Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „WATER LOADED NANOFLUID“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "WATER LOADED NANOFLUID" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "WATER LOADED NANOFLUID"
Prabu, M., D. Kulandaivel, K. Ramesh und M. Shoban Babu. „Numerical Heat Transfer Analysis of Ag-Doped- CuO Nanofluids in Radiator with UDF codes in Ansys fluent“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 1 (31.01.2023): 1073–80. http://dx.doi.org/10.22214/ijraset.2023.48762.
Der volle Inhalt der QuelleAlhummiany, H. „Novel Nanofluid Based on Water-Loaded Delafossite CuAlO2 Nanowires: Structural and Thermal Properties“. Journal of Nanomaterials 2018 (2018): 1–6. http://dx.doi.org/10.1155/2018/4076960.
Der volle Inhalt der QuelleRudrabhiramu, Rokkala, Kiran Kumar Kupireddi und Kuchibotla Mallikarjuna Rao. „Study of Thermal Characteristics Augmentation of the Aluminium Oxide Nano Fluid with Different Base Fluids“. International Journal of Heat and Technology 39, Nr. 6 (31.12.2021): 2000–2005. http://dx.doi.org/10.18280/ijht.390639.
Der volle Inhalt der QuelleLanjewar, Abhishek, Bharat Bhanvase, Divya Barai, Shivani Chawhan und Shirish Sonawane. „Intensified Thermal Conductivity and Convective Heat Transfer of Ultrasonically Prepared CuO–Polyaniline Nanocomposite Based Nanofluids in Helical Coil Heat Exchanger“. Periodica Polytechnica Chemical Engineering 64, Nr. 2 (03.06.2019): 271–82. http://dx.doi.org/10.3311/ppch.13285.
Der volle Inhalt der QuelleKumar, P. Manoj, Rajasekaran Saminathan, Mohammed Tharwan, Haitham Hadidi, P. Michael Joseph Stalin, G. Kumaresan, S. Ram et al. „Study on Sintered Wick Heat Pipe (SWHP) with CuO Nanofluids under Different Orientation“. Journal of Nanomaterials 2022 (25.08.2022): 1–12. http://dx.doi.org/10.1155/2022/7158228.
Der volle Inhalt der QuelleAlhummiany, H. „Corrigendum to “Novel Nanofluid Based on Water-Loaded Delafossite CuAlO2 Nanowires: Structural and Thermal Properties”“. Journal of Nanomaterials 2018 (19.07.2018): 1. http://dx.doi.org/10.1155/2018/9583485.
Der volle Inhalt der QuelleSannad, Mohamed, Ahmed Kadhim Hussein, Awatef Abidi, Raad Z. Homod, Uddhaba Biswal, Bagh Ali, Lioua Kolsi und Obai Younis. „Numerical Study of MHD Natural Convection inside a Cubical Cavity Loaded with Copper-Water Nanofluid by Using a Non-Homogeneous Dynamic Mathematical Model“. Mathematics 10, Nr. 12 (15.06.2022): 2072. http://dx.doi.org/10.3390/math10122072.
Der volle Inhalt der QuelleSahota, Lovedeep, Swati Arora, Harendra Pal Singh und Girijashankar Sahoo. „Thermo-physical characteristics of passive double slope solar still loaded with MWCNTs and Al2O3-water based nanofluid“. Materials Today: Proceedings 32 (2020): 344–49. http://dx.doi.org/10.1016/j.matpr.2020.01.600.
Der volle Inhalt der QuelleMourad, Abed, Aissa Abderrahmane, Obai Younis, Riadh Marzouki und Anas Alazzam. „Numerical Simulations of Magnetohydrodynamics Natural Convection and Entropy Production in a Porous Annulus Bounded by Wavy Cylinder and Koch Snowflake Loaded with Cu–Water Nanofluid“. Micromachines 13, Nr. 2 (26.01.2022): 182. http://dx.doi.org/10.3390/mi13020182.
Der volle Inhalt der QuelleMannu, Rashmi, Vaithinathan Karthikeyan, Murugendrappa Malalkere Veerappa, Vellaisamy A. L. Roy, Anantha-Iyengar Gopalan, Gopalan Saianand, Prashant Sonar et al. „Facile Use of Silver Nanoparticles-Loaded Alumina/Silica in Nanofluid Formulations for Enhanced Catalytic Performance toward 4-Nitrophenol Reduction“. International Journal of Environmental Research and Public Health 18, Nr. 6 (15.03.2021): 2994. http://dx.doi.org/10.3390/ijerph18062994.
Der volle Inhalt der QuelleDissertationen zum Thema "WATER LOADED NANOFLUID"
DHARAMVEER. „ENERGY AND EXERGY ANALYSES OF ACTIVE SOLAR STILLS USING WATER LOADED NANOFLUID“. Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19091.
Der volle Inhalt der QuelleYu-HuiChiou und 邱育慧. „Conjugate cooling characteristics of Al2O3-water nanofluid flow in a rectangular mini-channel under steady/sudden-pulsed power load– A numerical simulation“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/99988588244550335256.
