Literatura académica sobre el tema "A-ARM"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "A-ARM".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "A-ARM"
Sreedhar, M., S. Sai Mani Shekar y K. Aditya Vardhan S. Vaibhav Krishna. "A Review on Bionic Arm". International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (30 de abril de 2019): 1032–38. http://dx.doi.org/10.31142/ijtsrd23221.
Texto completoTetteh, Joshua, Nancy Darkoa Darko, Chrissie Stansie Abaidoo y Thomas Diby. "Height Estimation using Arm Span as a Proxy among Ghanaians". International Journal of Anatomy and Research 9, n.º 2.2 (11 de mayo de 2021): 7984–90. http://dx.doi.org/10.16965/ijar.2021.120.
Texto completoYasar, Yasar, S. A, Korkut Korkut y I. I. "DESIGN AND KINEMATIC ANALYSIS OF A RRPR ROBOT ARM". International Journal of Innovative Research in Engineering & Management 3, n.º 6 (17 de noviembre de 2016): 490–93. http://dx.doi.org/10.21276/ijirem.2016.3.6.7.
Texto completoDharmana,, Meher Madhu, Sai Shashidhar,, Sachin Kumar, y Chaithanya . "Embedded ANFIS as a Supervisory Controller for a 6-DOF Robotic Arm". International Journal of Engineering Research 3, n.º 5 (1 de mayo de 2014): 318–20. http://dx.doi.org/10.17950/ijer/v3s5/505.
Texto completoHamed, Basil. "A Mimicking Human Arm with 5 DOF Controlled by LabVIEW". International Journal of Engineering and Technology 3, n.º 1 (2011): 9–15. http://dx.doi.org/10.7763/ijet.2011.v3.192.
Texto completoBousquet, A., S. Larréché, C. Elhadji Toumane, M. Dupin, J. Avignant, A. Mérens y F. Maccari. "A “fat arm”". Médecine et Santé Tropicales 24, n.º 3 (julio de 2014): 247–48. http://dx.doi.org/10.1684/mst.2014.0337.
Texto completoRaza, K. y P. King. "A flaccid arm." Postgraduate Medical Journal 73, n.º 864 (1 de octubre de 1997): 673–75. http://dx.doi.org/10.1136/pgmj.73.864.673.
Texto completoAbdelkader, BOUHAMZA. "Optimization of the Geometric Model Neuronal (BPNN) of a Polyarticulated Arm". Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (31 de marzo de 2020): 1137–46. http://dx.doi.org/10.5373/jardcs/v12sp4/20201587.
Texto completoWaingankar, Anuja Jayaram y Dr P. C. Bhaskar. "A Review on Real Time Ethernet Communication For Robotic Arm Application". International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31 de diciembre de 2017): 741–44. http://dx.doi.org/10.31142/ijtsrd7063.
Texto completoSakaeda, Gen, Shintaro Kawasaki, Hiroyuki Ishii, Ryota Shibusawa, Noriyuki Matsuoka, Yusuke Nakae, Tamotsu Katayama y Atsuo Takanishi. "Development of a 5-DoF Arm Robot for Neurological Examination Training". Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2015.6 (2015): 219–20. http://dx.doi.org/10.1299/jsmeicam.2015.6.219.
Texto completoTesis sobre el tema "A-ARM"
On, Calvin. "ANA : a method for ARM-on-ARM execution". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/45973.
Texto completoIncludes bibliographical references (p. 61-62).
This thesis proposes and implements ANA, a new method for the simulation of ARM programs on the ARM platform. ANA is a lightweight ARM instruction interpreter that uses the hardware to do a lot of the work for the read-decode-execute piece of simulation. We compare this method to the two existing methods of full simulation and direct execution that have been traditionally used to achieve this. We demonstrate that despite some setbacks caused by the prefetching and caching behaviors of the ARM, ANA continues to be a very useful tool for prototyping and for increasing simulator performance. Finally, we identify the important role that ANA can play in our current efforts to virtualize the ARM.
by Calvin On.
