S., NADEZHDA A. KONSTANTINOVA und ANNA A. VILNET. „One more species in the genus Jungermannia (Marchantiophyta: Jungermanniaceae)“. Bryophyte Diversity and Evolution 40, Nr. 2 (27.12.2018): 79. http://dx.doi.org/10.11646/bde.40.2.6.
Der volle Inhalt der QuelleDissertationen zum Thema "TrnL intron"
Dizkirici, Ayten. „Evolutionary Relationships Among Astragalus Species Native To Turkey“. Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614427/index.pdf.
Der volle Inhalt der Quelle-L3&rsquo
) , trnL3&rsquo
-F(GAA) (trnL-F intergenic spacer), trnV intron, matK (maturase kinase) cpDNA (chloroplast) and ITS (internal transcribed spacer) nDNA (nuclear) regions. Fifty-six Astragalus species with their replicas and one Cicer species as outgroup were analyzed by polymerase chain reaction amplification and DNA sequencing methods. Eleven unknown samples were also used in the current study to understand their section and species name. The results of the study indicated that unknown A35 and A52 samples could be named as A. dasycarpus, while unknown A65 and A66 samples as A. ovatus and lastly unknown A2 sample as A. nitens or A. aucheri. Section of unknown A3, A16, A20, A108, A109 and A110 samples were determined as Incani, but the exact species identification of these samples were not possible because of their close phylogenetic associations with more than one species. Highest genetic diversity was observed when the DNA sequences of ITS nrDNA (nuclear ribosomal) region comprising three subregions as ITS1, 5.8S and ITS2 was used, while the lowest one was calculated when DNA sequence of trnL-F cpDNA region was analyzed. The genetic divergence between Incani and Dissitiflori sections was highest whereas between Hypoglottidei and Dissitiflori was lowest based on all used regions. To figure out phylogenetic relationships among Astragalus species distributed in Turkey and in other regions of the World, DNA sequences of studied regions of foreign samples were collected from the NCBI database and were evaluated with DNA sequence of Turkish species used in the curent study. The Iranian samples either scattered in the phylogenetic tree or attached to our samples externally. South and North American samples (New World Astragalus or Neo Astragalus group) were nested within a different subcluster, which was located in the main cluster produced by samples of Old World Astragalus group (Turkish samples). With these results, we can say that New World Astragalus group is monophyletic and diverged from Old World Astragalus group. Evolutionary divergence time for Astragalus genus was estimated as about 12.5 - 14.5 million years (Ma), and that of New World Astragalus group as 5.0 - 4.0 Ma when rates of nucleotide substitutions of trnL intron and matK cpDNA regions were analyzed. In addition to evolutionary divergence time estimation for Astragalus and New World Astragalus group, divergence times among used three sections of the genus were also calculated by using DNA sequences of trnL, trnV intron and matK cpDNA regions and results indicated that Hypoglottidei and Dissitiflori sections diverged about 5.0-7.0 million years later than Incani section.
Fougère-Danezan, Marie. „Phylogénie moléculaire et morphologique des Detarieae résinifères (Leguminosae : Caesalpinioideae) : contribution à l'étude de l'histoire biogéographique des légumineuses“. Thèse, Toulouse 3, 2005. http://hdl.handle.net/1866/6594.
Der volle Inhalt der QuelleNicolas, Antoine. „UNDERSTANDING EVOLUTIONARY RELATIONSHIPS IN THE ANGIOSPERM ORDER APIALES BASED ON ANALYSES OF ORGANELLAR DNA SEQUENCES AND NUCLEAR GENE DUPLICATIONS“. VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1701.
Der volle Inhalt der QuelleNist, Richard Neil. „Maturation of tRNA in Haloferax volcanii“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308066223.
Der volle Inhalt der QuelleCrawley, Sunny Sheliese. „Rethinking phylogenetics using Caryophyllales (angiosperms), matK gene and trnK intron as experimental platform“. Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77276.
Der volle Inhalt der QuellePh. D.
Saini, Harleen. „Intron and Small RNA Localization in Mammalian Neurons“. eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1044.
Der volle Inhalt der QuelleChen, Xin. „Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase with group I introns“. Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2002. http://wwwlib.umi.com/cr/utexas/fullcit?p3077620.
Der volle Inhalt der QuelleThompson, Leo Douglas. „Substrate recognition properties of the tRNA[superscript Trp] intron endonuclease from the archaebacterium halobacterium volcanii /“. The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487681788253537.
Der volle Inhalt der QuelleWu, Jingyan. „A Genome-wide Analysis to Identify and Characterize Novel Genes Involved in tRNA Biology in Saccharomyces cerevisiae“. The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429197786.
Der volle Inhalt der QuelleMayer, Margit [Verfasser]. „Transfer-RNAs mit Intron und ihre Reifung durch die tRNA-Spleiß-Endonuklease in Spalthefe / Margit Mayer“. Ulm : Universität Ulm. Fakultät für Naturwissenschaften, 2001. http://d-nb.info/1015269400/34.
Der volle Inhalt der QuelleBuchteile zum Thema "TrnL intron"
Schomburg, Dietmar, und Dörte Stephan. „tRNA-intron endonuclease“. In Enzyme Handbook 15, 221–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58948-5_51.
Der volle Inhalt der QuelleRould, M. A., J. J. Perona und T. A. Steitz. „Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase“. In Structural Insights into Gene Expression and Protein Synthesis, 395–400. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811215865_0046.
Der volle Inhalt der Quelle„Genomics and Genetic Testing“. In Examining the Causal Relationship Between Genes, Epigenetics, and Human Health, 269–87. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8066-9.ch012.
