Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Two-layers neural networks“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Two-layers neural networks" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Two-layers neural networks"
Wei, Chih-Chiang. „Comparison of River Basin Water Level Forecasting Methods: Sequential Neural Networks and Multiple-Input Functional Neural Networks“. Remote Sensing 12, Nr. 24 (20.12.2020): 4172. http://dx.doi.org/10.3390/rs12244172.
Der volle Inhalt der QuelleYin, Chun Hua, Jia Wei Chen und Lei Chen. „Weight to Vision Neural Network Information Processing Influence Research“. Advanced Materials Research 605-607 (Dezember 2012): 2131–36. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.2131.
Der volle Inhalt der QuelleCarpenter, William C., und Margery E. Hoffman. „Guidelines for the selection of network architecture“. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11, Nr. 5 (November 1997): 395–408. http://dx.doi.org/10.1017/s0890060400003322.
Der volle Inhalt der QuelleBaptista, Marcia, Helmut Prendinger und Elsa Henriques. „Prognostics in Aeronautics with Deep Recurrent Neural Networks“. PHM Society European Conference 5, Nr. 1 (22.07.2020): 11. http://dx.doi.org/10.36001/phme.2020.v5i1.1230.
Der volle Inhalt der QuellePAUGAM-MOISY, HÉLÈNE. „HOW TO MAKE GOOD USE OF MULTILAYER NEURAL NETWORKS“. Journal of Biological Systems 03, Nr. 04 (Dezember 1995): 1177–91. http://dx.doi.org/10.1142/s0218339095001064.
Der volle Inhalt der QuelleVetrov, Igor A., und Vladislav V. Podtopelny. „Features of building neural networks taking into account the specifics of their training to solve the tasks of searching for network attacks“. Proceedings of Tomsk State University of Control Systems and Radioelectronics 26, Nr. 2 (2023): 42–50. http://dx.doi.org/10.21293/1818-0442-2023-26-2-42-50.
Der volle Inhalt der QuellePetzka, Henning, Martin Trimmel und Cristian Sminchisescu. „Notes on the Symmetries of 2-Layer ReLU-Networks“. Proceedings of the Northern Lights Deep Learning Workshop 1 (06.02.2020): 6. http://dx.doi.org/10.7557/18.5150.
Der volle Inhalt der QuelleLamy, Lucas, und Paulo Henrique Siqueira. „The Null Layer: increasing convolutional neural network efficiency“. Caderno Pedagógico 22, Nr. 6 (04.04.2025): e15344. https://doi.org/10.54033/cadpedv22n6-050.
Der volle Inhalt der QuelleShpinareva, Irina M., Anastasia A. Yakushina, Lyudmila A. Voloshchuk und Nikolay D. Rudnichenko. „Detection and classification of network attacks using the deep neural network cascade“. Herald of Advanced Information Technology 4, Nr. 3 (15.10.2021): 244–54. http://dx.doi.org/10.15276/hait.03.2021.4.
Der volle Inhalt der QuelleChen, Jingfeng. „Spam mail classification using back propagation neural networks“. Applied and Computational Engineering 5, Nr. 1 (14.06.2023): 438–49. http://dx.doi.org/10.54254/2755-2721/5/20230617.
Der volle Inhalt der QuelleDissertationen zum Thema "Two-layers neural networks"
Dabo, Issa-Mbenard. „Applications de la théorie des matrices aléatoires en grandes dimensions et des probabilités libres en apprentissage statistique par réseaux de neurones“. Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0021.
Der volle Inhalt der QuelleThe functioning of machine learning algorithms relies heavily on the structure of the data they are given to study. Most research work in machine learning focuses on the study of homogeneous data, often modeled by independent and identically distributed random variables. However, data encountered in practice are often heterogeneous. In this thesis, we propose to consider heterogeneous data by endowing them with a variance profile. This notion, derived from random matrix theory, allows us in particular to study data arising from mixture models. We are particularly interested in the problem of ridge regression through two models: the linear ridge model and the random feature ridge model. In this thesis, we study the performance of these two models in the high-dimensional regime, i.e., when the size of the training sample and the dimension of the data tend to infinity at comparable rates. To this end, we propose asymptotic equivalents for the training error and the test error associated with the models of interest. The derivation of these equivalents relies heavily on spectral analysis from random matrix theory, free probability theory, and traffic theory. Indeed, the performance measurement of many learning models depends on the distribution of the eigenvalues of random matrices. Moreover, these results enabled us to observe phenomena specific to the high-dimensional regime, such as the double descent phenomenon. Our theoretical study is accompanied by numerical experiments illustrating the accuracy of the asymptotic equivalents we provide
Cheng, Wei-Hua, und 鄭維華. „Web Log Analysis Using Two Layers Neural Network“. Thesis, 2003. http://ndltd.ncl.edu.tw/handle/05737061743395410229.
Der volle Inhalt der Quelle國立臺灣科技大學
電機工程系
91
With the rapidly developing internet, all kinds of applications based on it, like E-Commerce or academic communication, have become more and more essential for the modern people. These applications are all based on the secure network environment. So Network Security has become the hottest research topic currently and its importance grows rapidly for each day. This thesis proposes a Web log analysis system based on Neural Network, using advantage of learning automatically to improve the reliability. With two layers of Neural Network, we can resolve the category to which the attack belongs and even detect the new category attack never found before. The core of the Web log analysis system is to utilize the leaning feature of Neural Network to cope with swiftly changing attacks and to protect the security of all kinds of network applications.
Buchteile zum Thema "Two-layers neural networks"
Thomas, Alan J., Miltos Petridis, Simon D. Walters, Saeed Malekshahi Gheytassi und Robert E. Morgan. „Two Hidden Layers are Usually Better than One“. In Engineering Applications of Neural Networks, 279–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65172-9_24.
