Auswahl der wissenschaftlichen Literatur zum Thema „Water body extraction“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Water body extraction" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Water body extraction"

1

Luo, Yuanjiang, Ao Feng, Hongxiang Li, et al. "New deep learning method for efficient extraction of small water from remote sensing images." PLOS ONE 17, no. 8 (2022): e0272317. http://dx.doi.org/10.1371/journal.pone.0272317.

Der volle Inhalt der Quelle
Annotation:
Extracting water bodies from remote sensing images is important in many fields, such as in water resources information acquisition and analysis. Conventional methods of water body extraction enhance the differences between water bodies and other interfering water bodies to improve the accuracy of water body boundary extraction. Multiple methods must be used alternately to extract water body boundaries more accurately. Water body extraction methods combined with neural networks struggle to improve the extraction accuracy of fine water bodies while ensuring an overall extraction effect. In this
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ye, Chul-Soo. "Water body extraction in SAR image using water body texture index." Korean Journal of Remote Sensing 31, no. 4 (2015): 337–46. http://dx.doi.org/10.7780/kjrs.2015.31.4.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Na, Zihao, Zhonghua Guo, and Yang Zhu. "Soil Moisture Monitoring Based on Deformable Convolution Unit Net Algorithm Combined with Water Area Changes." Electronics 14, no. 5 (2025): 1011. https://doi.org/10.3390/electronics14051011.

Der volle Inhalt der Quelle
Annotation:
In response to the issue that existing soil moisture monitoring methods are significantly affected by surface roughness and the complex environment around water bodies, leading to a need for improvement in the accuracy of soil moisture inversion, a soil moisture detection algorithm based on a DCU-Net (Deformable Conv Unit-Net) water body extraction model is proposed, using the Ningxia region as the study area. The algorithm introduces the DCU (Deformable Conv Unit) module, which addresses the problem of extracting small water bodies at large scales with low resolution; reduces the probability
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jiang, Wei, Yuan Ni, Zhiguo Pang, et al. "An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery." Water 13, no. 12 (2021): 1647. http://dx.doi.org/10.3390/w13121647.

Der volle Inhalt der Quelle
Annotation:
Surface water bodies, such as rivers, lakes, and reservoirs, play an irreplaceable role in global ecosystems and climate systems. Sentinel-2 imagery provides new high-resolution satellite remote sensing data. Based on the analysis of the spectral characteristics of the Sentinel-2 satellite, a novel water index called the Sentinel-2 water index (SWI) that is based on the vegetation-sensitive red-edge band (Band 5) and shortwave infrared (Band 11) bands was developed. Four representative water body types, namely, Taihu Lake, Yangtze River, Chaka Salt Lake, and Chain Lake, were selected as study
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Yonghong, Huanyu Lu, Guangyi Ma, et al. "MU-Net: Embedding MixFormer into Unet to Extract Water Bodies from Remote Sensing Images." Remote Sensing 15, no. 14 (2023): 3559. http://dx.doi.org/10.3390/rs15143559.

Der volle Inhalt der Quelle
Annotation:
Water bodies extraction is important in water resource utilization and flood prevention and mitigation. Remote sensing images contain rich information, but due to the complex spatial background features and noise interference, problems such as inaccurate tributary extraction and inaccurate segmentation occur when extracting water bodies. Recently, using a convolutional neural network (CNN) to extract water bodies is gradually becoming popular. However, the local property of CNN limits the extraction of global information, while Transformer, using a self-attention mechanism, has great potential
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Weng, Yijie, Zongmei Li, Guofeng Tang, and Yang Wang. "OCNet-Based Water Body Extraction from Remote Sensing Images." Water 15, no. 20 (2023): 3557. http://dx.doi.org/10.3390/w15203557.

Der volle Inhalt der Quelle
Annotation:
Water body extraction techniques from remotely sensed images are crucial in water resources distribution studies, climate change studies and other work. The traditional remote sensing water body extraction has the problems of low accuracy and being time-consuming and laborious, and the water body recognition technique based on deep learning is more efficient and accurate than the traditional threshold method; however, there is the problem that the basic model of semantic segmentation is not well-adapted to complex remote sensing images. Based on this, this study adopts an OCNet feature extract
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhang, Q., X. Hu, and Y. Xiao. "A NOVEL HYBRID MODEL BASED ON CNN AND MULTI-SCALE TRANSFORMER FOR EXTRACTING WATER BODIES FROM HIGH RESOLUTION REMOTE SENSING IMAGES." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences X-1/W1-2023 (December 5, 2023): 889–94. http://dx.doi.org/10.5194/isprs-annals-x-1-w1-2023-889-2023.

