Zeitschriftenartikel zum Thema „Ultra-Soft Hydrogels“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Ultra-Soft Hydrogels" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Xie, Beixin, Peidong Xu, Liqun Tang, et al. "Dynamic Mechanical Properties of Polyvinyl Alcohol Hydrogels Measured by Double-Striker Electromagnetic Driving SHPB System." International Journal of Applied Mechanics 11, no. 02 (2019): 1950018. http://dx.doi.org/10.1142/s1758825119500182.
Der volle Inhalt der QuelleXu, Zhenyu, Yongsen Zhou, Baoping Zhang, Chao Zhang, Jianfeng Wang, and Zuankai Wang. "Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application." Micromachines 12, no. 6 (2021): 608. http://dx.doi.org/10.3390/mi12060608.
Der volle Inhalt der QuelleStrachota, Beata, Adam Strachota, Leana Vratović, et al. "Exceptionally Fast Temperature-Responsive, Mechanically Strong and Extensible Monolithic Non-Porous Hydrogels: Poly(N-isopropylacrylamide) Intercalated with Hydroxypropyl Methylcellulose." Gels 9, no. 12 (2023): 926. http://dx.doi.org/10.3390/gels9120926.
Der volle Inhalt der QuelleJuliar, Benjamin A., Jeffrey A. Beamish, Megan E. Busch, David S. Cleveland, Likitha Nimmagadda, and Andrew J. Putnam. "Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels." Biomaterials 230 (February 2020): 119634. http://dx.doi.org/10.1016/j.biomaterials.2019.119634.
Der volle Inhalt der QuelleZhang, Aoxiang, Huiying Zhou, Yanhui Guo, and Yu Fu. "Marangoni Flow-Driven Self-Assembly of Biomimetic Jellyfish-like Hydrogels for Spatially Controlled Enzyme Catalysis." Surfaces 8, no. 2 (2025): 28. https://doi.org/10.3390/surfaces8020028.
Der volle Inhalt der QuelleHuang, Shan, Weibin Wang, Chao Yang, et al. "Highly Stretchable Conductive Hydrogel-Based Flexible Triboelectric Nanogenerators for Ultrasensitive Tactile Sensing." Polymers 17, no. 3 (2025): 342. https://doi.org/10.3390/polym17030342.
Der volle Inhalt der QuelleSanjuan-Alberte, Paola, Jayasheelan Vaithilingam, Jonathan C. Moore, et al. "Development of Conductive Gelatine-Methacrylate Inks for Two-Photon Polymerisation." Polymers 13, no. 7 (2021): 1038. http://dx.doi.org/10.3390/polym13071038.
Der volle Inhalt der QuelleGori, M., S. M. Giannitelli, G. Vadalà, et al. "A POLY(SBMA) ZWITTERIONIC HYDROGEL COATING OF POLYIMIDE SURFACES TO REDUCE THE FOREIGN BODY REACTION TO INVASIVE NEURAL INTERFACES." Orthopaedic Proceedings 105-B, SUPP_7 (2023): 20. http://dx.doi.org/10.1302/1358-992x.2023.7.020.
Der volle Inhalt der QuelleWu, Meng, Jingsi Chen, Yuhao Ma, et al. "Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors." Journal of Materials Chemistry A 8, no. 46 (2020): 24718–33. http://dx.doi.org/10.1039/d0ta09735g.
Der volle Inhalt der QuelleLiu, Yunsong, and Xiong Zheng. "Bio-Inspired Double-Layered Hydrogel Robot with Fast Response via Thermo-Responsive Effect." Materials 17, no. 15 (2024): 3679. http://dx.doi.org/10.3390/ma17153679.
Der volle Inhalt der QuelleMusgrave, Christopher, Lorcan O’Toole, Tianyu Mao, Qing Li, Min Lai, and Fengzhou Fang. "Manufacturing of Soft Contact Lenses Using Reusable and Reliable Cyclic Olefin Copolymer Moulds." Polymers 14, no. 21 (2022): 4681. http://dx.doi.org/10.3390/polym14214681.
Der volle Inhalt der QuelleFrancis, Lydia, Karin V. Greco, Aldo R. Boccaccini, et al. "Development of a novel hybrid bioactive hydrogel for future clinical applications." Journal of Biomaterials Applications 33, no. 3 (2018): 447–65. http://dx.doi.org/10.1177/0885328218794163.
