Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „WAVELETE DOMAIN“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "WAVELETE DOMAIN" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "WAVELETE DOMAIN"
Toda, Hiroshi, Zhong Zhang und Takashi Imamura. „Perfect-translation-invariant variable-density complex discrete wavelet transform“. International Journal of Wavelets, Multiresolution and Information Processing 12, Nr. 04 (Juli 2014): 1460001. http://dx.doi.org/10.1142/s0219691314600017.
Der volle Inhalt der QuelleTODA, HIROSHI, ZHONG ZHANG und TAKASHI IMAMURA. „PERFECT-TRANSLATION-INVARIANT CUSTOMIZABLE COMPLEX DISCRETE WAVELET TRANSFORM“. International Journal of Wavelets, Multiresolution and Information Processing 11, Nr. 04 (Juli 2013): 1360003. http://dx.doi.org/10.1142/s0219691313600035.
Der volle Inhalt der QuelleZhang, Jie, Xuehua Chen, Wei Jiang, Yunfei Liu und He Xu. „Estimation of the depth-domain seismic wavelet based on velocity substitution and a generalized seismic wavelet model“. GEOPHYSICS 87, Nr. 2 (24.01.2022): R213—R222. http://dx.doi.org/10.1190/geo2020-0745.1.
Der volle Inhalt der QuelleĎuriš, Viliam, Vladimir I. Semenov und Sergey G. Chumarov. „Wavelets and digital filters designed and synthesized in the time and frequency domains“. Mathematical Biosciences and Engineering 19, Nr. 3 (2022): 3056–68. http://dx.doi.org/10.3934/mbe.2022141.
Der volle Inhalt der QuelleAbuhamdia, Tariq, Saied Taheri und John Burns. „Laplace wavelet transform theory and applications“. Journal of Vibration and Control 24, Nr. 9 (11.05.2017): 1600–1620. http://dx.doi.org/10.1177/1077546317707103.
Der volle Inhalt der QuelleKING, EMILY J. „SMOOTH PARSEVAL FRAMES FOR L2(ℝ) AND GENERALIZATIONS TO L2(ℝd)“. International Journal of Wavelets, Multiresolution and Information Processing 11, Nr. 06 (November 2013): 1350047. http://dx.doi.org/10.1142/s0219691313500471.
Der volle Inhalt der QuelleBansal, Rishi, und Mike Matheney. „Wavelet distortion correction due to domain conversion“. GEOPHYSICS 75, Nr. 6 (November 2010): V77—V87. http://dx.doi.org/10.1190/1.3494081.
Der volle Inhalt der QuelleĎuriš, Viliam, Sergey G. Chumarov und Vladimir I. Semenov. „Increasing the Speed of Multiscale Signal Analysis in the Frequency Domain“. Electronics 12, Nr. 3 (02.02.2023): 745. http://dx.doi.org/10.3390/electronics12030745.
Der volle Inhalt der QuelleSun, Song Zhen, und Yi Guo. „Study of Periodic Frames and Trivariate Tight Wavelet Frames and Applications in Materials Engineering“. Advanced Materials Research 1079-1080 (Dezember 2014): 878–81. http://dx.doi.org/10.4028/www.scientific.net/amr.1079-1080.878.
Der volle Inhalt der QuelleQin, Jun, und Pengfei Sun. „Applications and Comparison of Continuous Wavelet Transforms on Analysis of A-wave Impulse Noise“. Archives of Acoustics 40, Nr. 4 (01.12.2015): 503–12. http://dx.doi.org/10.1515/aoa-2015-0050.
Der volle Inhalt der QuelleDissertationen zum Thema "WAVELETE DOMAIN"
Souare, Moussa. „Sar Image Analysis In Wavelets Domain“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1405014006.
Der volle Inhalt der QuelleAzimifar, Seyedeh-Zohreh. „Image Models for Wavelet Domain Statistics“. Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/938.
Der volle Inhalt der QuelleTemizel, Alptekin. „Wavelet domain image resolution enhancement methods“. Thesis, University of Surrey, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425928.
Der volle Inhalt der QuelleZhang, Xudong. „Wavelet-domain hyperspectral soil texture classification“. Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-04012004-142420.
Der volle Inhalt der QuelleChanerley, Andrew A. „Seismic correction in the wavelet domain“. Thesis, University of East London, 2014. http://roar.uel.ac.uk/4395/.
Der volle Inhalt der QuelleLebed, Evgeniy. „Sparse signal recovery in a transform domain“. Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/4171.
Der volle Inhalt der QuelleLOUREIRO, FELIPE PRADO. „ACOUSTIC MODELING IN THE WAVELET TRANSFORM DOMAIN“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=4915@1.