M.Eng.
BATOR, CHRISTOFFER y RICKARD SVENSSON. "Exoskeleton arm : How to construct a smart support structure for an arm". Thesis, KTH, Mekatronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190843.
Texto completoTanken med detta arbete var att hitta ett optimalt sätt att konstruera en produkt som skulle hjälpa de som lider av muskel -svaghet och -sjukdom. Produkten skulle bestå av två större delar (överarmen och underarmen) som var sammanlänkade med en motoriserad led. Fokusen låg på att hitta en tillfredställande konstruktion som kunde hantera krafterna och med hjälp av sensorer kunna mäta avståndet och rörelsen på användarens arm och förflytta konstruktionen utifrån det. Produkten behövde vara snabb, pålitlig och reagera på små rörelser för att vara så bekväm för användaren som möjligt. Resultatet blev en konstruktion som styrs genom att mäta tryckkraften, när användaren flyttar armen, med hjälp av trycksensorer som placeras vid handleden. Konstruktionen lyckades följa användarens arm, snabbt och på ett tillfredställande sätt.
Hägg, Magnus. "Controlling a robotic arm using linux". Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-7546.
Texto completoEDSTRÖM, JACOB y JONATHAN GUNNARSSON. "Balancing arm for a Robotic Waiter". Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191211.
Texto completoDetta projekt fokuserar på balanseringen av ett dryckesglas, för att kunna transportera detta utan att innehållet spills ut. Designen är främst tänkt för att ersätta en servitör i restaurangverksamhet, men teknologin kan väl appliceras till mobila dryckeshållare i exempelvis bilar och båtar. Kärnan i projektet är att studera hur och om det är möjligt att skapa en plattform som klarar av att balansera ett dryckesglas när den utsätts för olika accelerationskrafter. Denna rapport beskriver ett sätt att gå tillväga för att konstruera denna dryckeshållare, med förklaringar om hur hårdvaran har designats och satts ihop samt hur mjukvaran fått komponenterna att fungera tillsammans. Målet var att vrida plattformen så att accelerationsresultanten alltid var riktad längs sensorns z-axel. Balanseringen delades upp i två separata system som reglerar varsin rotation kring två vinkelräta axlar. Rotationen drivs av två DC-motorer, som motverkar de krafter som uppstår när testplattformen vinklas och accelererar i olika riktningar. För att mäta dessa röresler användes en IMU-sensor som innehöll både accelerometer och gyroskop. Sensorn var placerad i rotationscentrum för att öka precisionen i mätningarna. För att relatera insignalen från sensorn till utsignalen till motorerna användes en PID-kontroller. Det undersöktes om matematisk modellering eller experimentell testning gav den bästa metoden att bestämma parametrarvärdena till denna PID-kontroller. För att testa prestationsförmågan samlades accelerationsdata samt data om den relativa vinkeln till accelerationsresultanten. Detta visade hur höga accelerationer som systemet klarade att hantera, för att utvärdera om systemet kunde användas i en restaruang- eller barmiljö. Det visade även hur mycket plattformen lutade relativt accelerationsresultanten, vilket avgör om vätskan stannar i glaset. Till detta gjordes också en undersökning för att samla in åsikter om robotar i restaurang- eller barmiljö. Implementationen av denna robot bedöms möjlig och det finns ett intresse för en sådan produkt. En klar majoritet av de tillfrågade svarade att de skulle vara lockade till en restaurang eller bar med robotservitörer. Vid undersökningen av tre olika sätt att applicera den deriverande delen i PID-kontrollern drogs slutsatsen att användadet av gyroskopet var det som fungerade bäst i tillämpningen, trots att den inte kan ta hänsyn till acceleration från rätlinjig rörelse. Experimentell testning visade sig vara mest tidseffektivt för ta fram parametervärdena till PID-kontrollern, men den presenterade icke-lineariserade matematiska modellen av systemet kan väl utgöra en grund för att förbättra denna kontroller.