Der volle Inhalt der QuelleRosa, Elisabetta, Enrico Gallo, Teresa Sibillano, et al. "Incorporation of PEG Diacrylates (PEGDA) Generates Hybrid Fmoc-FF Hydrogel Matrices." Gels 8, no. 12 (2022): 831. http://dx.doi.org/10.3390/gels8120831.
Der volle Inhalt der QuelleHaraguchi, Kazutoshi. "Extraordinary Properties and New Functions of Nanocomposite Gels and Soft Nanocomposites with Unique Organic/Inorganic Network Structures." Advanced Materials Research 680 (April 2013): 65–69. http://dx.doi.org/10.4028/www.scientific.net/amr.680.65.
Der volle Inhalt der QuelleLi, Shengnan, Hailong Yang, Nannan Zhu, et al. "Biotissue‐Inspired Anisotropic Carbon Fiber Composite Hydrogels for Logic Gates, Integrated Soft Actuators, and Sensors with Ultra‐High Sensitivity (Adv. Funct. Mater. 11/2023)." Advanced Functional Materials 33, no. 11 (2023): 2370065. http://dx.doi.org/10.1002/adfm.202370065.
Der volle Inhalt der QuelleNishizawa, Matsuhiko. "(Keynote) Soft Wet Iontronic Devices with Affinity to Biosystems." ECS Meeting Abstracts MA2024-02, no. 54 (2024): 3710. https://doi.org/10.1149/ma2024-02543710mtgabs.
Der volle Inhalt der QuelleMolchanov, V. S., M. A. Efremova, T. Yu Kiseleva, and O. E. Philippova. "Injectable ultra-soft hydrogel with natural nanoclay." Nanosystems: Physics, Chemistry, Mathematics 10, no. 1 (2019): 76–85. http://dx.doi.org/10.17586/2220-8054-2019-10-1-76-85.
Der volle Inhalt der QuelleGuo, Meiling, Yuanpeng Wu, Shishan Xue, et al. "A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator." Journal of Materials Chemistry A 7, no. 45 (2019): 25969–77. http://dx.doi.org/10.1039/c9ta10183g.
Der volle Inhalt der QuelleWang, Yueyang, Qiao Wang, Xiaosai Hu, Dan He, Juan Zhao, and Guoxing Sun. "A multi-functional zwitterionic hydrogel with unique micro-structure, high elasticity and low modulus." RSC Advances 12, no. 43 (2022): 27907–11. http://dx.doi.org/10.1039/d2ra04915e.
Der volle Inhalt der QuelleHu, Xuxu, Yu Zhao, Shuai Cheng, Jinming Zhen, Zhengfeng Jia, and Ran Zhang. "Biomimetic Layered Hydrogel Coating for Enhanced Lubrication and Load-Bearing Capacity." Coatings 14, no. 9 (2024): 1229. http://dx.doi.org/10.3390/coatings14091229.
Der volle Inhalt der QuelleLiu, Zhimo, Binfan Zhao, Liucheng Zhang, et al. "Modulated integrin signaling receptors of stem cells via ultra-soft hydrogel for promoting angiogenesis." Composites Part B: Engineering 234 (April 2022): 109747. http://dx.doi.org/10.1016/j.compositesb.2022.109747.
Der volle Inhalt der QuelleLepo, Kelly, and Marten van Kerkwijk. "Ultra-soft Sources as Type Ia Supernovae Progenitors." Proceedings of the International Astronomical Union 7, S281 (2011): 136–39. http://dx.doi.org/10.1017/s1743921312014871.
Der volle Inhalt der QuelleGori, Manuele, Sara Maria Giannitelli, Gianluca Vadalà, et al. "A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes." Molecules 27, no. 10 (2022): 3126. http://dx.doi.org/10.3390/molecules27103126.
Der volle Inhalt der QuelleRosenstock, D., T. Gerber, C. Castro Müller, S. Stille, and J. Banik. "Process Stability and Application of 1900 MPa Grade Press Hardening Steel with reduced Hydrogen Susceptibility." IOP Conference Series: Materials Science and Engineering 1238, no. 1 (2022): 012013. http://dx.doi.org/10.1088/1757-899x/1238/1/012013.
Der volle Inhalt der QuelleYurakov, Yury A., Yaroslav A. Peshkov, Evelina P. Domashevskaya, et al. "A study of multilayer nanostructures [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]100 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si]120 by means of XRD, XRR, IR spectroscopy, and USXES." European Physical Journal Applied Physics 87, no. 2 (2019): 21301. http://dx.doi.org/10.1051/epjap/2019190131.