Der volle Inhalt der QuelleO processamento de sinais sísmicos é peça chave na exploração petrolífera. O caminho entre aquisição de dados e interpretação sísmica é composto por uma trilha de processos interdependentes, entre eles os processos de modelagem e migração. A dissertação apresenta a composição de um algoritmo de modelagem acústica 2D no domínio da transformada wavelet a partir de ferramentas próprias e outras já existentes na literatura. São estabelecidas as aproximações necessárias à solução em meios heterogêneos e à independência entre os subdomínios de processamento. Esta independência possibilita a exploração de técnicas de processamento paralelo. Através de exemplos, seu desempenho é avaliado com comparações à solução via diferenças finitas. Estas soluções são ainda submetidas ao mesmo processo de migração baseado em um terceiro modo de solução.
Seismic signal processing is a key step to oil exploration. The path between data acquisition and seismic interpretation is composed by a sequence of interdependent processes, among which are modeling and migration processes. A 2D acoustic modeling algorithm in wavelet Transform domain, based on custom tools and tools already made known in literature is presented. Approximations necessary for the solution in inhomogeneous media and for complete independence between processing subspaces are established. Such independence allows exploration of parallel processing techniques. Throughout examples, performance is evaluated in comparison to finite-difference solution. These solutions are further processed by a migration technique based in yet another solution method.
Goda, Matthew. „Wavelet domain image restoration and super-resolution“. Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/289808.
Der volle Inhalt der QuelleNgadiran, Ruzelita. „Rate scalable image compression in the wavelet domain“. Thesis, University of Newcastle Upon Tyne, 2012. http://hdl.handle.net/10443/1437.
Der volle Inhalt der QuelleAvaritsioti, Eleni. „Financial time series prediction in the wavelet domain“. Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.502386.
Der volle Inhalt der QuelleBücher zum Thema "WAVELETE DOMAIN"
Hesthaven, J. S. A wavelet optimized adaptive multi-domain method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenFunction spaces and wavelets on domains. Zürich: European Mathematical Society, 2008.
Den vollen Inhalt der Quelle findenM, Jameson Leland, und Langley Research Center, Hrsg. A waverlet optimized adaptive multi-domain method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenM, Jameson Leland, und Langley Research Center, Hrsg. A waverlet optimized adaptive multi-domain method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenHesthaven, Jan S. A waverlet optimized adaptive multi-domain method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenRapp, R. Ocean domains and maximum degree of spherical harmonic and orthonormal expansions. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1999.
Den vollen Inhalt der Quelle findenRapp, R. Ocean domains and maximum degree of spherical harmonic and orthonormal expansions. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1999.
Den vollen Inhalt der Quelle findenCastillejos, Heydy. Fuzzy Image Segmentation Algorithms in Wavelet Domain. INTECH Open Access Publisher, 2012.
Den vollen Inhalt der Quelle findenJouini, Abdellatif. Wavelet Bases in Bounded Domains and Applications. Alpha Science International, Limited, 2018.
Den vollen Inhalt der Quelle findenWavelet Domain Communication System (WDCS): Packet-Based Wavelet Spectral Estimation and M-ARY Signaling. Storming Media, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "WAVELETE DOMAIN"
Chanerley, A. A., und N. A. Alexander. „Wavelet Domain Seismic Correction“. In Encyclopedia of Earthquake Engineering, 1–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36197-5_272-1.
Der volle Inhalt der QuelleChanerley, A. A., und N. A. Alexander. „Wavelet Domain Seismic Correction“. In Encyclopedia of Earthquake Engineering, 3934–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35344-4_272.
Der volle Inhalt der QuelleLing, Wing-kuen, und P. K. S. Tam. „Reduction of Blocking Artifacts in Both Spatial Domain and Transformed Domain“. In Wavelet Analysis and Its Applications, 37–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45333-4_7.
Der volle Inhalt der QuelleJansen, Maarten. „Dyadic wavelet design in the frequency domain“. In Wavelets from a Statistical Perspective, 163–82. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003265375-6.
Der volle Inhalt der QuelleLevesley, J., und M. Roach. „Quasi-Interpolation on Compact Domains“. In Approximation Theory, Wavelets and Applications, 557–66. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8577-4_39.
Der volle Inhalt der QuelleVannucci, Marina, und Fabio Corradi. „Modeling Dependence in the Wavelet Domain“. In Bayesian Inference in Wavelet-Based Models, 173–86. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0567-8_12.
Der volle Inhalt der QuelleChipman, Hugh A., und Lara J. Wolfson. „Prior Elicitation in the Wavelet Domain“. In Bayesian Inference in Wavelet-Based Models, 83–94. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0567-8_6.
Der volle Inhalt der QuelleSingh, Rajiv, Swati Nigam, Amit Kumar Singh und Mohamed Elhoseny. „On Wavelet Domain Video Watermarking Techniques“. In Intelligent Wavelet Based Techniques for Advanced Multimedia Applications, 65–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31873-4_5.
Der volle Inhalt der QuelleAzimifar, Zohreh, Paul Fieguth und Ed Jernigan. „Textures and Wavelet-Domain Joint Statistics“. In Lecture Notes in Computer Science, 331–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30126-4_41.