Issa, Alan y Christos Andreanidis. "Wireless Control of a Robotic Arm". Thesis, KTH, Mekatronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295847.
Texto completoDenna uppsats behandlar olika aspekter i utvecklingen av en robotarm vars gripdon är en hand med fem fingrar, med syfte att kunna imitera mänskliga rörelser. Imitationsförmågan, noggrannheten samt vilka faktorer som påverkar dessa studeras. För att uppnå ett önskvärt resultat har det krävts styrning och samverkan mellan olika elektroniska komponenter. I prototypen som presenteras mättes fingrarnas rörelsemed hjälp av flexsensorer samt rörelsen i armbåge och handleden med hjälp av vridpotentiometrar. Flexsensorerna och potentiometrarna var anslutna till en Arduino Mega vars värden skickades med hjälp av en sändare. Elektronikkomponenterna som användes i robotarmen var en ArduinoUno, sju servomotorer och en mottagare, vars funktion var att läsa av meddelanden som skickades från sändaren. Alla värden omvandlades till grader och motoraxlarna roterade i enlighet med dessa. Prototypen uppnådde ett önskvärt betteende då roboten hade förmågan att imitera alla rörelser som utfördes av styrenheten. Noggrannheten och imitationsförmågan undersöktes med olika tester. De mest betydelsefulla faktorer som påverkade imitationen och noggrannheten av prototypen var kopplade till vikten av roboten och designen av handen, enligt slutsatserna som har dragits.
Leeb, Adam Paul. "Anthro Arm : the design of a seven degree of freedom arm with human attributes". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40458.
Texto completoIncludes bibliographical references (leaf 24).
Studying biological systems has given robotics researchers valuable insight into designing complex systems. This thesis explores one such application of a biomimetic robotic system designed around a human arm. The design of an anthropomorphic arm, an arm that is similar to that of a human's, requires deep insight into the kinematics and physiology of the biological system. Investigated here is the design and completion of an arm with 7 degrees of freedom and human-like range of motion in each joint. The comparison of actuation schemes and the determination of proper kinematics enable the arm to be built at a low cost while maintaining high performance and similarity to the biological analog. Complex parts are built by dividing structures into interlocking 2d shapes that can easily be cut out using a waterjet and then welded together with high reliability. The resulting arm will become part of a bionic system when combined with an existing bionic hand platform that is being developed in the Intelligent Machines Laboratory at MIT. With a well thought out modular design, the system will be used as a test bed for future research involving data simplification and neurological control. The completion of the anthropomorphic arm reveals that is indeed feasible to use simple DC motors and quick fabrication techniques. The final result is a reliable, modularized, and anthropomorphic arm.
by Adam Paul Leeb.
S.B.
Bersvendsen, Jørn. "Control of a multifunction Arm Prosthesis Model". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14176.
Texto completoJassemi-Zargani, Rahim. "Impedance control of a dual-arm robot". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq28348.pdf.
Texto completoShiek, David. "From coast guards to a strategic arm". Thesis, King's College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416120.
Texto completoAnders, Ariel (Ariel Sharone). "Learning a strategy for whole-arm grasping". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91034.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
23
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 69-71).
Traditionally, robot grasping has been approached in two separate phases: first, finding contact positions that yield optimal grasps and, then, moving the robot hand to these positions. This approach works well when the object's location is known exactly and the robot's control is perfect. However, in the presence of uncertainty, this approach often leads to failure, usually because the robot's gripper contacts the object and causes the object to move away from the grasp. To obtain reliable grasping in the presence of uncertainty, the robot needs to anticipate the possible motions of the object during grasping. Our approach is to compute a policy that specifies the robot's motions over a range of joint states of the object and gripper, taking into account the expected motion of the object when pushed by the gripper. We use methods from continuous-state reinforcement-learning to solve for these policies. We test our approach on the problem of whole-arm grasping for a PR2, where one or both arms, as well as the torso can all serve to create contacts.
by Ariel Anders.
