Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Yaw velocity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Yaw velocity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Yaw velocity"
Wang, Hong Wei, Chen Jie Qi, Qiu Xin Wu, Qi Mu Surong und Zhen Hua Xing. „Signal Decomposition for Three-Axis Gyroscope“. Advanced Materials Research 346 (September 2011): 521–26. http://dx.doi.org/10.4028/www.scientific.net/amr.346.521.
Der volle Inhalt der QuelleJohn, J., und T. Schobeiri. „A Simple and Accurate Method of Calibrating X-Probes“. Journal of Fluids Engineering 115, Nr. 1 (01.03.1993): 148–52. http://dx.doi.org/10.1115/1.2910098.
Der volle Inhalt der QuelleSun, Tao, Hao Guo, Jian-yong Cao, Ling-jiang Chai und Yue-dong Sun. „Study on Integrated Control of Active Front Steering and Direct Yaw Moment Based on Vehicle Lateral Velocity Estimation“. Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/275269.
Der volle Inhalt der QuelleWalker, Mark F., und David S. Zee. „Cerebellar Disease Alters the Axis of the High-Acceleration Vestibuloocular Reflex“. Journal of Neurophysiology 94, Nr. 5 (November 2005): 3417–29. http://dx.doi.org/10.1152/jn.00375.2005.
Der volle Inhalt der QuelleEmirler, Mümin Tolga, Kerim Kahraman, Mutlu Şentürk, Bilin Aksun Güvenç, Levent Güvenç und Barış Efendioğlu. „Vehicle Yaw Rate Estimation Using a Virtual Sensor“. International Journal of Vehicular Technology 2013 (24.04.2013): 1–13. http://dx.doi.org/10.1155/2013/582691.
Der volle Inhalt der QuelleSchottler, Jannik, Jan Bartl, Franz Mühle, Lars Sætran, Joachim Peinke und Michael Hölling. „Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width“. Wind Energy Science 3, Nr. 1 (16.05.2018): 257–73. http://dx.doi.org/10.5194/wes-3-257-2018.
Der volle Inhalt der QuelleMay, M. L., und R. R. Hoy. „Ultrasound-induced yaw movements in the flying Australian field cricket (Teleogryllus oceanicus)“. Journal of Experimental Biology 149, Nr. 1 (01.03.1990): 177–89. http://dx.doi.org/10.1242/jeb.149.1.177.
Der volle Inhalt der QuelleKillian, J. Eric, und James F. Baker. „Horizontal Vestibuloocular Reflex (VOR) Head Velocity Estimation in Purkinje Cell Degeneration (pcd/pcd) Mutant Mice“. Journal of Neurophysiology 87, Nr. 2 (01.02.2002): 1159–64. http://dx.doi.org/10.1152/jn.00219.2001.
Der volle Inhalt der QuelleLafortune, S. H., D. J. Ireland und R. M. Jell. „Effect of active head movements about the pitch, roll, and yaw axes on human optokinetic afternystagmus“. Canadian Journal of Physiology and Pharmacology 66, Nr. 6 (01.06.1988): 689–96. http://dx.doi.org/10.1139/y88-110.
Der volle Inhalt der QuelleZhao, Ming Hui, Lian Dong Wang, Lei Ma und Hui Hou. „Control Methods of Active Front Wheel Steering for 4WD Electric Vehicle“. Applied Mechanics and Materials 97-98 (September 2011): 735–40. http://dx.doi.org/10.4028/www.scientific.net/amm.97-98.735.
Der volle Inhalt der QuelleDissertationen zum Thema "Yaw velocity"
Jegede, Olaseinde. „Dual-axis fluidic thrust vectoring of high-aspect ratio supersonic jets“. Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/dualaxis-fluidic-thrust-vectoring-of-highaspect-ratio-supersonic-jets(6d6a5867-8281-4dfd-ac45-105ff4e73e39).html.
Der volle Inhalt der QuelleLojková, Lea. „Experimentální metodologie měřicího řetězce“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219052.
Der volle Inhalt der QuelleYao, Wei [Verfasser]. „Extraction and velocity estimation of vehicles in urban areas from airborne laserscanning data / Wei Yao“. 2010. http://d-nb.info/1010916270/34.
Der volle Inhalt der QuelleBücher zum Thema "Yaw velocity"
Effects of yaw and pitch motion on model attitude measurements. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Den vollen Inhalt der Quelle findenS, Tripp John, Finley Tom D und Langley Research Center, Hrsg. Effects of yaw and pitch motion on model attitude measurements. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Den vollen Inhalt der Quelle findenCenter, Lewis Research, und United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., Hrsg. Rayleigh Scattering Diagnositics Workshop. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Yaw velocity"
Ackermann, Juergen. „Velocity-Independent Yaw Eigenvalues of Four-Wheel Steering Automobiles“. In Robustness of Dynamic Systems with Parameter Uncertainties, 291–302. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-7268-3_29.
Der volle Inhalt der QuelleLucet, Eric, Christophe Grand und Philippe Bidaud. „Sliding-Mode Velocity and Yaw Control of a 4WD Skid-Steering Mobile Robot“. In Advances in Intelligent and Soft Computing, 247–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16259-6_19.
