Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „VECTOR DE VIRUS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "VECTOR DE VIRUS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "VECTOR DE VIRUS"
Deyle, David R., Yi Li, Erik M. Olson und David W. Russell. „Nonintegrating Foamy Virus Vectors“. Journal of Virology 84, Nr. 18 (30.06.2010): 9341–49. http://dx.doi.org/10.1128/jvi.00394-10.
Der volle Inhalt der QuelleChoi, Charles Q. „Vector without Virus“. Scientific American 292, Nr. 3 (März 2005): 30. http://dx.doi.org/10.1038/scientificamerican0305-30c.
Der volle Inhalt der QuelleBukovsky, Anatoly A., Jin-Ping Song und Luigi Naldini. „Interaction of Human Immunodeficiency Virus-Derived Vectors with Wild-Type Virus in Transduced Cells“. Journal of Virology 73, Nr. 8 (01.08.1999): 7087–92. http://dx.doi.org/10.1128/jvi.73.8.7087-7092.1999.
Der volle Inhalt der QuelleRussell, RA, G. Vassaux, P. Martin-Duque und MO McClure. „Transient foamy virus vector production by adenovirus vectors“. Gene Therapy 11, Nr. 3 (22.01.2004): 310–16. http://dx.doi.org/10.1038/sj.gt.3302177.
Der volle Inhalt der QuelleHofmann, Wolfgang, David Schubert, Jason LaBonte, Linda Munson, Susan Gibson, Jonathan Scammell, Paul Ferrigno und Joseph Sodroski. „Species-Specific, Postentry Barriers to Primate Immunodeficiency Virus Infection“. Journal of Virology 73, Nr. 12 (01.12.1999): 10020–28. http://dx.doi.org/10.1128/jvi.73.12.10020-10028.1999.
Der volle Inhalt der QuelleSu, RuiJun, Rency L. Rosales, Martin Lochelt und Neil C. Josephson. „Transduction of Primate Cells with Feline Foamy Virus Envelope Pseudotyped Prototype Foamy Virus Vectors.“ Blood 104, Nr. 11 (16.11.2004): 5276. http://dx.doi.org/10.1182/blood.v104.11.5276.5276.
Der volle Inhalt der QuelleYoung, Won-Bin, Gary L. Lindberg und Charles J. Link. „DNA Methylation of Helper Virus Increases Genetic Instability of Retroviral Vector Producer Cells“. Journal of Virology 74, Nr. 7 (01.04.2000): 3177–87. http://dx.doi.org/10.1128/jvi.74.7.3177-3187.2000.
Der volle Inhalt der QuelleHariharan, Mangala J., David A. Driver, Kay Townsend, Duane Brumm, John M. Polo, Barbara A. Belli, Donald J. Catton et al. „DNA Immunization against Herpes Simplex Virus: Enhanced Efficacy Using a Sindbis Virus-Based Vector“. Journal of Virology 72, Nr. 2 (01.02.1998): 950–58. http://dx.doi.org/10.1128/jvi.72.2.950-958.1998.
Der volle Inhalt der QuelleTsai, Chi-Wei, Adib Rowhani, Deborah A. Golino, Kent M. Daane und Rodrigo P. P. Almeida. „Mealybug Transmission of Grapevine Leafroll Viruses: An Analysis of Virus–Vector Specificity“. Phytopathology® 100, Nr. 8 (August 2010): 830–34. http://dx.doi.org/10.1094/phyto-100-8-0830.
Der volle Inhalt der QuelleGildow, F. E., D. A. Shah, W. M. Sackett, T. Butzler, B. A. Nault und S. J. Fleischer. „Transmission Efficiency of Cucumber mosaic virus by Aphids Associated with Virus Epidemics in Snap Bean“. Phytopathology® 98, Nr. 11 (November 2008): 1233–41. http://dx.doi.org/10.1094/phyto-98-11-1233.