Der volle Inhalt der QuellePerona, John J., Mark A. Rould und Thomas A. Steitz. „Structural Basis for Transfer RNA Aminoacylation by Escherichia coli Glutaminyl-tRNA Synthetase“. In Structural Insights into Gene Expression and Protein Synthesis, 401–14. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811215865_0047.
Der volle Inhalt der QuelleSilvian, Laura F., Jimin Wang und Thomas A. Steitz. „Insights into Editing from an Ile-tRNA Synthetase Structure with tRNAIle and Mupirocin“. In Structural Insights into Gene Expression and Protein Synthesis, 415–18. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811215865_0048.
Der volle Inhalt der QuelleLucchesi, John C. „The role of non-coding RNAs“. In Epigenetics, Nuclear Organization & Gene Function, 69–79. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198831204.003.0006.
Der volle Inhalt der QuelleSchmeing, T. Martin, Kevin S. Huang, Scott A. Strobel und Thomas A. Steitz. „An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA“. In Structural Insights into Gene Expression and Protein Synthesis, 552–56. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811215865_0065.
Der volle Inhalt der QuelleShapiro, Bruce A., und Wojciech Kasprzak. „RNA Structure Analysis: A Multifaceted Approach“. In Pattern Discovery in Biomolecular Data. Oxford University Press, 1999. http://dx.doi.org/10.1093/oso/9780195119404.003.0018.
Der volle Inhalt der QuelleROULD, MARK A., JOHN J. PERONA, DIETER SÖLL und THOMAS A. STEITZ. „Structure of E. coli Glutaminyl-tRNA Synthetase Complexed with tRNAGln and ATP at 2.8 Å Resolution“. In Structural Insights into Gene Expression and Protein Synthesis, 387–94. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811215865_0045.
Der volle Inhalt der QuelleSchmeing, T. Martin, Kevin S. Huang, David E. Kitchen, Scott A. Strobel und Thomas A. Steitz. „Structural Insights into the Roles of Water and the 2′ Hydroxyl of the P Site tRNA in the Peptidyl Transferase Reaction“. In Structural Insights into Gene Expression and Protein Synthesis, 557–68. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811215865_0066.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "TrnL intron"
Vladimirova, Mariia, Alexey Afonin, Virtoria Muntyan, Boris Simarov und Marina Roumiantseva. „Evaluation of Sinorhizobium meliloti Genomic Islands Inserted into the tRNA-Thr“. In 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB). IEEE, 2020. http://dx.doi.org/10.1109/csgb51356.2020.9214720.
Der volle Inhalt der QuelleDrutarovsky, M., M. Varchola und M. Petrvalsky. „Remotely testable setup of soft CPU with cryptographic TRNG coprocessor extension embedded into Altera FPGA“. In 2013 23rd International Conference Radioelektronika (RADIOELEKTRONIKA 2013). IEEE, 2013. http://dx.doi.org/10.1109/radioelek.2013.6530904.
Der volle Inhalt der QuelleMikhailov, Sergey N., Ekaterina V. Efimtseva, Alexandra A. Shelkunova, Jef Rozenski, Gert Emmerechts, Arthur Van Aerschot und Piet Herdewijn. „Chemical incorporation of minor tRNA component O-β-D-ribofuranosyl-(1''-2')-adenosine-5''-phosphate into oligoribonucleotides“. In XIIIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2005. http://dx.doi.org/10.1135/css200507333.
Der volle Inhalt der QuelleKestner, Brian K., Jeff S. Schutte, Jonathan C. Gladin und Dimitri N. Mavris. „Ultra High Bypass Ratio Engine Sizing and Cycle Selection Study for a Subsonic Commercial Aircraft in the N+2 Timeframe“. In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45370.
Der volle Inhalt der QuelleNiemeyer, Jonathan K., und Daniel E. Whitney. „Risk Reduction of Jet Engine Product Development Using Technology Readiness Metrics“. In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/dtm-34000.
Der volle Inhalt der QuelleKestner, Brian, Jeff S. Schutte, Jimmy C. M. Tai, Christopher A. Perullo und Dimitri N. Mavris. „Surrogate Modeling for Simultaneous Engine Cycle and Technology Optimization for Next Generation Subsonic Aircraft“. In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68724.
Der volle Inhalt der QuelleCalkins, F. T., und J. H. Mabe. „Flight Test of a Shape Memory Alloy Actuated Adaptive Trailing Edge Flap“. In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9141.
Der volle Inhalt der QuellePilatis, Nick, Michael Whiteman, Paul Madden, Michael A. Macquisten und A. John Moran. „Forced Combustion Experiments on Aero Combustors“. In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45235.
Der volle Inhalt der QuelleGrönstedt, Tomas, Carlos Xisto, Vishal Sethi, Andrew Rolt, Nicolás García Rosa, Arne Seitz, Kyros Yakinthos et al. „Ultra Low Emission Technology Innovations for Mid-Century Aircraft Turbine Engines“. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56123.
Der volle Inhalt der QuelleMaung, Yuzana, Sutartinah Sri Handayani und Lukman Aryoseto. „Effect of Drumstick (Moringa Oleifera Lam) Leaves Ethanol Extract on Anopheles Aconitus L. Third Instar Larvae Mortality“. In The 7th International Conference on Public Health 2020. Masters Program in Public Health, Universitas Sebelas Maret, 2020. http://dx.doi.org/10.26911/the7thicph.05.59.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "TrnL intron"
Daniels, Charles J. Processing of Archaebacterial Intron-Containing tRNA Gene Transcripts. Fort Belvoir, VA: Defense Technical Information Center, Juli 1988. http://dx.doi.org/10.21236/ada197868.
Der volle Inhalt der Quelle