Der volle Inhalt der Quelle„AK FfGgmI1,294 0,718 0,241 0,662 0,419 II 0,801 0,754 0,264 0,774 0,369 III-1 0,640 0,784 0,215 0,885 0,282 III-2 0,659 0,807 0,165 0,996 0,223 IV 0,876 0,823 0,127 1,108 0,205 V 1,503 0,833 0,151 1,219 0,089 Ak F F0 f G Go 9m50,25 194 0,72 0,69 48 0,59 0,40 4 1,19 354 0,67 0,60 42 0,74 0,28 3 0,82 198 0,74 0,09 12 1,11 0,22 2 0,94 168 0,76 0,08 12 1,28 0,11 Table 2. Coefficients of diffusivity dependent on stability classes after Klug and Turner; m stands for the exponent in the power law of wind velocity. However, we must keep in mind the limitations of this approach, especially the transfer of consistent sets of dispersion parameters to the propagation of air pollution in the vicinity of a source. The Gaussian plume formula should be used only for those downwind distances for which the empirical diffusion coefficients have been determined by standard diffusion experiments. Because we are interested in emissions near ground level and immissions nearby the source, we use those diffusion parameters which are based on the classification of Klug /12/ and Turner /13/. The parameters are expressible as power functions, Oy(x) = F xf and az(x) = G x9 after Klug (3.6a,b), tfy(x) = (F + Fx)f and az(x) = (GQ + Gx)9 after Turner (3.7a,b). The parameter classification after Klug is determined by six stability classes (with the German abbreviation AK for Ausbreitungsklasse), reaching from extreme stable (AK I) to extreme labile TAK V). In tRe Turner stability scheme AK 5 denotes extreme stable, AK 2 extreme labile, see table 2. An estimate of the stability can be made from synoptical observa tions of solar radiation, cloud cover and wind velocity /14/. With the parameters after Klug equation (3.4) becomes C(x,y,z) = ax"(f+9^exp(-bx"2f) [exp(-d0x"2g)+exp(-d1x"2g)] (3.8), wherein - - C0V k ya w (z-H)2 ^ (z+H) a ' TrTOFE • b ■ ■JT • do = -Z IP '- • d1 = ~75*~“. In Odour Prevention and Control of Organic Sludge and Livestock Farming, 120. CRC Press, 1986. http://dx.doi.org/10.1201/9781482286311-43.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Yaw velocity"
Seifert, Sara J., Robert J. Dahlstrom, John P. Condon und Daniel S. Hedin. „Yaw rate and linear velocity stabilized manual wheelchair“. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6609641.
Der volle Inhalt der QuelleRajesh, Sreeja, Derek Abbott und David C. O'Carroll. „A 16 pixel yaw sensor for velocity estimation“. In Microelectronics, MEMS, and Nanotechnology, herausgegeben von Dan V. Nicolau. SPIE, 2005. http://dx.doi.org/10.1117/12.639260.
Der volle Inhalt der QuelleJun, Wang, und Shengbing Yang. „Adaptive Yaw Angular Velocity Control of Electric Power Steering“. In SAE 2011 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-01-0759.
Der volle Inhalt der QuelleQin, Xuemei, Yehai Lin und Baoshan Shi. „Electrohydraulic servo control of vehicle yaw rate angular velocity“. In Mechanical Engineering and Information Technology (EMEIT). IEEE, 2011. http://dx.doi.org/10.1109/emeit.2011.6023494.
Der volle Inhalt der QuelleCherouat, H., M. Braci und S. Diop. „Vehicle velocity, side slip angles and yaw rate estimation“. In Proceedings of the IEEE International Symposium on Industrial Electronics. IEEE, 2005. http://dx.doi.org/10.1109/isie.2005.1528935.
Der volle Inhalt der QuelleRose, Nathan A., Neal Carter und Gray Beauchamp. „Post-Impact Dynamics for Vehicles with a High Yaw Velocity“. In SAE 2016 World Congress and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-01-1470.
Der volle Inhalt der QuelleGustafsson, Fredrik, Stefan Ahlqvist, Urban Forssell und Niclas Persson. „Sensor Fusion for Accurate Computation of Yaw Rate and Absolute Velocity“. In SAE 2001 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-1064.
Der volle Inhalt der QuelleKaraman, S., S. Oncu, L. Guvenc, S. S. Ersolmaz, E. Cetin und A. Kanbolat. „Robust Velocity Scheduled Yaw Stability Control of a Light Commercial Vehicle“. In Proceedings of IV2006. IEEE Intelligent Vehicles Symposium. IEEE, 2006. http://dx.doi.org/10.1109/ivs.2006.1689678.
Der volle Inhalt der QuelleCOURTNEY, ELYA, ROY COUVILLION, AMY COURTNEY und MICHAEL COURTNEY. „Effects of Sound Suppressors on Muzzle Velocity, Bullet Yaw and Drag“. In 30th International Symposium on Ballistics. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/ballistics2017/16879.
Der volle Inhalt der QuellePeterson, Dale L., und Mont Hubbard. „Yaw Rate and Velocity Tracking Control of a Hands-Free Bicycle“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68948.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Yaw velocity"
Pennekamp, Richard A. A Large-Caliber, High-Velocity Yaw Inducer. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada216846.
Der volle Inhalt der Quelle