Der volle Inhalt der QuelleDissertationen zum Thema "VECTOR DE VIRUS"
Mills, Mary Katherine. „Vector-pathogen interactions within the vector, Culicoides sonorensis“. Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38154.
Der volle Inhalt der QuelleDivision of Biology
Kristin Michel
The biting midge, Culicoides sonorensis, vectors orbiviruses of economic importance, such as epizootic hemorrhagic disease virus (EHDV). Due to the limitations in available molecular tools, critical Culicoides-orbivirus interactions underlying vector competence remain unclear. To provide a foundation for the study of midge-EHDV interactions, RNA interference (RNAi) was developed as a reverse genetic tool, and EHDV-2 infection dynamics were determined within C. sonorensis. To develop RNAi, exogenous double-stranded RNA (dsRNA) was injected into C. sonorensis adults specific to the C. sonorensis inhibitor of apoptosis protein 1 (CsIAP1) ortholog (dsCsIAP1). A significant decrease in CsIAP1 transcripts was observed in whole midges, with highest reduction in the midgut. In addition, dsCsIAP1-injected midges had increased mortality, a loss of midgut tissue integrity, and increased caspase activity. The longevity and midgut phenotypes were partially reversed by the co-injection of dsRNA specific to the C. sonorensis initiator caspase Dronc ortholog and CsIAP1. These results demonstrated that RNAi can be achieved in the midge midgut through injection of target dsRNAs into the hemolymph. Furthermore, the time course of EHDV-2 infection within C. sonorensis was characterized. EHDV-2 infection was observed in the midgut and secondary tissues, including the salivary glands, by 5 days post-feeding (dpf). These data are consistent with dissemination of EHDV-2 to secondary susceptible tissues throughout the midge via the hemolymph and indicate that virus transmission by C. sonorensis may occur as early as 5 dpf. This work provides a foundation for the future study of Culicoides-orbivirus interactions, including the antiviral role of RNAi at the midgut barrier.
Gaafar, Yahya Zakaria Abdou [Verfasser]. „Plant virus identification and virus-vector-host interactions / Yahya Zakaria Abdou Gaafar“. Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1220909262/34.
Der volle Inhalt der QuelleEverett, Anthany Laurence. „Virus vector gene inserts are stabilized in the presence of satellite panicum mosaic virus coat protein“. [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3043.
Der volle Inhalt der QuelleRussell, Rebecca Alice. „Prototype foamy virus gene expression and hybrid vector development“. Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408262.
Der volle Inhalt der QuelleDraper, Simon J. „Development of virus vector-based blood-stage Malaria Vaccines“. Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509922.
Der volle Inhalt der QuelleMcAleer, Barry E. „Expression of mumps virus proteins in eukaryote vector systems“. Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263462.
Der volle Inhalt der QuelleSweeney, Nathan Paul. „Foamy virus vector integration and application in gene therapy“. Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/50704.
Der volle Inhalt der QuelleHu, Nai-Chung. „The development of penguinpox virus (PEPV) as a vaccine vector : transfer vector construction and rescue of virus growth in rabbit kidney cells (RK-13) by vaccinia virus K1“. Master's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/10687.
Der volle Inhalt der QuelleOf the many vaccine trials which have taken place, the most promising results have been obtained from the recent phase 3 clinical trial which tested the ability of a dual protein and Canarypox virus recombinant to protect humans against HIV-1 infections. Because poxviruses are being developed as vaccine vectors against a number of diseases, it is important to continue the search for novel poxvirus vectors, in particular, those that do not cross-neutralize one another. This thesis describes the preliminary work performed on the development of Penguinpox virus (PEPV) as a vaccine vector.
Pizzato, Massimo. „Retroviral vectors for gene therapy : characterisation of vector particle-cell interaction and development of novel packaging cell lines“. Thesis, Institute of Cancer Research (University Of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313365.
Der volle Inhalt der QuelleTwiddy, Sally Susanna. „The molecular epidemiology and evolution of dengue virus“. Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269490.
