Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „VOLATILITY MEASUREMENT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "VOLATILITY MEASUREMENT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "VOLATILITY MEASUREMENT"
Arsy, Izza Dinikal, und Dedi Rosadi. „MEASUREMENT OF SUPPORT VECTOR REGRESSION PERFORMANCE WITH CLUSTER ANALYSIS FOR STOCK PRICE MODELING“. MEDIA STATISTIKA 15, Nr. 2 (06.04.2023): 163–74. http://dx.doi.org/10.14710/medstat.15.2.163-174.
Der volle Inhalt der QuelleMellman, George S. „Improving Return Volatility Measurement and Presentation“. CFA Digest 31, Nr. 4 (November 2001): 77–79. http://dx.doi.org/10.2469/dig.v31.n4.982.
Der volle Inhalt der QuelleFreitas, Samuel V. D., Mariana B. Oliveira, Álvaro S. Lima und João A. P. Coutinho. „Measurement and Prediction of Biodiesel Volatility“. Energy & Fuels 26, Nr. 5 (24.04.2012): 3048–53. http://dx.doi.org/10.1021/ef3004174.
Der volle Inhalt der QuelleKarnezi, E., I. Riipinen und S. N. Pandis. „Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis“. Atmospheric Measurement Techniques Discussions 7, Nr. 1 (28.01.2014): 859–93. http://dx.doi.org/10.5194/amtd-7-859-2014.
Der volle Inhalt der QuelleLee, B. H., E. Kostenidou, L. Hildebrandt, I. Riipinen, G. J. Engelhart, C. Mohr, P. F. DeCarlo et al. „Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)“. Atmospheric Chemistry and Physics Discussions 10, Nr. 7 (20.07.2010): 17435–66. http://dx.doi.org/10.5194/acpd-10-17435-2010.
Der volle Inhalt der QuelleKarnezi, E., I. Riipinen und S. N. Pandis. „Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis“. Atmospheric Measurement Techniques 7, Nr. 9 (16.09.2014): 2953–65. http://dx.doi.org/10.5194/amt-7-2953-2014.
Der volle Inhalt der QuelleLee, B. H., E. Kostenidou, L. Hildebrandt, I. Riipinen, G. J. Engelhart, C. Mohr, P. F. DeCarlo et al. „Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)“. Atmospheric Chemistry and Physics 10, Nr. 24 (21.12.2010): 12149–60. http://dx.doi.org/10.5194/acp-10-12149-2010.
Der volle Inhalt der QuelleRushworth, S. A., L. M. Smith, A. J. Kingsley, R. Odedra, R. Nickson und P. Hughes. „Vapour pressure measurement of low volatility precursors“. Microelectronics Reliability 45, Nr. 5-6 (Mai 2005): 1000–1002. http://dx.doi.org/10.1016/j.microrel.2004.11.007.
Der volle Inhalt der QuelleCipollini, Fabrizio, Giampiero M. Gallo und Edoardo Otranto. „Realized volatility forecasting: Robustness to measurement errors“. International Journal of Forecasting 37, Nr. 1 (Januar 2021): 44–57. http://dx.doi.org/10.1016/j.ijforecast.2020.02.009.
Der volle Inhalt der QuelleEom, Cheoljun, Taisei Kaizoj, Jong Won Park und Enrico Scalas. „Realized FX Volatility : Statistical Properties and Applications“. Journal of Derivatives and Quantitative Studies 26, Nr. 1 (28.02.2018): 1–25. http://dx.doi.org/10.1108/jdqs-01-2018-b0001.
Der volle Inhalt der QuelleDissertationen zum Thema "VOLATILITY MEASUREMENT"
Ndiaye, Moctar. „Maize price volatility in Burkina Faso : Measurement, Causes and Consequences“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTD042.
Der volle Inhalt der QuelleFood price volatility is an ongoing concern in developing countries since the food price spikes in 2007/08 and 2010/11. This dissertation focuses on the patterns of food price volatility in Burkina Faso. Price volatility is defined as the unpredictable component of price variations. The aim of this dissertation is to contribute to a better understanding of three complementary issues i) the nature of maize price volatility in Burkina Faso, ii) its determinants and iii) its impacts on agricultural producers’ behavior. We combine an original database of grain prices on 28 local markets in the last 15 years and a panel database of almost 2,000 farm households’ production choices throughout the. Our results can be summarized as follows. First, these data allowed isolating the key sector of maize and then presenting detailed data on maize price series and the agricultural activity of households used in the remainder of this thesis (chapter 1). Second, the analysis of maize price series in each market suggests that ARCH model as the dominant time-series model to describe price volatility patterns in most markets in Burkina Faso. In these markets, price drops and peaks have a similar contribution to price volatility, and only recent episodes of price variations increase current volatility. Other markets are characterized by long term volatility episodes with a differential effect of price variations due to the geographical position (Chapter 2).Third, the analysis with panel method of maize price series shows that maize price volatility is greater in remote markets (Chapter 3). Fourth, by combining price series on local cereal markets and a panel data set on farm households’ production choices, we find that higher maize prices increase the quantity of chemical fertilizer use. However, unpredictable maize price variations decrease the level of fertilizer use; while predictable maize prices have no significant effect on fertilizer use (Chapter 4). The novelty of this thesis lies in the analysis of price volatility on local markets and at a micro level with household data, whereas this issue is usually perceived at the macroeconomic scale
Bernemyr, Hanna. „Volatility and number measurement of diesel engine exhaust particles“. Doctoral thesis, Stockholm : Maskinkonstruktion, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4482.