Der volle Inhalt der QuelleFeng, Jiaquan. "Multi-Layered Crack-Like Flexible Strain Sensor with Gradient Concentration Structure Based on Mxene-Ta-Pva." Theoretical and Natural Science 122, no. 1 (2025): 19–25. https://doi.org/10.54254/2753-8818/2025.gl25315.
Der volle Inhalt der QuelleZhigerbayeva, Guldana, Nurxat Nuraje, Amanzhol Turlybekuly, and Salimgerey Adilov. "Pure 3D Conducting Polymer Network for an Ultra-Sensitive and Flexible Hydrogen Gas Sensor at Room Temperature." ECS Meeting Abstracts MA2024-01, no. 50 (2024): 2707. http://dx.doi.org/10.1149/ma2024-01502707mtgabs.
Der volle Inhalt der QuelleYamada, Hajime, Shiho Takahashi, Kana Yamashita, Hisashi Miyafuji, Hiroyuki Ohno, and Tatsuhiko Yamada. "High-throughput analysis of softwood lignin using tetra-n-butylphosphonium hydroxide (TBPH)." BioResources 12, no. 4 (2017): 9396–406. http://dx.doi.org/10.15376/biores.12.4.9396-9406.
Der volle Inhalt der QuelleRao, C. N. R., Ved Varun Agrawal, Kanishka Biswas, et al. "Soft chemical approaches to inorganic nanostructures." Pure and Applied Chemistry 78, no. 9 (2006): 1619–50. http://dx.doi.org/10.1351/pac200678091619.
Der volle Inhalt der QuelleLomonaco, Quentin, Karine Abadie, Jean-Michel Hartmann, et al. "Soft Surface Activated Bonding of Hydrophobic Silicon Substrates." ECS Meeting Abstracts MA2023-02, no. 33 (2023): 1601. http://dx.doi.org/10.1149/ma2023-02331601mtgabs.
Der volle Inhalt der QuelleSavić Gajić, Ivana M. Savić, Ivan M. Savić, Aleksandra M. Ivanovska, Jovana D. Vunduk, Ivana S. Mihalj, and Zorica B. Svirčev. "Improvement of Alginate Extraction from Brown Seaweed (Laminaria digitata L.) and Valorization of Its Remaining Ethanolic Fraction." Marine Drugs 22, no. 6 (2024): 280. http://dx.doi.org/10.3390/md22060280.
Der volle Inhalt der QuelleWang, Zhuang, Xiaoyun Xu, Renjie Tan, Shuai Zhang, Ke Zhang, and Jinlian Hu. "Hierarchically Structured Hydrogel Composites with Ultra‐High Conductivity for Soft Electronics." Advanced Functional Materials, December 31, 2023. http://dx.doi.org/10.1002/adfm.202312667.
Der volle Inhalt der QuelleJaspers, Maarten, Matthew Dennison, Mathijs F. J. Mabesoone, Frederick C. MacKintosh, Alan E. Rowan, and Paul H. J. Kouwer. "Ultra-responsive soft matter from strain-stiffening hydrogels." Nature Communications 5, no. 1 (2014). http://dx.doi.org/10.1038/ncomms6808.
Der volle Inhalt der QuelleZhu, Shipei, Huanqing Cui, Yi Pan, et al. "Responsive‐Hydrogel Aquabots." Advanced Science, July 29, 2024. http://dx.doi.org/10.1002/advs.202401215.
Der volle Inhalt der QuelleYe, Yuhang, Zhangmin Wan, P. D. S. H. Gunawardane, et al. "Ultra‐Stretchable and Environmentally Resilient Hydrogels Via Sugaring‐Out Strategy for Soft Robotics Sensing." Advanced Functional Materials, February 27, 2024. http://dx.doi.org/10.1002/adfm.202315184.
Der volle Inhalt der QuelleGonzalez-Rico, Jorge, Sara Garzon-Hernandez, Chad M. Landis, and Daniel Garcia-Gonzalez. "Magneto-mechanically derived diffusion processes in ultra-soft biological hydrogels." Journal of the Mechanics and Physics of Solids, July 2024, 105791. http://dx.doi.org/10.1016/j.jmps.2024.105791.