Der volle Inhalt der Quelle
Annotation:
Abstract. Extracting water bodies from high-resolution remote sensing images has always been a challenging and hot task in the field of remote sensing. Considering that the accuracy and reliability of water body extraction still have some room for improvement, this paper proposes a hybrid network model based on CNN and multi-scale transformer for water body extraction from high-resolution remote sensing images. Specifically, the proposed network first uses a CNN model to extract a series of multi-scale features from shallow to deep from remote sensing images. These multi-scale features are the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Naik, B. Chandrababu, and B. Anuradha. "Extraction of Water-body Area from High-resolution Landsat Imagery." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (2018): 4111. http://dx.doi.org/10.11591/ijece.v8i6.pp4111-4119.

Der volle Inhalt der Quelle
Annotation:
Extraction of water bodies from satellite imagery has been broadly explored in the current decade. So many techniques were involved in detecting of the surface water bodies from satellite data. To detect and extracting of surface water body changes in Nagarjuna Sagar Reservoir, Andhra Pradesh from the period 1989 to 2017, were calculated using Landsat-5 TM, and Landsat-8 OLI data. Unsupervised classification and spectral water indexing methods, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Normalized Difference Water Index (NDWI), and
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Naik, B. Chandrababu, and B. Anuradha. "Extraction of Water-body Area from High-resolution Landsat Imagery." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (2018): 4111–19. https://doi.org/10.11591/ijece.v8i6.pp4111-4119.

Der volle Inhalt der Quelle
Annotation:
Extraction of water bodies from satellite imagery has been broadly explored in the current decade. So many techniques were involved in detecting of the surface water bodies from satellite data. To detect and extracting of surface water body changes in Nagarjuna Sagar Reservoir, Andhra Pradesh from the period 1989 to 2017, were calculated using Landsat-5 TM, and Landsat-8 OLI data. Unsupervised classification and spectral water indexing methods, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Normalized Difference Water Index (NDWI), and
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ye, Chul-Soo. "Water body extraction using block-based image partitioning and extension of water body boundaries." Korean Journal of Remote Sensing 32, no. 5 (2016): 471–82. http://dx.doi.org/10.7780/kjrs.2016.32.5.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Water body extraction"

1

Gasnier, Nicolas. "Use of multi-temporal and multi-sensor data for continental water body extraction in the context of the SWOT mission." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAT002.

Der volle Inhalt der Quelle
Annotation:
La télédétection spatiale fournit aux hydrologues et aux décideurs des données indispensables à la compréhension du cycle de l’eau et à la gestion des ressources et risques associés. Le satellite SWOT, qui est une collaboration entre les agences spatiales françaises (CNES) et américaine (NASA, JPL), et dont le lancement est prévu en 2022 vise à mesurer la hauteur des lacs, rivières et océans avec une grande résolution spatiale. Il complétera ainsi les capteurs existants, comme les constellations SAR et optique Sentinel-1 et 2 et les relevés in situ. SWOT représente une rupture technologique ca
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pillay, Maldean. "Gabor filter parameter optimization for multi-textured images : a case study on water body extraction from satellite imagery." Thesis, 2012. http://hdl.handle.net/10413/11070.

Der volle Inhalt der Quelle
Annotation:
The analysis and identification of texture is a key area in image processing and computer vision. One of the most prominent texture analysis algorithms is the Gabor Filter. These filters are used by convolving an image with a family of self similar filters or wavelets through the selection of a suitable number of scales and orientations, which are responsible for aiding in the identification of textures of differing coarseness and directions respectively. While extensively used in a variety of applications, including, biometrics such as iris and facial recognition, their effectiveness depend l
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Water body extraction"

1

Jun, Wang, and Xu Kuangdi. "Extraction of Water-Contained Ore Body." In The ECPH Encyclopedia of Mining and Metallurgy. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0740-1_228-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jun, Wang. "Extraction of Water-Contained Ore Body." In The ECPH Encyclopedia of Mining and Metallurgy. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-2086-0_228.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Prasad, K., E. Stephen Neal Joshua, and Osvaldo Gervasi. "Algorithms for Water Body Extraction from Remote Sensing Data." In Water Informatics. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1518-3_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lou, Linjiang, Chen Chen, Xinyuan Gao, Kun Liu, Minmin Li, and Yajie Fu. "Comparative Research on Water Body Extraction Methods Based on SPOT Data." In Proceedings of the 7th China High Resolution Earth Observation Conference (CHREOC 2020). Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5735-1_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hesham, Anas, and Dursun Zafer Seker. "Investigating Accurate Water Body Extraction from Satellite Imagery Using Convolutional Neural Network with Water Indices." In Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-43218-7_45.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rithin Paul Reddy, K., Suda Sai Srija, R. Karthi, and P. Geetha. "Evaluation of Water Body Extraction from Satellite Images Using Open-Source Tools." In Intelligent Systems, Technologies and Applications. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6095-4_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fang, Yiwei, Xin Lyu, Baogen Tong, et al. "PSAGNet: A Water Body Extraction Method for High Resolution Remote Sensing Images." In Proceedings of International Conference on Image, Vision and Intelligent Systems 2022 (ICIVIS 2022). Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0923-0_26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jakovljević, Gordana, and Miro Govedarica. "Water Body Extraction and Flood Risk Assessment Using Lidar and Open Data." In Climate Change Management. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03383-5_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chandrababu Naik, B., Bairam Ravi Kumar, K. Vasu Babu, K. Purushotham Prasad, and K. Sai Venu Prathap. "Surface Water Body Extraction for Landsat-8 (OLI) Imagery Using Water-Indices Methods and SCM Techniques." In Signals and Communication Technology. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47942-7_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Li, Xiumei, Xianbin Liu, Lina Liu, and Kun Xue. "Comparative Study of Water-Body Information Extraction Methods Based on Electronic Sensing Image." In Advances in Mechanical and Electronic Engineering. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31528-2_52.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Water body extraction"