Der volle Inhalt der QuelleChen, Liyuan. „Essays on portfolio optimization, volatility modelling and risk measurement“. Thesis, University of York, 2017. http://etheses.whiterose.ac.uk/19165/.
Der volle Inhalt der QuelleJain, Akansha, und Svitlana Denga. „Volatility on forex exchange of India“. Thesis, PUET, 2015. http://dspace.puet.edu.ua/handle/123456789/2852.
Der volle Inhalt der Quelle1. Most hedging instruments are required to cope up extreme volatility of INR against all major currencies of the world. 2. Steady liberalization of financial markets is need more attention on business who invest back in India. 3. Promotion of invoicing of trade in domestic currency will be extremely helpful and beneficial to cope up with extreme volatility. 4. There has been wide progress and enhancement of INR market across globe especially in Dubai, Singapore, London and New York, so it is need to try relocate of offshore activities on shore. 5. RBI has taken a number of steps in the recent past to liberalize currency futures market to obviate/reduce the need for the NDF market. 6. There is need for effective coalition between OTC and exchange traded markets for currency futures. 7. More focus should be to advocate the importance and practicability of risk management techniques in particular using options. 8. There is need to develop strict monitoring mechanism by liberalizing open position limits of banks.
Ally, Abdallah K. „Quantile-based methods for prediction, risk measurement and inference“. Thesis, Brunel University, 2010. http://bura.brunel.ac.uk/handle/2438/5342.
Der volle Inhalt der QuelleFranklin, Jonathan Pfeil. „Measurement and characterization of low volatility organic compounds in the atmosphere“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119327.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Organic aerosol is a central topic in environmental science due to its role in climate forcing and negative health effects. The transformation of organic species from primary gas phase emissions to secondary organic aerosol (SOA) is highly complex and poorly understood, proving difficult for even stateof- the-art computational models to predict. This thesis describes the in-depth characterization and redesign of a previously developed technique for the quantification of intermediate volatility organic compounds (IVOCs), which are compounds with saturation vapor pressures of 10³-10⁷ [mu]g/m³. This analytical technique, the thermal-desorption electron ionization mass spectrometer (TD-EIMS) provides a volatility separated, bulk measurement of IVOCs and will be used to investigate the primary emissions as well as production and evolution of IVOCs in a series of experiments described in this thesis. Primary emissions of IVOCs have been previously measured in vehicle exhaust and have been theorized as a significant precursor to secondary organic aerosol (SOA) in urban atmospheres. IVOCs are predominately emitted during cold start periods, but maintain a similar chemical composition across all engine states. As emissions controls have tightened, emissions of non-methane hydrocarbons and primary particulate matter have decreased, however emissions of IVOCs have only decreased significantly (as much as 80%) between the newest ULEV and SULEV emissions control tiers. Laboratory studies examining the atmospheric oxidation of common biogenic and anthropogenic SOA precursors in environmental "smog" chambers show different production and evolution profiles of IVOCs. The comparison of IVOCs measured by the TD-EIMS with other analytical techniques sampling in parallel show the TD-EIMS may detect a previously characterized fraction of carbon. Production of secondary low volatility organic compounds can also occur in low oxygen systems, such as in planetary atmospheres or in the process of soot formation. Ultraviolet light or heat can form radical hydrocarbon species, which, in low oxygen environments, will react with other hydrocarbon or radical species, undergoing oxidation by molecular growth. Particles made from ethane and ethylene are composed of very saturated compounds. The particles produced from the photolysis of acetylene are fundamentally different showing significantly larger molecule sizes and substantially higher degrees of unsaturation. The results from this thesis demonstrate measurements of the production and evolution of primary and secondary low volatility organic gases by new analytical techniques and provide a new insight to the complex chemical processes in the atmosphere leading to the production of secondary organic aerosol.
by Jonathan Pfeil Franklin.
Ph. D. in Environmental Chemistry
Kim, Alisa. „Deep Learning for Uncertainty Measurement“. Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22161.