Der volle Inhalt der QuelleGuo, Ping, Zhaoxin Zhang, Chengnan Qian, et al. "Programming Hydrogen Bonds for Reversible Elastic‐Plastic Phase Transition in a Conductive Stretchable Hydrogel Actuator with Rapid Ultra‐High‐Density Energy Conversion and Multiple Sensory Properties." Advanced Materials, September 23, 2024. http://dx.doi.org/10.1002/adma.202410324.
Der volle Inhalt der QuelleZhang, Qingtian, Hongda Lu, Guolin Yun, et al. "A Laminated Gravity‐Driven Liquid Metal‐Doped Hydrogel of Unparalleled Toughness and Conductivity." Advanced Functional Materials, October 6, 2023. http://dx.doi.org/10.1002/adfm.202308113.
Der volle Inhalt der QuelleZhang, Jianhua, Jiahe Liao, Zemin Liu, Rongjing Zhang, and Metin Sitti. "Liquid Metal Microdroplet‐Initiated Ultra‐Fast Polymerization of a Stimuli‐Responsive Hydrogel Composite." Advanced Functional Materials, November 12, 2023. http://dx.doi.org/10.1002/adfm.202308238.
Der volle Inhalt der QuelleLi, Zhikang, Bin Wang, Jijian Lu, et al. "Highly Stretchable, Self‐Healable, and Conductive Gelatin Methacryloyl Hydrogel for Long‐Lasting Wearable Tactile Sensors." Advanced Science, May 29, 2025. https://doi.org/10.1002/advs.202502678.
Der volle Inhalt der QuelleZhang, Jipeng, Yang Hu, Lina Zhang, Jinping Zhou, and Ang Lu. "Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics." Nano-Micro Letters 15, no. 1 (2022). http://dx.doi.org/10.1007/s40820-022-00980-9.
Der volle Inhalt der QuelleDing, Baofu, Pengyuan Zeng, Ziyang Huang, et al. "A 2D material–based transparent hydrogel with engineerable interference colours." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-021-26587-z.
Der volle Inhalt der QuelleTian, Han, Yanyu Hu, Jiajie Wu, et al. "Crystal Transduction 3D Printing of Bio‐Hydrogels with High Fidelity and Order Micro Pores." Advanced Functional Materials, November 6, 2024. http://dx.doi.org/10.1002/adfm.202415799.
Der volle Inhalt der QuelleZhang, Ran, Fangdong Ning, Xuxu Hu, Jinming Zhen, Bo Ge, and Zhengfeng Jia. "Bionic layered hydrogel with high strength for excellent lubrication and load capacity." Journal of Applied Polymer Science, June 6, 2024. http://dx.doi.org/10.1002/app.55845.
Der volle Inhalt der QuelleChong, Jooyeun, Changhoon Sung, Kum Seok Nam, et al. "Highly conductive tissue-like hydrogel interface through template-directed assembly." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-37948-1.
Der volle Inhalt der QuellePitenis, Angela A., Juan Manuel Urueña, Ryan M. Nixon, et al. "Lubricity from Entangled Polymer Networks on Hydrogels." Journal of Tribology 138, no. 4 (2016). http://dx.doi.org/10.1115/1.4032889.
Der volle Inhalt der QuelleCafiso, Diana, Federico Bernabei, Matteo Lo Preti, et al. "DLP‐Printable Porous Cryogels for 3D Soft Tactile Sensing." Advanced Materials Technologies, February 14, 2024. http://dx.doi.org/10.1002/admt.202302041.
Der volle Inhalt der QuelleYang, Kai, Bolong Li, Zhihao Ma, et al. "Ion‐Selective Mobility Differential Amplifier: Enhancing Pressure‐Induced Voltage Response in Hydrogels." Angewandte Chemie, November 15, 2024. http://dx.doi.org/10.1002/ange.202415000.
Der volle Inhalt der QuelleYang, Kai, Bolong Li, Zhihao Ma, et al. "Ion‐Selective Mobility Differential Amplifier: Enhancing Pressure‐Induced Voltage Response in Hydrogels." Angewandte Chemie International Edition, November 15, 2024. http://dx.doi.org/10.1002/anie.202415000.
Der volle Inhalt der QuelleChu, Zhaoyang, Kaining He, Siqi Huang, Wenhua Zhang, Xueyu Li, and Kunpeng Cui. "Investigating Temperature‐Dependent Microscopic Deformation in Tough and Self‐healing Hydrogel Using Time‐Resolved USAXS." Macromolecular Rapid Communications, June 4, 2024. http://dx.doi.org/10.1002/marc.202400327.
Der volle Inhalt der Quelle