Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wheel aerodynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wheel aerodynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wheel aerodynamics"
Jadhav, Rohit. „Design and Optimization of Wheels for Better Aerodynamics and Cooling of Brakes“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 12 (31.01.2022): 418–40. http://dx.doi.org/10.22214/ijraset.2022.39853.
Der volle Inhalt der QuelleRasidi Rasani, Mohammad, Azhari Shamsudeen, Zambri Harun und Wan Mohd Faizal Wan Mahmood. „A Computational Aerodynamic Study of Tandem Rotating Wheels in Contact with the Ground“. International Journal of Engineering & Technology 7, Nr. 3.17 (01.08.2018): 133. http://dx.doi.org/10.14419/ijet.v7i3.17.16637.
Der volle Inhalt der QuelleSoliman, M. Z. „A Numerical Study on the Influences of Non-Pneumatic Tyre Shape on the Wheel Aerodynamics“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 2 (28.02.2022): 599–611. http://dx.doi.org/10.22214/ijraset.2022.40300.
Der volle Inhalt der QuelleYi, Heng, Yi Zeng, Liming Wan, Shunqiao Huang, Richard Sun, Tao Huang, Yuanzhi Hu und Fayue Ma. „Experimental and numerical investigation on wheel regional aerodynamics in an electric vehicle“. Journal of Physics: Conference Series 2820, Nr. 1 (01.08.2024): 012109. http://dx.doi.org/10.1088/1742-6596/2820/1/012109.
Der volle Inhalt der QuelleSadat, Mostofa, Nayef Albab, Faria Chowdhury und Mohammad Muhshin Aziz Khan. „Numerical Simulation Approach to Investigate the Effects of External Modifications in Reducing Aerodynamic Drag on Passenger Vehicles“. International Journal of Automotive and Mechanical Engineering 19, Nr. 1 (28.03.2022): 9563–76. http://dx.doi.org/10.15282/ijame.19.1.2022.19.0738.
Der volle Inhalt der QuelleZhang, Zhe, Qiang Wang, Shida Song, Chengchun Zhang, Luquan Ren und Yingchao Zhang. „Joint Research on Aerodynamic Characteristics and Handling Stability of Racing Car under Different Body Attitudes“. Energies 15, Nr. 1 (05.01.2022): 393. http://dx.doi.org/10.3390/en15010393.
Der volle Inhalt der QuelleSoliman, M. Z., A. R. El-Baz, M. A. Abdel-Aziz, N. Abdel-Aziz und O. S. Gabor. „Numerical Investigation of the Effect of Tread Pattern on Rotating Wheel Aerodynamics“. International Journal of Automotive and Mechanical Engineering 17, Nr. 4 (11.01.2021): 8234–45. http://dx.doi.org/10.15282/ijame.17.4.2020.01.0621.
Der volle Inhalt der QuelleSemeraro, Francesco Fabio, und Paolo Schito. „Numerical Investigation of the Influence of Tire Deformation and Vehicle Ride Height on the Aerodynamics of Passenger Cars“. Fluids 7, Nr. 2 (20.01.2022): 47. http://dx.doi.org/10.3390/fluids7020047.
Der volle Inhalt der QuelleKellar, Pearse und Savill. „Formula 1 car wheel aerodynamics“. Sports Engineering 2, Nr. 4 (November 1999): 203–12. http://dx.doi.org/10.1046/j.1460-2687.1999.00030.x.
Der volle Inhalt der QuelleGusev, Vladimir. „Aerodynamic streams at cylindrical internal grinding by the textured wheels“. MATEC Web of Conferences 298 (2019): 00018. http://dx.doi.org/10.1051/matecconf/201929800018.
Der volle Inhalt der QuelleDissertationen zum Thema "Wheel aerodynamics"
Moore, Jaclyn Kate. „Aerodynamics of High Performance Bicycle Wheels“. Thesis, University of Canterbury. Mechanical Engineering, 2008. http://hdl.handle.net/10092/1800.
Der volle Inhalt der QuelleSprot, Adam Joseph. „Open-wheel aerodynamics : effects of tyre deformation and internal flow“. Thesis, Durham University, 2013. http://etheses.dur.ac.uk/7292/.
Der volle Inhalt der QuelleDiasinos, Sammy Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. „The aerodynamic interaction of a rotating wheel and a downforce producing wing in ground effect“. Awarded by:University of New South Wales. Mechanical & Manufacturing Engineering, 2009. http://handle.unsw.edu.au/1959.4/44516.
Der volle Inhalt der QuelleKnowles, Robin David. „Monoposto racecar wheel aerodynamics : investigation of near-wake structure & support-sting interference“. Thesis, Cranfield University, 2007. http://dspace.lib.cranfield.ac.uk/handle/1826/2058.
Der volle Inhalt der QuelleHeyder-Bruckner, Jacques. „The aerodynamics of an inverted wing and a rotating wheel in ground effect“. Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/207263/.