S.M.
Libros sobre el tema "A-ARM"
ill, Caddell Foster, ed. Catcher with a glass arm. Boston: Little, Brown, 1985.
Buscar texto completoHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Buscar texto completoHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Buscar texto completoHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Buscar texto completoHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Buscar texto completoHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Buscar texto completoHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Buscar texto completoHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Buscar texto completoCapítulos de libros sobre el tema "A-ARM"
Rollins, Mark. "Designing a Robot Arm". En LEGO Technic Robotics, 97–136. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-4981-8_4.
Texto completoShamil, Eamon, Praful Ravi y Ashish Chandra. "A Painful Arm and a Large Spleen". En 100 Cases in Clinical Pathology and Laboratory Medicine, 175–77. 2a ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003242697-67.
Texto completoPoulton, A. S., P. J. Kyberd y D. Gow. "Progress of a Modular Prosthetic Arm". En Universal Access and Assistive Technology, 193–200. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-3719-1_19.
Texto completoRamon, Manoel Carlos. "Assembling and Controlling a Robotic Arm". En Intel® Galileo and Intel® Galileo Gen 2, 509–77. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6838-3_11.
Texto completoPatel, Mukesh J. y Marco Dorigo. "Adaptive learning of a robot arm". En Evolutionary Computing, 180–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58483-8_14.
Texto completoProaño-Guevara, Daniel, Javier Procel-Feijóo, Johnny Zhingre-Balcazar y Luis Serpa-Andrade. "Biomimetical Arm Prosthesis: A New Proposal". En Advances in Intelligent Systems and Computing, 549–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60483-1_57.
Texto completoKeating, Steven, Nathan A. Spielberg, John Klein y Neri Oxman. "A Compound Arm Approach to Digital Construction". En Robotic Fabrication in Architecture, Art and Design 2014, 99–110. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04663-1_7.
Texto completoLyngby, Rasmus Ahrenkiel, Jannik Boll Matthiassen, Jeppe Revall Frisvad, Anders Bjorholm Dahl y Henrik Aanæs. "Using a Robotic Arm for Measuring BRDFs". En Image Analysis, 184–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20205-7_16.
Texto completoCrowder, R. M. "A whole arm manipulator for hazardous environments". En New Frontiers in Manufacturing, 143–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-12593-9_15.
Texto completoKavitha, A., P. Sangeetha, Aijaz Ali Khan y K. N. Chandana. "A Novel Implementation of Haptic Robotic Arm". En Evolutionary Computing and Mobile Sustainable Networks, 51–59. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5258-8_6.
Texto completoActas de conferencias sobre el tema "A-ARM"
Mehta, Yash Dhanpal, Rohit Ashok Khot, Rakesh Patibanda y Florian 'Floyd' Mueller. "Arm-A-Dine". En CHI PLAY '18: The annual symposium on Computer-Human Interaction in Play. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3242671.3242710.
Texto completoHiguchi, Mineo y Tsukasa Ogasawara. "Development of a human symbiotic assist arm PAS-Arm". En the Community (ICORR). IEEE, 2009. http://dx.doi.org/10.1109/icorr.2009.5209600.
Texto completoFranchi, Giulia, Ulrich Viereck, Robert Platt, Sheng-Che Yen y Christopher J. Hasson. "An arm for a leg: Adapting a robotic arm for gait rehabilitation". En 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7319253.
Texto completoLi, Juncheng, Xieping Gu, Qian Liu, Haoyu Sun, Wanjun Cen, Ziheng Huang, Yun Zhang y Zhifeng Huang. "Force Feedback Algorithm for Robot Arm to Bandage A Swaying Arm". En 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 2020. http://dx.doi.org/10.1109/icarm49381.2020.9195393.
