Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wettability of vegetal surfaces“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wettability of vegetal surfaces" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wettability of vegetal surfaces"
Tita, SPS, R. Medeiros, JR Tarpani, E. Frollini und V. Tita. „Chemical modification of sugarcane bagasse and sisal fibers using hydroxymethylated lignin: Influence on impact strength and water absorption of phenolic composites“. Journal of Composite Materials 52, Nr. 20 (25.01.2018): 2743–53. http://dx.doi.org/10.1177/0021998317753886.
Der volle Inhalt der QuelleOsorio, Fernando, Gonzalo Valdés, Olivier Skurtys, Ricardo Andrade, Ricardo Villalobos-Carvajal, Andrea Silva-Weiss, Wladimir Silva-Vera, Begoña Giménez, Marcela Zamorano und Johana Lopez. „Surface Free Energy Utilization to Evaluate Wettability of Hydrocolloid Suspension on Different Vegetable Epicarps“. Coatings 8, Nr. 1 (30.12.2017): 16. http://dx.doi.org/10.3390/coatings8010016.
Der volle Inhalt der QuelleBartman, Marcin, Sebastian Balicki, Lucyna Hołysz und Kazimiera A. Wilk. „Surface Properties of Graffiti Coatings on Sensitive Surfaces Concerning Their Removal with Formulations Based on the Amino-Acid-Type Surfactants“. Molecules 28, Nr. 4 (20.02.2023): 1986. http://dx.doi.org/10.3390/molecules28041986.
Der volle Inhalt der QuelleConradi, Marjetka, Bojan Podgornik, Maja Remškar, Damjan Klobčar und Aleksandra Kocijan. „Tribological Evaluation of Vegetable Oil/MoS2 Nanotube-Based Lubrication of Laser-Textured Stainless Steel“. Materials 16, Nr. 17 (26.08.2023): 5844. http://dx.doi.org/10.3390/ma16175844.
Der volle Inhalt der QuelleWang, Bingjie, Ziqiong Geng, Bo Pan, Lei Jiang und Yong Lin. „Effect of Vegetable Oil Adjuvant on Wetting, Drift, and Deposition of Pesticide Droplets from UAV Sprayers on Litchi Leaves“. Agronomy 15, Nr. 2 (24.01.2025): 293. https://doi.org/10.3390/agronomy15020293.
Der volle Inhalt der QuelleAshokkumar, Saranya, Jens Adler-Nissen und Per Møller. „Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability“. Applied Surface Science 263 (Dezember 2012): 86–94. http://dx.doi.org/10.1016/j.apsusc.2012.09.002.
Der volle Inhalt der QuelleBaldin, Vitor, Leonardo Rosa Ribeiro da Silva, Rogério Valentim Gelamo, Andres Bustillo Iglesias, Rosemar Batista da Silva, Navneet Khanna und Alisson Rocha Machado. „Influence of Graphene Nanosheets on Thermo-Physical and Tribological Properties of Sustainable Cutting Fluids for MQL Application in Machining Processes“. Lubricants 10, Nr. 8 (21.08.2022): 193. http://dx.doi.org/10.3390/lubricants10080193.
Der volle Inhalt der QuelleMa, Cha, Yu Ping Yang und Long Li. „Study on Drilling Fluid Technology of Eliminating Bit Balling by Changing Wettability“. Advanced Materials Research 542-543 (Juni 2012): 1083–86. http://dx.doi.org/10.4028/www.scientific.net/amr.542-543.1083.
Der volle Inhalt der QuelleOrkoula, Malvina G., Petros G. Koutsoukos, Michel Robin, Olga Vizika und Louis Cuiec. „Wettability of CaCO3 surfaces“. Colloids and Surfaces A: Physicochemical and Engineering Aspects 157, Nr. 1-3 (Oktober 1999): 333–40. http://dx.doi.org/10.1016/s0927-7757(99)00047-3.
Der volle Inhalt der QuelleVargha-Butler, E. I., E. Kiss, C. N. C. Lam, Z. Keresztes, E. Kálmán, L. Zhang und A. W. Neumann. „Wettability of biodegradable surfaces“. Colloid & Polymer Science 279, Nr. 12 (01.12.2001): 1160–68. http://dx.doi.org/10.1007/s003960100549.