Der volle Inhalt der QuelleFurusho, Yasutaka, Tongliang Liu und Kazushi Ikeda. „Skipping Two Layers in ResNet Makes the Generalization Gap Smaller than Skipping One or No Layer“. In Proceedings of the International Neural Networks Society, 349–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16841-4_36.
Der volle Inhalt der QuelleZhang, Jiantao, und Pingjian Zhang. „Deep Recurrent Neural Networks with Nonlinear Masking Layers and Two-Level Estimation for Speech Separation“. In Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series, 397–411. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30490-4_32.
Der volle Inhalt der QuelleMikriukov, Georgii, Gesina Schwalbe, Christian Hellert und Korinna Bade. „Revealing Similar Semantics Inside CNNs: An Interpretable Concept-Based Comparison of Feature Spaces“. In Communications in Computer and Information Science, 3–20. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-74630-7_1.
Der volle Inhalt der QuelleHuang, Lixing, Jietao Diao, Shuhua Teng, Zhiwei Li, Wei Wang, Sen Liu, Minghou Li und Haijun Liu. „A Method for Obtaining Highly Robust Memristor Based Binarized Convolutional Neural Network“. In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 813–22. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_82.
Der volle Inhalt der QuelleMikriukov, Georgii, Gesina Schwalbe, Christian Hellert und Korinna Bade. „Evaluating the Stability of Semantic Concept Representations in CNNs for Robust Explainability“. In Communications in Computer and Information Science, 499–524. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44067-0_26.
Der volle Inhalt der QuelleCanas, Antonio, Eva M. Ortigosa, Antonio F. Díaz und Julio Ortega. „XMLP: a Feed-Forward Neural Network with Two-Dimensional Layers and Partial Connectivity“. In Artificial Neural Nets Problem Solving Methods, 89–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44869-1_12.
Der volle Inhalt der QuelleKuljaca, Ognjen, Krunoslav Horvat und Jyotirmay Gadewadikar. „Adaptive Two Layers Neural Network Frequency Controller for Isolated Thermal Power System“. In Technological Developments in Networking, Education and Automation, 203–7. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9151-2_35.
Der volle Inhalt der QuelleTran, Van Quan. „Using Artificial Neural Network Containing Two Hidden Layers for Predicting Carbonation Depth of Concrete“. In Lecture Notes in Civil Engineering, 1945–52. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7160-9_197.
Der volle Inhalt der QuelleLiu, Chuan, Jiaqi Shen, Yue Ren und Hao Zheng. „Pipes of AI – Machine Learning Assisted 3D Modeling Design“. In Proceedings of the 2020 DigitalFUTURES, 17–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4400-6_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Two-layers neural networks"
Zhao, Qingye, Xin Chen, Yifan Zhang, Meng Sha, Zhengfeng Yang, Wang Lin, Enyi Tang, Qiguang Chen und Xuandong Li. „Synthesizing ReLU neural networks with two hidden layers as barrier certificates for hybrid systems“. In HSCC '21: 24th ACM International Conference on Hybrid Systems: Computation and Control. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447928.3456638.
Der volle Inhalt der QuelleLuo, Ping. „EigenNet: Towards Fast and Structural Learning of Deep Neural Networks“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/338.
Der volle Inhalt der QuelleJiang, Jianwen, Yuxuan Wei, Yifan Feng, Jingxuan Cao und Yue Gao. „Dynamic Hypergraph Neural Networks“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/366.
Der volle Inhalt der QuelleTominaga, Shaji. „Coordinate transformation of object colors using neural networks“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tuq6.
Der volle Inhalt der QuelleKim, Myung Soo, und Clark C. Guest. „Opto-neural system for pattern classification“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.mjj3.
Der volle Inhalt der QuelleTong Zhao und Shaohua Qu. „Adaptive control for nonlinear systems with H∞ tracking performance via two-layers neural networks“. In 2008 IEEE International Conference on Automation and Logistics (ICAL). IEEE, 2008. http://dx.doi.org/10.1109/ical.2008.4636271.
Der volle Inhalt der QuelleMkadem, F., M. Ben Ayed, S. Boumaiza, J. Wood und P. Aaen. „Behavioral modeling and digital predistortion of power amplifiers with memory using two hidden layers artificial neural networks“. In 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010. IEEE, 2010. http://dx.doi.org/10.1109/mwsym.2010.5514964.
Der volle Inhalt der QuelleMkadem, Farouk, Morsi B. Ayed, Slim Boumaiza, John Wood und Peter Aaen. „Behavioral modeling and digital predistortion of Power Amplifiers with memory using Two Hidden Layers Artificial Neural Networks“. In 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010. IEEE, 2010. http://dx.doi.org/10.1109/mwsym.2010.5517039.
Der volle Inhalt der QuelleMOUSAVI, MOHSEN, und AMIR H. GANDOMI. „TWO-DIMENSIONAL CONVOLUTIONAL NEURAL NETWORKS FOR WOOD QUALITY ASSESSMENT“. In Structural Health Monitoring 2023. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/shm2023/36880.
Der volle Inhalt der QuelleDabetwar, Shweta, Stephen Ekwaro-Osire und João Paulo Dias. „Damage Detection of Composite Materials Using Data Fusion With Deep Neural Networks“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15097.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Two-layers neural networks"
Tayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, Januar 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Der volle Inhalt der QuelleArhin, Stephen, Babin Manandhar, Hamdiat Baba Adam und Adam Gatiba. Predicting Bus Travel Times in Washington, DC Using Artificial Neural Networks (ANNs). Mineta Transportation Institute, April 2021. http://dx.doi.org/10.31979/mti.2021.1943.
Der volle Inhalt der Quelle