Texto completoYang, Hua, Yuqi Yan, Shilin Su, Zhuqing Dong y Syed Haseeb Ul Hassan. "LWH-Arm: A Prototype of 8-DoF Lightweight Humanoid Robot Arm". En 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS). IEEE, 2019. http://dx.doi.org/10.1109/icras.2019.8809073.
Texto completoAllred, Timothy, Larry L. Howell, Spencer P. Magleby y Robert H. Todd. "The Compliant A-Arm Suspension". En ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43259.
Texto completoBelingardi, Giovanni, Andrea Bernasconi, Marcello Chessari, Silvia Maccarinelli, Giampiero Mastinu, Giorgio Previati, Alessandro Scattina y Erico Spini. "A McPherson Lightweight Suspension Arm". En WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-01-0772.
Texto completoNandan, N. y K. Thippeswamy. "A Tensorflow Based Robotic Arm". En 2018 Third International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT). IEEE, 2018. http://dx.doi.org/10.1109/iceeccot43722.2018.9001524.
Texto completoNakano, H., K. Nakayama, H. Mimaki, I. Yamauchi y K. Hirose. "A single-arm spiral antenna". En 1992 Symposium on Antenna Technology and Applied Electromagnetics. IEEE, 1992. http://dx.doi.org/10.1109/antem.1992.7854278.
Texto completoMao, Ying y Sunil K. Agrawal. "Transition from mechanical arm to human arm with CAREX: A cable driven ARm EXoskeleton (CAREX) for neural rehabilitation". En 2012 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2012. http://dx.doi.org/10.1109/icra.2012.6224906.
Texto completoInformes sobre el tema "A-ARM"
Connell, Jonathan H. A Behavior-Based Arm Controller. Fort Belvoir, VA: Defense Technical Information Center, junio de 1988. http://dx.doi.org/10.21236/ada200666.
Texto completoHong, Gihoon y John McLaren. Are Immigrants a Shot in the Arm for the Local Economy? Cambridge, MA: National Bureau of Economic Research, abril de 2015. http://dx.doi.org/10.3386/w21123.
Texto completoHnilo, J. A Comparison of Model Short-Range Forecasts and the ARM Microbase Data Fourth Quarter ARM Science Metric. Office of Scientific and Technical Information (OSTI), septiembre de 2006. http://dx.doi.org/10.2172/948099.
Texto completoMelchiorri, Claudio y J. K. Salisbury. Exploiting the Redundancy of a Hand-Arm Robotic System. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1990. http://dx.doi.org/10.21236/ada241161.
Texto completoBoucher, T. D. Riser configuration, Tank 241-A-105, light duty utility arm. Office of Scientific and Technical Information (OSTI), septiembre de 1994. http://dx.doi.org/10.2172/10185202.
Texto completoBrown, R. A preliminary ARM (Atmospheric Radiation Measurements) guide for climatic evaluations. Office of Scientific and Technical Information (OSTI), marzo de 1990. http://dx.doi.org/10.2172/6711381.
Texto completoBrown, R. M. A preliminary ocean ARM (Atmospheric Radiation Measurements) guide for climatic evaluations. Office of Scientific and Technical Information (OSTI), julio de 1990. http://dx.doi.org/10.2172/6447712.
Texto completoQiang FU. Development and Testing of A Radiation Model for Interpreting ARM Data. Office of Scientific and Technical Information (OSTI), noviembre de 2004. http://dx.doi.org/10.2172/839572.
Texto completoNonnecke, Gail, Sharon Tusiime, Leah Riesselman Worth y Bernie Havlovic. Thornless Blackberry Cultivars Grown with a Rotatable Cross-Arm Trellis System. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/farmprogressreports-180814-1592.
Texto completoNonnecke, Gail, Sharon Tusiime, Leah Riesselman Worth y Bernie Havlovic. Thornless Blackberry Cultivars Grown with a Rotatable Cross-Arm Trellis System. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/farmprogressreports-180814-1616.
Texto completo