1

Zhang, Tianyi, Weibin Li, Xihui Feng, et al. "Super-Resolution Water Body Extraction Based on MF-SegFormer." In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10640498.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yang, Xinyi, Wenli Huang, and Shujie Chen. "Extraction of Water Coverage Based on a Combined Multi-Source Water Body Distribution Dataset." In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10642751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Qin, Chen-Hao, Wei-Bin Li, Tian-Yi Zhang, Wen-Bo Ji, Xi-Hui Feng, and Yi Ren. "Improved DeepLabv3+ Based Flood Water Body Extraction Model for SAR Imagery." In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10640606.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kumari, Sushma, Jiantao Wu, David Ayala-Cabrera, and Soumyabrata Dev. "Effective Water Body Extraction from Hyperspectral Data: A Focus on Unsupervised Band Indices." In 2024 IEEE 9th International Conference on Computational Intelligence and Applications (ICCIA). IEEE, 2024. http://dx.doi.org/10.1109/iccia62557.2024.10719176.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Jianyu, Ye Tian, Lei Chen, Ning Wang, Ningning Zhang, and Siao Liu. "A Water Body Extraction Network Based on Fusing SAR Images and DEM Data." In 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). IEEE, 2024. https://doi.org/10.1109/icsidp62679.2024.10868508.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhou, Jing-Song, and Si-Bao Chen. "Dynamic patch refinement network for water body extraction and ultra-high resolution segmentation." In International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2025), edited by Haiquan Zhao and Xinhua Tang. SPIE, 2025. https://doi.org/10.1117/12.3070674.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Liu, Ting, Mengke Yuan, Chaoran Lu, et al. "Water Body Extraction from SAR and Multi-Source Data Using Siamese Network-Based Segmentation." In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10641935.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Xing, Jun, Binge Cui, Peng Li, Xiaohui Wang, and Lijuan Song. "Water body extraction in Nansi Lake Basin by integrating surface object types and spectral features." In Sixth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2024), edited by Zhiliang Qin, Jun Chen, and Huaichun Wu. SPIE, 2025. https://doi.org/10.1117/12.3057516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ji, Wenbo, Weibin Li, Xihui Feng, Tianyi Zhang, Chenhao Qin, and Yi Ren. "Multimodal water body extraction network based on remote sensing satellite images and digital surface model." In International Conference on Optics, Electronics, and Communication Engineering, edited by Yang Yue. SPIE, 2024. http://dx.doi.org/10.1117/12.3048285.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yuan Tian, Xiuwan Chen, Peng Luo, and Yubin Xu. "Beijiang water body information extraction based on ENVISAT-ASAR." In 2012 Second International Workshop on Earth Observation and Remote Sensing Applications (EORSA). IEEE, 2012. http://dx.doi.org/10.1109/eorsa.2012.6261181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Water body extraction"

1

Jia, Dan, Yong-Yi Wang, Dave Warman, and Alex Wang. PR350-224502-R02 Managing Longitudinal Stresses from Uneven Support and Settlement. Pipeline Research Council International, Inc. (PRCI), 2025. https://doi.org/10.55274/r0000107.

Der volle Inhalt der Quelle
Annotation:
High longitudinal stresses in pipelines can be a major contributor to failures of girth welds and circumferentially oriented flaws. These high stresses are frequently associated with construction and maintenance activities, such as excavation and backfill in new construction, pipe replacement, and integrity digs. There are currently no industry-wide guidelines for the management of construction- and maintenance-related stresses. The objective of this project is to develop such guidelines by extracting and streamlining the best practices from pipeline operators and other sources. Evidence colle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!