Der volle Inhalt der QuelleMeyer, Stefan, Thomas Nowotny, Paul Graham, Alex Dewar und Andrew Philippides. „Snapshot Navigation in the Wavelet Domain“. In Biomimetic and Biohybrid Systems, 245–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64313-3_24.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "WAVELETE DOMAIN"
de Moraes, Francisco José Vicente, und Hans Ingo Weber. „Deconvolution by Wavelets for Extracting Impulse Response Functions“. In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4136.
Der volle Inhalt der QuelleWirasaet, Damrongsak, und Samuel Paolucci. „An Adaptive Wavelet Method for the Incompressible Navier-Stokes Equations in Complex Domains“. In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56317.
Der volle Inhalt der QuelleSemenov, Vladimir, und Aleksandr Shurbin. „USING WAVELETS WITH A RECTANGULAR AMPLITUDE-FREQUENCY RESPONSE TO FILTER SIGNALS“. In CAD/EDA/SIMULATION IN MODERN ELECTRONICS 2021. Bryansk State Technical University, 2021. http://dx.doi.org/10.30987/conferencearticle_61c997ef29ef52.74618218.
Der volle Inhalt der QuelleFreeman, Mark O., Ken A. Duell, Brett Bock und Adam S. Fedor. „Introduction to wavelets and considerations for optical implementation“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fa1.
Der volle Inhalt der QuelleHopkins, Brad M., und Saied Taheri. „Broken Rail Prediction and Detection Using Wavelets and Artificial Neural Networks“. In 2011 Joint Rail Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/jrc2011-56026.
Der volle Inhalt der QuelleNewland, David E. „Practical Signal Analysis: Do Wavelets Make Any Difference?“ In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4135.
Der volle Inhalt der QuelleBonel-Cerdan, Jose I., und Jorgen L. Nikolajsen. „An Introduction to Harmonic Wavelet Analysis of Machine Vibrations“. In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-058.
Der volle Inhalt der QuelleSheng, Yunglong, Danny Roberge, Taiwei Lu und Harold Szu. „Optical wavelet matched filters“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fn1.
Der volle Inhalt der QuelleLiaghat, M., A. Abdollahi, F. Daneshmand und T. Liaghat. „Wavelet Analysis of the Pressure Fluctuations of Bottom Outlet of Kamal-Saleh Dam“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12745.
Der volle Inhalt der QuelleZhang, Yan, Emmanuel G. Kanterakis, Al Katz und Jimmy M. Wang. „Optical wavelet processor for wavelets defined in the time domain“. In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, herausgegeben von Joseph L. Horner, Bahram Javidi, Stephen T. Kowel und William J. Miceli. SPIE, 1993. http://dx.doi.org/10.1117/12.163587.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "WAVELETE DOMAIN"
Goda, Matthew E. Wavelet Domain Image Restoration and Super-Resolution. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada405111.
Der volle Inhalt der QuelleWeiss, Guido L., und M. V. Wickerhauser. Stable Feature Classification in the Wavelet Domain. Fort Belvoir, VA: Defense Technical Information Center, März 2000. http://dx.doi.org/10.21236/ada379900.
Der volle Inhalt der QuelleMoore, Frank, Pat Marshall und Eric Balster. Adaptive Filtering in the Wavelet Transform Domain Via Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada427113.
Der volle Inhalt der QuelleHippenstiel, R. Signal to Noise Ratio Improvement Using Wavelet and Frequency Domain Based Processing. Fort Belvoir, VA: Defense Technical Information Center, Mai 2002. http://dx.doi.org/10.21236/ada404025.
Der volle Inhalt der QuelleAn, M., R. Tolimieri, J. Weiss und J. Byrnes. Thermal Analysis of Multichip Modules Using Domain Decomposition and Wavelet-Capacitance Matrix. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1996. http://dx.doi.org/10.21236/ada329533.
Der volle Inhalt der QuelleRane, Shantanu D., Jeremiah Remus und Guillermo Sapiro. Wavelet-Domain Reconstruction of Lost Blocks in Wireless Image Transmission and Packet-Switched Networks. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada437341.
Der volle Inhalt der QuelleNafi Toksoez, M. Characterization of an Explosion Source in a Complex Medium by Modeling and Wavelet Domain Inversion. Fort Belvoir, VA: Defense Technical Information Center, Juni 2006. http://dx.doi.org/10.21236/ada455323.
Der volle Inhalt der QuelleAndrian, Jean. Fratricide Avoidance Using Transform Domain Techniques: A New Spectral Estimation Method Based on the Evolutionary Wavelet Spectrum Concept. Fort Belvoir, VA: Defense Technical Information Center, Mai 2006. http://dx.doi.org/10.21236/ada448936.
Der volle Inhalt der QuelleAnderson, Gerald L., und Kalman Peleg. Precision Cropping by Remotely Sensed Prorotype Plots and Calibration in the Complex Domain. United States Department of Agriculture, Dezember 2002. http://dx.doi.org/10.32747/2002.7585193.bard.
Der volle Inhalt der Quelle