Der volle Inhalt der QuelleDissertationen zum Thema "Wettability of vegetal surfaces"
Bami, Chatenet Yann. „Modélisation analytique du mouillage sur des topographies multi-échelles complexes pour le design biomimétique de surfaces superhydrophobes“. Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0053.
Der volle Inhalt der QuelleA drop of water rolls on the sacred lotus leaf but stay fiercely anchored onto a rose petal. Both surfaces display a complex morphology at the micrometric and nanometric scales. Therefore, one could ask: how are their wettability and their morphology related? The purpose of this dissertation is to carry out a biomimetic approach in order to conceive superhydrophobic surfaces and to better understand nature’s strategies. In a first part, vegetal surfaces have been characterized by directly observing the wetting state they produce with the help of confocal microscopy. We demonstrate the fact that the sacred lotus produces a metastable mixed-state wetting that is characterized by a finite equilibrium anchorage depth of triple lines. On the other hand, a Wenzel-Wenzel hierarchical wetting state is observed on the rose petal, in spite of what literature suggests. From these experiments, key questions have been highlighted and confronted to the current models available within the literature. In a second part, two approaches to capillary phenomena have been adapted to the study of a composite wetting state produced by a multiscale topography. We introduce a complete parameterization allowing us to tackle the problem of the mixed-state wetting and its stability, to predict the value of the equilibrium anchorage depth on the sacred lotus leaf and to identify the contribution of its nanoscale topography to its wetting. Then, we thoroughly describe the mechanisms underlying the advancing and receding motions of triple lines and their recursive propagation across every topographical scale constituting a surface by introducing the notion of precursor motion. We highlight the effect of the equilibrium anchorage depth on the contact angle hysteresis and the role played by topographical subscales on the robustness of the composite wetting state. Through the experimental study of model surfaces manufactured by photolithography, we compare our predictions to reality. Eventually, in a third part, the conclusions drawn from our model are transposed into technical specifications for the conception of robust superhydrophobic surfaces, the strategy of the sacred lotus leaf is thoroughly described and two promising manufacturing processes are proposed through the recrystallization of natural wax and two-photon polymerization
Melberg, Brita. „Nanostructured surfaces with patterned wettability“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19410.
Der volle Inhalt der QuelleHobæk, Thor Christian. „Nanostructured PDMS surfaces with patterned wettability“. Thesis, Norges Teknisk-Naturvitenskaplige Universitet, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-21045.
Der volle Inhalt der QuelleBadge, Ila. „Tuning Wettability And Adhesion Of Structured Surfaces“. University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1393716842.
Der volle Inhalt der QuelleZhang, Xueyun. „Wettability tuning by surface modification /“. View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CBME%202009%20ZHANG.
Der volle Inhalt der QuelleFalah, Toosi Salma. „Superhydrophobic polymeric surfaces : fabrication, wettability, and antibbacterial activity“. Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62353.
Der volle Inhalt der QuelleApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Plaisance, Marc Charles. „Cellular Response to Surface Wettability Gradient on Microtextured Surfaces“. Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/53730.
Der volle Inhalt der QuelleShirafkan, Abbas. „Wettability and hydrophilicity of rigid and soft contact lens surfaces“. Thesis, City University London, 1997. http://openaccess.city.ac.uk/8385/.
Der volle Inhalt der QuelleSernek, Milan. „Comparative Analysis of Inactivated Wood Surfaces“. Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27429.
Der volle Inhalt der QuellePh. D.
Tow, Emily Winona. „Bubble behavior in subcooled flow boiling on surfaces of variable wettability“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75682.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 59).
Flow boiling is important in energy conversion and thermal management due to its potential for very high heat fluxes. By improving understanding of the conditions leading to bubble departure, surfaces can be designed that increase heat transfer coefficients in flow boiling. Bubbles were visualized during subcooled nucleate flow boiling of water on a surface of variable wettability. Images obtained from the videos were analyzed to find parameters influencing bubble size at departure. A model was developed relating the dimensions of the bubble at departure to its upstream and downstream contact angles based on a rigid-body force balance between momentum and surface tension and assuming a skewed truncated spherical bubble shape. Both experimental and theoretical results predict that bubble width and height decrease with increasing flow speed and that the width increases with the equilibrium contact angle. The model also predicts that the width and height increase with the amount of contact angle hysteresis and that the height increases with equilibrium contact angle, though neither of these trends were clearly demonstrated by the data. Several directions for future research are proposed, including modifications to the model to account for deviations of the bubbles from the assumed geometry and research into the parameters controlling contact angle hysteresis of bubbles in a flow. Additionally, observations support that surfaces with periodically-varying contact angle may prevent film formation and increase the heat transfer coefficients in both film and pool boiling.
by Emily W. Tow.