Der volle Inhalt der QuelleThis thesis focuses on solving the problem of uncertainty measurement and its impact on business decisions while pursuing two goals: first, develop and validate accurate and robust models for uncertainty quantification, employing both the well established statistical models and newly developed machine learning tools, with particular focus on deep learning. The second goal revolves around the industrial application of proposed models, applying them to real-world cases when measuring volatility or making a risky decision entails a direct and substantial gain or loss. This thesis started with the exploration of implied volatility (IV) as a proxy for investors' perception of uncertainty for a new class of assets - crypto-currencies. The second paper focused on methods to identify risk-loving traders and employed the DNN infrastructure for it to investigate further the risk-taking behavior of market actors that both stems from and perpetuates uncertainty. The third paper addressed the challenging endeavor of fraud detection and offered the decision support model that allowed a more accurate and interpretable evaluation of financial reports submitted for audit. Following the importance of risk assessment and agents' expectations in economic development and building on the existing works of Baker (2016) and their economic policy uncertainty (EPU) index, it offered a novel DL-NLP-based method for the quantification of economic policy uncertainty. In summary, this thesis offers insights that are highly relevant to both researchers and practitioners. The new deep learning-based solutions exhibit superior performance to existing approaches to quantify and explain economic uncertainty, allowing for more accurate forecasting, enhanced planning capacities, and mitigated risks. The offered use-cases provide a road-map for further development of the DL tools in practice and constitute a platform for further research.
Malherbe, Chanel. „Fourier method for the measurement of univariate and multivariate volatility in the presence of high frequency data“. Master's thesis, University of Cape Town, 2007. http://hdl.handle.net/11427/4386.
Der volle Inhalt der QuelleMazibas, Murat. „Dynamic portfolio construction and portfolio risk measurement“. Thesis, University of Exeter, 2011. http://hdl.handle.net/10036/3297.
Der volle Inhalt der QuelleSingh, Ashish. „Measurement of the physical properties of ultrafine particles in the rural continental US“. Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1905.
Der volle Inhalt der QuelleBücher zum Thema "VOLATILITY MEASUREMENT"
Indian Institute of Management, Ahmedabad., Hrsg. Rupee dollar option pricing and risk measurement: Jump processes, changing volatility and kurtosis shifts. Ahmedabad: Indian Institute of Management, 1999.
Den vollen Inhalt der Quelle findenAndersen, Torben G. Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. Cambridge, MA: National Bureau of Economic Research, 2005.
Den vollen Inhalt der Quelle findenPoel, Jeff D. A novel apparatus for estimating pesticide volatility from spray droplets. 1996.
Den vollen Inhalt der Quelle findenBaker, H. Kent, und Greg Filbeck, Hrsg. Hedge Funds. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190607371.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "VOLATILITY MEASUREMENT"
Díaz-Bonilla, Eugenio. „Volatile Volatility: Conceptual and Measurement Issues Related to Price Trends and Volatility“. In Food Price Volatility and Its Implications for Food Security and Policy, 35–57. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28201-5_2.
Der volle Inhalt der QuelleGerlach, Richard, Antonio Naimoli und Giuseppe Storti. „Capturing Measurement Error Bias in Volatility Forecasting by Realized GARCH Models“. In Models for Data Analysis, 141–59. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15885-8_10.
Der volle Inhalt der QuelleLiu, Jianxu, Songsak Sriboonchitta, Panisara Phochanachan und Jiechen Tang. „Volatility and Dependence for Systemic Risk Measurement of the International Financial System“. In Lecture Notes in Computer Science, 403–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25135-6_37.
Der volle Inhalt der QuelleKearney, Colm. „Volatility and Risk in Integrated Financial Systems: Measurement, Transmission and Policy Implications“. In Risk Management in Volatile Financial Markets, 86–114. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1271-0_6.
Der volle Inhalt der QuelleZhang, Xinwu, Yan Wang und Handong Li. „The Contrast of Parametric and Nonparametric Volatility Measurement Based on Chinese Stock Market“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 618–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02466-5_60.
Der volle Inhalt der QuelleGeorgiev, Slavi G., und Lubin G. Vulkov. „Recovering the Time-Dependent Volatility and Interest Rate in European Options from Nonlocal Price Measurements by Adjoint Equation Optimization“. In Advanced Computing in Industrial Mathematics, 45–55. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20951-2_5.
Der volle Inhalt der Quelle„Volatility Measurement“. In Volatility Trading, 13–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118662724.ch2.
Der volle Inhalt der Quelle„Risk Measurement and Volatility“. In Risk Finance and Asset Pricing, 63–108. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118268155.ch3.
Der volle Inhalt der QuelleMattiacci, Eleonora. „Measuring Volatility“. In Volatile States in International Politics, 49—C3.P65. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/oso/9780197638675.003.0003.