Der volle Inhalt der QuelleBücher zum Thema "VECTOR DE VIRUS"
Nagai, Yoshiyuki, Hrsg. Sendai Virus Vector. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9.
Der volle Inhalt der QuelleMukhopadhyay, S. Plant virus, vector epidemiology and management. Enfield, NH: Science Publishers, 2010.
Den vollen Inhalt der Quelle findenMukhopadhyay, S. Plant virus, vector epidemiology and management. Enfield, NH: Science Publishers, 2010.
Den vollen Inhalt der Quelle findenMukhopadhyay, S. Plant virus, vector epidemiology and management. Enfield, NH: Science Publishers, 2010.
Den vollen Inhalt der Quelle findenNebbache, Salim. The virus-vector relationship of maize streak virus with Cicadulina leafhoppers. Norwich: University ofEast Anglia, 1988.
Den vollen Inhalt der Quelle findenDecraemer, W. The Family Trichodoridae: Stubby Root and Virus Vector Nematodes. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8482-1.
Der volle Inhalt der QuelleDecraemer, W. The family Trichodoridae: Stubby root and virus vector nematodes. Dordrecht: Kluwer Academic Publishers, 1995.
Den vollen Inhalt der Quelle findenInternational Symposium on Viruses with Fungal Vectors (1987 St. Andrews University). Viruses with fungal vectors. Wellesbourne, Warwick: Association of Applied Biologists, 1988.
Den vollen Inhalt der Quelle findenGhose, Abhijit. The canarypox virus ALVAC as a vector in cancer gene therapy. Ottawa: National Library of Canada, 1999.
Den vollen Inhalt der Quelle findenViral vectors for gene therapy: Methods and protocols. New York: Humana Press, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "VECTOR DE VIRUS"
Díaz-Menéndez, Marta, und Clara Crespillo-Andújar. „The Vector“. In Zika Virus Infection, 21–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59406-4_4.
Der volle Inhalt der QuelleConzelmann, Karl-Klaus. „Reverse Genetics of Mononegavirales: The Rabies Virus Paradigm“. In Sendai Virus Vector, 1–20. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_1.
Der volle Inhalt der QuelleNagai, Yoshiyuki, und Atsushi Kato. „Sendai Virus Biology and Engineering Leading up to the Development of a Novel Class of Expression Vector“. In Sendai Virus Vector, 21–68. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_2.
Der volle Inhalt der QuelleIida, Akihiro, und Makoto Inoue. „Concept and Technology Underlying Sendai Virus (SeV) Vector Development“. In Sendai Virus Vector, 69–89. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_3.
Der volle Inhalt der QuelleWiegand, Marian, und Wolfgang J. Neubert. „Genome Replication-Incompetent Sendai Virus Vaccine Vector Against Respiratory Viral Infections That Is Capable of Eliciting a Broad Spectrum of Specific Immune Response“. In Sendai Virus Vector, 91–126. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_4.
Der volle Inhalt der QuelleSeki, Sayuri, und Tetsuro Matano. „Development of Vaccines Using SeV Vectors Against AIDS and Other Infectious Diseases“. In Sendai Virus Vector, 127–49. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_5.
Der volle Inhalt der QuelleYonemitsu, Yoshikazu, Yasuji Ueda und Mamoru Hasegawa. „BioKnife, a Modified Sendai Virus, to Resect Malignant Tumors“. In Sendai Virus Vector, 151–69. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_6.
Der volle Inhalt der QuelleFusaki, Noemi, und Hiroshi Ban. „Induction of Human Pluripotent Stem Cells by the Sendai Virus Vector: Establishment of a Highly Efficient and Footprint-Free System“. In Sendai Virus Vector, 171–83. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_7.
Der volle Inhalt der QuelleYonemitsu, Yoshikazu, Takuya Matsumoto und Yoshihiko Maehara. „Gene Therapy for Peripheral Arterial Disease Using Sendai Virus Vector: From Preclinical Studies to the Phase I/IIa Clinical Trial“. In Sendai Virus Vector, 185–99. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_8.