S.B.
Bücher zum Thema "Wettability of vegetal surfaces"
1937-, Berg John C., Hrsg. Wettability. New York: M. Dekker, 1993.
Den vollen Inhalt der Quelle findenInternational Symposium on Contact Angle, Wettability and Adhesion (3rd 2002 Providence, R.I.). Contact angle, wettability and adhesion. Herausgegeben von Mittal K. L. 1945-. Utrecht: VSP, 2003.
Den vollen Inhalt der Quelle findenR, Jones William, Herrera-Fierro Pilar und United States. National Aeronautics and Space Administration., Hrsg. Spontaneous dewetting of a perfluoropolyether. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle finden1940-, Jones William R., Herrera-Fierro Pilar und United States. National Aeronautics and Space Administration., Hrsg. Spontaneous dewetting of a perfluoropolyether. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenKlintström, Stefan Welin. Ellipsometry and wettability gradient surfaces. Linköping University, 1992.
Den vollen Inhalt der Quelle findenGas Wettability of Reservoir Rock Surfaces with Porous Media. Elsevier, 2018. http://dx.doi.org/10.1016/c2017-0-02303-0.
Der volle Inhalt der QuelleChen, Yuan, Zheng Yongmei, Cheng Qunfeng und Hou Yongping. Bio-Inspired Wettability Surfaces: Developments in Micro- and Nanostructures. Jenny Stanford Publishing, 2015.
Den vollen Inhalt der Quelle findenJiang, Guancheng. Gas Wettability of Reservoir Rock Surfaces with Porous Media. Elsevier Science & Technology Books, 2018.
Den vollen Inhalt der Quelle findenBio-Inspired Wettability Surfaces: Developments in Micro- and Nanostructures. Taylor & Francis Group, 2015.
Den vollen Inhalt der Quelle findenGas Wettability of Reservoir Rock Surfaces with Porous Media. Elsevier Science & Technology, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Wettability of vegetal surfaces"
Perz, Susan V., Christopher S. McMillan und Michael J. Owen. „Wettability of Fluorosilicone Surfaces“. In Fluorinated Surfaces, Coatings, and Films, 112–28. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0787.ch009.
Der volle Inhalt der QuelleKatz, Joseph L., Jin Sheng Sheu und Jer Ru Maa. „Nucleation on Smooth Surfaces“. In Modern Approaches to Wettability, 423–34. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_16.
Der volle Inhalt der QuelleBusscher, H. J. „Wettability of Surfaces in the Oral Cavity“. In Modern Approaches to Wettability, 249–61. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_9.
Der volle Inhalt der QuelleChristenson, H. K. „The Long-Range Attraction between Macroscopic Hydrophobic Surfaces“. In Modern Approaches to Wettability, 29–51. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_2.
Der volle Inhalt der QuelleSchrader, Malcolm E. „High- and Medium-Energy Surfaces: Ultrahigh Vacuum Approach“. In Modern Approaches to Wettability, 53–71. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_3.
Der volle Inhalt der QuelleJoud, Jean-Charles, und Marie-Geneviève Barthés-Labrousse. „Experimental Determination through Wettability Measurements“. In Physical Chemistry and Acid-Base Properties of Surfaces, 45–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119145387.ch5.
Der volle Inhalt der QuelleOzbay, Ridvan, Ali Kibar und Chang-Hwan Choi. „Bubble Adhesion to Superhydrophilic Surfaces“. In Advances in Contact Angle, Wettability and Adhesion, 149–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119117018.ch6.
Der volle Inhalt der QuellePapadopoulou, Evie L. „Pulsed Laser Deposition of Surfaces with Tunable Wettability“. In Self-Cleaning Materials and Surfaces, 253–76. Chichester, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118652336.ch9.