Der volle Inhalt der QuelleKnowles, R. D. „Monoposto racecar wheel aerodynamics: investigation of near-wake structure and support-sting interference“. Thesis, Cranfield University, 2007. http://hdl.handle.net/1826/2058.
Der volle Inhalt der QuelleMorgan, Claire Elizabeth. „Unsteady vortex interactions related to a Formula One car front wing and wheel“. Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608608.
Der volle Inhalt der QuelleŠkrášek, Roman. „Analýza vlivu rotace kola na aerodynamické vlastnosti vozidla“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241842.
Der volle Inhalt der QuelleFiore, Maxime. „Influence of cavity flow on turbine aerodynamics“. Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0013/document.
Der volle Inhalt der QuelleIn order to deal with high temperatures faced by the components downstreamof the combustion chamber, some relatively cold air is bled at the compressor.This air feeds the cavities under the turbine main annulus and cool down the rotordisks ensuring a proper and safe operation of the turbine. This thesis manuscriptintroduces a numerical study of the effect of the cavity flow close to the turbine hubon its aerodynamic performance. The interaction phenomena between the cav-ity andmain annulus flow are not currently fully understood. The study of these phenomenais performed based on different numerical approaches (RANS, LES and LES-LBM)applied to two configurations for which experimental results are avail-able. A linearcascade configuration with an upstream cavity and various rim seal geometries(interface between rotor and stator platform) and cavity flow rate avail-able. Arotating configuration that is a two stage turbine including cavities close to realisticindustrial configurations. Additional losses incurred by the cavity flow are measuredand studied using a method based on exergy (energy balance in the purpose togenerate work)
Chekrouba, Khaled. „Numerical study of particle resuspension induced by a vehicle's rotating wheel“. Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPAST042.
Der volle Inhalt der QuelleNon-exhaust particulate emissions, particularly from road dust, have emerged as a significant contributor to traffic-related air pollution. These particles could contribute to half of the particulate concentration found in the air. The present research develops and validates a numerical methodology to analyze particle resuspension induced by a rotating wheel. It focuses on identifying emission zones and understanding the role of airflow in particle detachment and transport within the wake flows.The study begins with simulations of particle-laden flows in subcritical and critical flow regimes around static and rotating cylinders. This configuration is a well-established fundamental case closely relevant to wheel-induced flows for investigating boundary-layer transition, flow separation, flow topology, and vortex-driven particle transport. Results highlight the critical influence of turbulence model choice in capturing laminar-to-turbulent transitions and improving wake flow predictions. Cylinder rotation significantly affects wake topology and particle dispersion, with variations depending on flow regime and particle size.Building on insights from the cylinder study, simulations were conducted for an isolated rotating wheel on a moving ground. The simulations captured key flow phenomena, including boundary-layer separation,” viscous pumping'', and coherent wake vortices such as jetting, horseshoe, and arch-shaped structures. For the particle phase, a particle detachment model was introduced to simulate the detachment process, while Lagrangian particle tracking was employed to simulate particle transport within the domain. The results allowed us to identify dominant emission zones for various particle sizes, quantify particle release rates, and characterize particles' dispersion patterns in the wheel's near and far wake.Finally, the investigation has further explored the effects of velocity (Reynolds number), wheel aspect ratio, and ground dust load on particle resuspension. Higher speeds intensified unsteady wake structures, enhancing emissions and extending particle transport downstream the wheel. Wider wheels increased detachment areas and vortex interactions, significantly amplifying emissions. Higher dust loads increased the resuspended particle mass while altering ground deposition patterns. The results of this investigation enhanced the understanding of particle-vortex interactions, demonstrating the contribution of vortical structures to particle transport in the wheel's near and far wake, as well as to particle deposition on the ground.This work provides a comprehensive understanding of wheel-induced particle resuspension emissions, offering a validated simulation approach for analyzing particle resuspension contribution to air pollution across diverse urban scenarios
Bücher zum Thema "Wheel aerodynamics"
Schwingungen von Windenergieanlagen 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783181022818.
Der volle Inhalt der QuelleLeister, Günter. Passenger Car Tires and Wheels: Development - Manufacturing - Application. Springer, 2019.
Den vollen Inhalt der Quelle findenLeister, Günter. Passenger Car Tires and Wheels: Development - Manufacturing - Application. Springer, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Wheel aerodynamics"
Söderblom, David, Per Elofsson, Linus Hjelm und Lennart Löfdahl. „Wheel Housing Aerodynamics on Heavy Trucks“. In The Aerodynamics of Heavy Vehicles III, 211–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20122-1_13.
Der volle Inhalt der QuelleWittmeier, Felix, und Timo Kuthada. „The influence of wheel and tire aerodynamics in WLTP“. In 6th International Munich Chassis Symposium 2015, 149–60. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09711-0_13.