Der volle Inhalt der QuelleButter, N. S. „Vector-Virus Management“. In Insect Vectors and Plant Pathogens, 397–428. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503641-15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "VECTOR DE VIRUS"
Chisholm, Paul Joseph. „Competition with non-vectors mediates virus-vector interactions“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.115741.
Der volle Inhalt der QuelleRedinbaugh, Margaret (Peg). „Vector-virus interactions in maize agroecosystems in East Africa“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.94561.
Der volle Inhalt der QuelleAyres, Constância. „Tracking the incrimination ofAedes aegyptias a Zika virus vector“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.109197.
Der volle Inhalt der QuelleCristea, Paul Dan. „Phase and Vector Analysis of H5N1 Avian Influenza Virus“. In 2006 8th Seminar on Neural Network Applications in Electrical Engineering. IEEE, 2006. http://dx.doi.org/10.1109/neurel.2006.341191.
Der volle Inhalt der QuelleRaafat, Nermin, Chantal Mengus, Michael Heberer, Giulio C. Spagnoli und Paul Zajac. „Abstract 1500: Modulation of recombinant vaccinia virus vector immunogenicity“. In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1500.
Der volle Inhalt der QuelleMorales-Hojas, Ramiro. „Genomics of bluetongue virus vector competence inCulicoides sonorensis(Diptera: Ceratopogonidae)“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.109119.
Der volle Inhalt der QuelleGadhave, Kiran Ramesh. „Potyvirus transmission and vector-virus interactions in cucurbit production systems“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.112843.
Der volle Inhalt der QuelleMuik, Alexander, Janine Kimpel, Reinhard Tober, Carles Urbiola und Dorothee von Laer. „Abstract B37: VSV-GP: A vaccine vector and oncolytic virus“. In Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-b37.
Der volle Inhalt der QuelleSanders, Christopher. „Culicoidesand reassortant bluetongue viruses: A study of virus/vector/host interactions“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.106585.
Der volle Inhalt der Quelle„Analysis of the Genomes of Chikungunya Virus and Dengue Virus Using Decision Tree, Apriori Algorithm, and Support Vector Machine“. In 2016 the 6th International Workshop on Computer Science and Engineering. WCSE, 2016. http://dx.doi.org/10.18178/wcse.2016.06.049.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "VECTOR DE VIRUS"
Durden, Lance A., Thomas M. Logan, Mark L. Wilson und Kenneth J. Linthicum. Experimental Vector Incompetence of a Soft Tick, Ornithodoros sonrai (Acari: Argasidae), for Crimean-Congo Hemorrhagic Fever Virus. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada265568.
Der volle Inhalt der QuelleLinthicum, K. J., C. L. Bailey, C. J. Tucker, K. D. Mitchell und T. M. Logan. Application of Polar-Orbiting, Meteorological Satellite Data to Detect Flooding of Rift Valley Fever Virus Vector Mosquito Habitats in Kenya. Fort Belvoir, VA: Defense Technical Information Center, Januar 1990. http://dx.doi.org/10.21236/ada233281.
Der volle Inhalt der QuelleHall, Simon J. Construction of a Vesicular Stomatitis Virus Expressing Both a Fusogenic Glycoprotein and IL-12: A Novel Vector for Prostate Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada462813.
Der volle Inhalt der QuelleDropulic, Lesia. Development of Targeted Sindbis Virus Vectors for Potential Application to Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada404597.
Der volle Inhalt der QuelleDropulic, Lesia K. Development of Targeted Sindbis Virus Vectors for Potential Application to Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada411347.
Der volle Inhalt der QuelleDropulie, Lesia K. Development of targeted Sindbis Virus Vectors for Potential Application to Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2000. http://dx.doi.org/10.21236/ada392586.
Der volle Inhalt der QuelleDropulic, Lesia K. Development of Targeted Sindbis Virus Vectors for Potential Application to Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada424055.
Der volle Inhalt der Quelle