Der volle Inhalt der QuelleJoud, Jean-Charles, und Marie-Geneviève Barthés-Labrousse. „Wettability of an Ideal Surface: Overview“. In Physical Chemistry and Acid-Base Properties of Surfaces, 1–8. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119145387.ch1.
Der volle Inhalt der QuelleLee, Junghoon, Junghoon Lee und Chang-Hwan Choi. „Superhydrophobic Surfaces for Anti-Corrosion of Aluminum“. In Advances in Contact Angle, Wettability and Adhesion, 267–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119459996.ch12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wettability of vegetal surfaces"
Orlova, E. G., D. S. Nikitin und S. A. Myazina. „Wettability of nanocomposite ceramic surfaces“. In INTERNATIONAL YOUTH SCIENTIFIC CONFERENCE “HEAT AND MASS TRANSFER IN THE THERMAL CONTROL SYSTEM OF TECHNICAL AND TECHNOLOGICAL ENERGY EQUIPMENT” (HMTTSC 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5120680.
Der volle Inhalt der QuelleKita, Yutaku, Coinneach MacKenzie-Dover, Alexandros Askounis, Yasuyuki Takata und Khellil Sefiane. „DROP MOBILITY ON SUPERHYDROPHOBIC SURFACES WITH WETTABILITY CONTRASTS“. In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.cod.023512.
Der volle Inhalt der QuelleParin, Riccardo, Stefano Bortolin, Alessandro Martucci und Davide Del Col. „EXPERIMENTS OF DROPWISE CONDENSATION ON WETTABILITY CONTROLLED SURFACES“. In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.cod.024208.
Der volle Inhalt der QuelleSong, Hyunsoo, Yongku Lee, Songwan Jin, Ho-Young Kim und Jung Yul Yoo. „Sessile Drop Evaporation on Surfaces of Various Wettability“. In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52096.
Der volle Inhalt der QuelleHan, Z. J., M. Shakerzadeh, B. K. Tay und C. M. Tan. „Protein immobilization on nanostructured surfaces with different wettability“. In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424833.
Der volle Inhalt der QuelleBonner, Richard W. „Dropwise Condensation on Surfaces With Graded Hydrophobicity“. In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88516.
Der volle Inhalt der QuelleZheng, Yongmei. „Bioinspired Wettability-Controlled Surfaces with Gradient Micro- and Nanostructures“. In The 3rd World Congress on New Technologies. Avestia Publishing, 2017. http://dx.doi.org/10.11159/icnfa17.114.
Der volle Inhalt der QuelleSun, Emily Wei-Hsin, und Ian C. Bourg. „Wettability of Mineral Surfaces by Water and Carbon Dioxide“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2492.
Der volle Inhalt der QuelleAnand, A. Vivek, S. Gollakota, V. Hariprasad, N. Shunmugavelu, Ashifkhan und V. Arumugam. „Wettability characteristics of microgroove patterned SS304 stainless steel surfaces“. In INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117963.
Der volle Inhalt der QuelleColetti, C., M. J. Jaroszeski, A. Pallaoro, A. M. Hoff, S. Iannotta und S. E. Saddow. „Biocompatibility and wettability of crystalline SiC and Si surfaces“. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353678.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wettability of vegetal surfaces"
Степанюк, Олександр Миколайович, und Руслана Михайлівна Балабай. Controlling by Defects of Switching of ZnO Nanowire Array Surfaces from Hydrophobic to Hydrophilic. Вид-во Прикарпатського нац. ун-т ім. Василя Стефаника, Oktober 2023. http://dx.doi.org/10.31812/123456789/8487.
Der volle Inhalt der QuelleAbbott, Nicholas L., John P. Folkers und George M. Whitesides. Manipulation of the Wettability of Surfaces on the 0.1 to 1 Micrometer Scale Through Micromachining and Molecular Self-Assembly. Fort Belvoir, VA: Defense Technical Information Center, Juli 1992. http://dx.doi.org/10.21236/ada254887.
Der volle Inhalt der QuelleBarker, Amanda, Thomas Douglas, Erik Alberts, P. U. Ashvin Iresh Fernando, Garrett George, Jon Maakestad, Lee Moores und Stephanie Saari. Influence of chemical coatings on solar panel performance and snow accumulation. Engineer Research and Development Center (U.S.), Januar 2024. http://dx.doi.org/10.21079/11681/48059.
Der volle Inhalt der Quelle