Der volle Inhalt der Quelle„Measurement of Volatility and Correlation“. In Implementing Value at Risk, 57–102. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470013303.ch4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "VOLATILITY MEASUREMENT"
Fangyuan Lu und Xiaona Duan. „Analysis of the volatility characteristics of the different Chinese stock indexes“. In 2009 International Conference on Test and Measurement (ICTM). IEEE, 2009. http://dx.doi.org/10.1109/ictm.2009.5412906.
Der volle Inhalt der QuelleMa, Yulin, Pin Guo und Yuan Zhao. „The Empirical Research on Volatility Measurement Model Based Multiplicative Error Model“. In 2014 Seventh International Joint Conference on Computational Sciences and Optimization (CSO). IEEE, 2014. http://dx.doi.org/10.1109/cso.2014.156.
Der volle Inhalt der QuelleLiu, Feitong. „SUITABLE RISK MEASUREMENT OF CHINESE STOCK MARKET IN HIGH VOLATILITY PERIODS“. In International Conference on Economics, Finance and Statistics. Volkson Press, 2018. http://dx.doi.org/10.26480/icefs.01.2018.06.12.
Der volle Inhalt der QuelleLuo, Yi, Yichen Wu, Liqiao Li, Yuening Guo, Ege Çetintas, Yifang Zhu und Aydogan Ozcan. „Volatility measurement of particulate matter using deep learning-based holographic microscopy“. In Optics and Biophotonics in Low-Resource Settings VIII, herausgegeben von David Levitz und Aydogan Ozcan. SPIE, 2022. http://dx.doi.org/10.1117/12.2608830.
Der volle Inhalt der QuelleShamsi, Zain, und Dmitri Loguinov. „Unsupervised Clustering Under Temporal Feature Volatility in Network Stack Fingerprinting“. In SIGMETRICS '16: SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2896377.2901449.
Der volle Inhalt der QuelleLi, Handong, und Lihuan Lu. „Research on the Measurement of Realized Range-Based Volatility Based on Chinese Stock Market“. In 2009 International Conference on Management and Service Science (MASS). IEEE, 2009. http://dx.doi.org/10.1109/icmss.2009.5302307.
Der volle Inhalt der QuelleXue, Hui. „Exploration of Volatility and Market Risk of Stock Return Rate in Listed Financial Enterprises Based on Fair Value Measurement“. In Proceedings of the 2nd International Conference on Economy, Management and Entrepreneurship (ICOEME 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/icoeme-19.2019.15.
Der volle Inhalt der QuelleAgarwal, Gaurav, Gang Liu und Brian Lattimer. „Temperature Dependent Solid Fuel Combustion Characterization and Fuel Ranking“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65615.
Der volle Inhalt der QuelleLi, Qianru, Christophe Tricaud, Rongtao Sun und YangQuan Chen. „Great Salt Lake Surface Level Forecasting Using FIGARCH Model“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34909.
Der volle Inhalt der QuelleRamos, Manuel J. M. G., und James S. Wallace. „Sources of Particulate Matter Emissions Variability From a Gasoline Direct Injection Engine“. In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3620.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "VOLATILITY MEASUREMENT"
Andersen, Torben, Tim Bollerslev und Francis Diebold. Parametric and Nonparametric Volatility Measurement. Cambridge, MA: National Bureau of Economic Research, August 2002. http://dx.doi.org/10.3386/t0279.
Der volle Inhalt der QuelleParra-Polanía, Julián Andrés, und Carmiña Ofelia Vargas-Riaño. Changes in GDP's measurement error volatility and response of the monetary policy rate : two approaches. Bogotá, Colombia: Banco de la República, März 2014. http://dx.doi.org/10.32468/be.814.
Der volle Inhalt der QuelleAndersen, Torben, Tim Bollerslev und Francis Diebold. Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility. Cambridge, MA: National Bureau of Economic Research, November 2005. http://dx.doi.org/10.3386/w11775.
Der volle Inhalt der QuelleMarra, J. C., und J. R. Harbour. Measurement of the volatility and glass transition temperatures of glasses produced during the DWPF startup test program. Office of Scientific and Technical Information (OSTI), Oktober 1995. http://dx.doi.org/10.2172/527436.
Der volle Inhalt der QuelleClark, Todd E., Gergely Ganics und Elmar Mertens. Constructing fan charts from the ragged edge of SPF forecasts. Federal Reserve Bank of Cleveland, November 2022. http://dx.doi.org/10.26509/frbc-wp-202236.
Der volle Inhalt der QuelleDr. Timothy Onasch. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/963729.
Der volle Inhalt der QuelleMonetary Policy Report - January 2022. Banco de la República, März 2022. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr1-2022.
Der volle Inhalt der Quelle