Der volle Inhalt der Quelle國立成功大學
機械工程學系
104
In this study, we use numerical simulation method to discuss the conjugation cooling characteristics of Al2O3 nanofluid flow in a rectangular mini-channel. The aim of the present study is to discuss the results of two cases; the first case is to investigate the influence of buoyancy to the temperature and velocity in the mini-channel with/without thermal buoyancy effect. The second one is to investigate the effect of impeding the dramatic change in temperature under sudden pulsed power load with ceiling embedded with/without Micro-Encapsulated Phase Change Material (MEPCM). The geometries of the mini-channel are 4.016 mm in width, 1.004 mm in height, and 74.2 mm in length with the fin thickness of 2.008 mm. In order to describe the three dimensional heat transfer and fluid flows of the water-based suspensions in a single mini-channel, pseudo vorticity velocity formulation and energy equation are coupled to solve the temperature and velocity profile in the mini-channel. Numerical simulations for the laminar forced convection in mini-channel have been performed with parameters in the following ranges: the volumetric fraction of Al2O3 nanofluid, and ; the volumetric flow rate entering mini-channel, (equivalently, ); and the heat flux imposed on the bottom surface of the rectangular mini-channel . The diameter of the particle in Al2O3 nanofluid is 20 nm. The mini-channel is iso-flux heated with heat flux of and on the bottom, and the heat flux of the rectangular mini-channel is . The numerical results obtained for the channel with ARch = 0.25, ARbw =0.5, ARcw = 0.5, and Wsw = 0.5 clearly reveal that using the Al2O3 nanofluid to replace the pure water as the coolant in the rectangular mini-channel can reduce the bulk mean temperature in the fluid, enhance the averaged heat transfer coefficient, and reduce the overall resistance in the rectangular mini-channel, respectively. Al2O3 nanofluid has greater thermal conductivity than pure water and the thermal conductivity increases with increasing concentration. With the thermal buoyancy effect, the bulk mean temperature of the fluid is 1°C lower than that without the effect and the averaged heat transfer coefficient is enhanced about 5.2%. Furthermore, the thermal buoyancy effect reduces overall thermal resistance in the rectangular mini-channel about 3.5%. Plus, lower Reynolds number leads to greater difference in temperature and heat transfer coefficient.With sudden pulsed power load, the ceiling temperature with MEPCM is 2°C lower than that without MEPCM; however, the bulk mean temperature of the fluid reduces only 0.2°C.
Jian-ChinLiao und 廖健欽. „Heat Dissipation Characteristics of Al2O3-Water Nanofluid Flow in a Mini-Channel Heat Sink under Steady/Surged heat Load - An Experimental Study“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/52350667253379135310.
Der volle Inhalt der Quelle國立成功大學
機械工程學系
104
The present study aims to investigate an experimental study concerning forced convective heat dissipation characteristics of Al2O3-water nanofluid flow in a mini-channel heat sink under steady/sudden-pulsed power load. Two multi-channel heat sinks featuring a length of 50 mm and a width of 25.1 mm were fabricated of oxygen-free copper with eight parallel mini-channels, each with an inlet cross-section of 1 mm in width and 3 mm in height with their ceiling embedded with or without a layer of a microencapsulated phase change material (MEPCM). The steady state experimental results obtained reveal that using the Al2O3-water nanofluid to replace the pure water as the coolant through the mini-channel heat sink can give rise to an enhancement of 41%, in the average heat transfer coefficient over that of using the pure water. In the aspect of incorporating the heat sink with its ceiling embedded MEPCM layer and hence the potential latent heat absorption effect, the steady state forced convection results reveal somewhat insignificant effects on cooling performance of Al2O3-water nanofluid. On the other hand, under the sudden-pulsed heat loads, the cooing effectiveness of using the Al2O3-water nanofluid in the heat sink with ceiling embedded MEPCM layer appears further uplifted in comparison with that without embedded MEPCM layer.
Buchteile zum Thema "WATER LOADED NANOFLUID"
Singh, Desh Bandhu, und G. N. Tiwari. „Thermal Modeling of Solar Stills“. In Solar Thermal Systems: Thermal Analysis and its Application, 90–153. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050950122010007.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "WATER LOADED NANOFLUID"
Li, Jie, Clement Kleinstreuer und Yu Feng. „Computational Analysis of Thermal Performance and Entropy Generation of Nanofluid Flow in Microchannels“. In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75007.
Der volle Inhalt der QuelleShit, Sakti Pada, N. K. Ghosh und Sudipta Pal. „Thermal conductivity of water base nanofluids containing loaded graphene nanosheets using molecular dynamics simulation“. In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001590.
Der volle Inhalt der QuelleVishwakarma, Vivek, Nitin Singhal, Vikrant Khullar, Himanshu Tyagi, Robert A. Taylor, Todd P. Otanicar und Ankur Jain. „Space Cooling Using the Concept of Nanofluids-Based Direct Absorption Solar Collectors“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87726.
Der volle Inhalt der Quelle