Der volle Inhalt der QuelleMöllenbeck, Dennis, Axel Fischer und Hardy Schmidt. „Impact of Wheel Drive Unit Secondary Flows on the Aerodynamics of Passenger Cars“. In Proceedings, 45–61. Wiesbaden: Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-45018-2_3.
Der volle Inhalt der QuelleDivakaran, A. M., E. Abo-Serie, E. I. Gkanas, J. Jewkes und S. Shepherd. „CFD Based Aerodynamics Conjugate Heat Transfer and Airgap Fluid Flow Thermal Analysis to a Wheel Hub Motor for Electric Scooters“. In Springer Proceedings in Energy, 21–29. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_3.
Der volle Inhalt der QuelleSultan, Mohammad Asif, und Subhransu Roy. „Aerodynamics of a Simplified High-Speed Train—Effect of Moving Ground and Wheel Rotation“. In Lecture Notes in Mechanical Engineering, 171–85. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-6783-0_14.
Der volle Inhalt der QuelleZhai, Huihui, und Haichao Zhou. „Numerical Study of the Influence of Rim Design on the Aerodynamics of an Isolated Wheel“. In Computational and Experimental Simulations in Engineering, 1373–87. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-44947-5_103.
Der volle Inhalt der QuelleShao-hua, Li, und Yue Wei-peng. „Numerical Research of Aerodynamic Performance of Rotating Wind Wheel“. In Advances in Intelligent and Soft Computing, 437–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25194-8_53.
Der volle Inhalt der QuellePavia, Giancarlo, und Martin Passmore. „Characterisation of Wake Bi-stability for a Square-Back Geometry with Rotating Wheels“. In Progress in Vehicle Aerodynamics and Thermal Management, 93–109. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67822-1_6.
Der volle Inhalt der QuelleSugiono, Sugiono, Bayu Rahayudi, Astuteryanti Tri Lustyana, Salim Subarkah und Lucia Wulandari. „Aerodynamic Impact Analysis of “Noise Housing” Installation for Railway Wheels“. In Proceedings of the 2nd International Conference on Railway and Transportation 2023 (ICORT 2023), 213–23. Dordrecht: Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-384-9_19.
Der volle Inhalt der QuelleIlea, Laurentiu, Daniel Iozsa, Cornelia Stan und Claudiu Teodorescu. „CFD Study on Wheel Aerodynamic Performance in Side Wind Conditions for a Hatchback Vehicle“. In The 30th SIAR International Congress of Automotive and Transport Engineering, 124–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32564-0_15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wheel aerodynamics"
Gordon, James. „A perturbation analysis of nonlinear wheel shimmy“. In 19th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-1472.
Der volle Inhalt der QuelleOh, Hyun-Ung, und Kenji Minesugi. „Semiactive ER isolator for momentum-wheel vibration isolation“. In 19th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-1313.
Der volle Inhalt der QuelleFabijanic, John, und Albert George. „An experimental investigation of the aerodynamics of automobile wheel wells“. In 14th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2475.
Der volle Inhalt der QuelleHassan, Rania, Maher Younan, Hani Arafa und Yehia Bahei-El-Din. „Parametric analysis of fiber-reinforced laminated momentum wheel rotors“. In 19th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-1596.
Der volle Inhalt der QuelleHaag, Lukas, Marco Kiewat, Thomas Indinger und Thomas Blacha. „Numerical and Experimental Investigations of Rotating Wheel Aerodynamics on the DrivAer Model With Engine Bay Flow“. In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69305.
Der volle Inhalt der QuelleOza, Utsav, Zhiwei Hu und Xin Zhang. „DDES Simulation of a Complex Main Landing Gear with Six-Wheel Bogie“. In 34th AIAA Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3269.
Der volle Inhalt der QuelleMiao, Lu, Steffen Mack und Thomas Indinger. „Experimental and Numerical Investigation of Automotive Aerodynamics Using DrivAer Model“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47805.
Der volle Inhalt der QuelleLandstro¨m, Christoffer, und Lennart Lo¨fdahl. „Investigation of Aerodynamic Wheel Designs on a Passenger Car at Different Cooling Air Flow Conditions“. In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-23028.
Der volle Inhalt der QuelleXu, C., und R. S. Amano. „Aerodynamic and Structure Considerations in Centrifugal Compressor Design: Blade Lean Effects“. In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68207.
Der volle Inhalt der QuelleZhang, Yingchao, Chao Yang, Qiliang Wang, Dapeng Zhan und Zhe Zhang. „Aerodynamics of Open Wheel Racing Car in Pitching Position“. In WCX World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-01-0729.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wheel aerodynamics"
Paschkewitz, J. A computational study of tandem dual wheel aerodynamics and the effect of fenders and fairings on spray dispersion. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/895084.
Der volle Inhalt der QuelleAerodynamic Development of the GAC ENO.146 Concept. SAE International, September 2021. http://dx.doi.org/10.4271/2021-01-5093.
Der volle Inhalt der Quelle