Literatura académica sobre el tema "Air ducts Ventilation. Air flow"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Air ducts Ventilation. Air flow".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Air ducts Ventilation. Air flow"
Huo, Fei Yang, Jia Hui Sun, Wei Li Li y Yi Huang Zhang. "Influence of Large Turbo-Generator Stator Ventilation Ducts Structural Changes on Stator Temperature". Advanced Materials Research 462 (febrero de 2012): 318–26. http://dx.doi.org/10.4028/www.scientific.net/amr.462.318.
Texto completoGaczoł, Tomasz. "Natural balanced ventilation. Simulations part 2". E3S Web of Conferences 49 (2018): 00026. http://dx.doi.org/10.1051/e3sconf/20184900026.
Texto completoGaczoł, Tomasz. "Living quarters. A natural balanced ventilation system. Simulations part 1". E3S Web of Conferences 49 (2018): 00025. http://dx.doi.org/10.1051/e3sconf/20184900025.
Texto completoLi, Yong, Weili Li y Ying Su. "Sensitivity of Axial Velocity at the Air Gap Entrance to Flow Rate Distribution at Stator Radial Ventilation Ducts of Air-Cooled Turbo-Generator with Single-Channel Ventilation". Energies 12, n.º 18 (6 de septiembre de 2019): 3442. http://dx.doi.org/10.3390/en12183442.
Texto completoLu, Yi Ping, Qing Hui Pan, Hui Lan Li y Jia De Han. "Experimental Study of Flow Field of Large Air-Cooled Turbine Generator for Multi-Ventilation Ducts of Stator". Applied Mechanics and Materials 644-650 (septiembre de 2014): 377–80. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.377.
Texto completoGaj, Patryk y Joanna Kopania. "Influence of Geometry of Channel on the Flow Noise Parameters". Mechanics and Mechanical Engineering 22, n.º 2 (24 de agosto de 2020): 541–52. http://dx.doi.org/10.2478/mme-2018-0043.
Texto completoGherghe, Ion, Doru Cioclea, Florin Rădoi, Adrian Matei y Răzvan Drăgoescu. "Notions regarding the design of suction systems for industrial ventilation". MATEC Web of Conferences 342 (2021): 02006. http://dx.doi.org/10.1051/matecconf/202134202006.
Texto completoSulin, A. B., A. A. Nikitin, T. V. Ryabova, S. S. Muraveinikov y I. N. Sankina. "Energy-efficient outdoor air flow control in ventilation systems". Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering 5, n.º 2 (2021): 18–24. http://dx.doi.org/10.25206/2588-0373-2021-5-2-18-24.
Texto completoRenz, Andreas, Julian Praß, Johannes Weber y Stefan Becker. "Experimental Investigation of a Friction Ventilator". Advanced Engineering Forum 19 (octubre de 2016): 43–49. http://dx.doi.org/10.4028/www.scientific.net/aef.19.43.
Texto completoEl Moueddeb, K., S. Barrington y N. Barthakur. "Perforated Ventilation Ducts: Part 1, A Model for Air Flow Distribution". Journal of Agricultural Engineering Research 68, n.º 1 (septiembre de 1997): 21–27. http://dx.doi.org/10.1006/jaer.1997.0176.
Texto completoTesis sobre el tema "Air ducts Ventilation. Air flow"
MacKinnon, Ian R. (Ian Roderick) 1964. "Air distribution from ventilation ducts". Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59655.
Texto completoKinsman, Roger Gordon. "Outlet discharge coefficients of ventilation ducts". Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59271.
Texto completoDischarge coefficients of a wooden ventilation duct 8.54 metres in length and of a constant 0.17 m$ sp2$ cross sectional area were measured. Four different outlet shapes and 3 aperture ratios of each shape were tested. A split plot experimental design was used to evaluate the effect of outlet shape, outlet size, and distance from the fan on discharge coefficient. The relationship between duct performance characteristics and discharge coefficient was examined. A mathematical equation to predict the discharge coefficient was developed and tested.
Discharge coefficient values measured ranged from 0.19 to 1.25 depending on the aperture ratio and distance from the fan. Outlet shape had no significant effect. The apparent effects of aperture ratio and size are due to the effects of head ratio. The equation predicting the discharge coefficient had a maximum error of 5 percent for the aperture ratios of 0.5 and 1.0, and 15 percent at an aperture ratio of 1.5.
Balasubramanian, Vivek. "Effectiveness of the "common" method in balancing exhaust ventilation systems". Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4354.
Texto completoTitle from document title page. Document formatted into pages; contains vii, 59 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 48-49).
El, Moueddeb Khaled. "Principles of energy and momentum conservation to analyze and model air flow for perforated ventilation ducts". Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42024.
Texto completoBased on the equations of energy and momentum conservation, a model was formulated to predict the air flow performance of perforated ventilation ducts and to evaluate the outlet discharge angle and the duct regain coefficients without evaluating frictional losses. The basic assumptions of the model were validated by experimentally proving the equivalence of the friction losses expressed in the 2 cited equations. When compared to experimental results measured from four wooden perforated ventilation ducts with aperture ratios of 0.5, 1.0, 1.5, and 2.0, the model predicted the outlet air flow along the full length of perforated duct operated under turbulent flow conditions with a maximum error of 9%. The regain coefficient and the energy correction factor were equal to one, and the value of the discharge coefficient remained constant at 0.65, along the full length of the perforated duct. The outlet air jet discharge angle varied along the entire duct length, and was not influenced by friction losses for turbulent flow.
Assuming a common effective outlet area, the model was extended to match the performance of the fan and the perforated duct and to determine their balance operating point.
Fu, Yan. "Modelling of ducted ventilation system in agricultural structures". Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60519.
Texto completoIn order to simplify the approach to the design of ventilation ducts, a mathematical equation has been derived to describe the average air velocity of a duct.
The primary objective of the research work was to test goodness of fit of an equation describing the average air velocity of perforated ventilation ducts, under balanced as well as unbalanced air distribution: $V = H sb{o}{X over L} + (V sb{L}-H sb{o}) {X sp2 over L sp2}$.
This equation was successfully tested using data measured from 14 ducts of constant cross-sectional area, built of wood or polyethylene with outlets of various shapes and aperture ratios. Results indicated that aperture ratio and distance along the duct are the two most significant factors influencing the average duct air velocity values, but material and outlet shape had little effect.
El, Moueddeb Khaled. "Principles of energy and momentum conservation to analyze and model air flow for perforated ventilation ducts". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ29929.pdf.
Texto completoKhaire, Swapnil S. "Influence of test section entrance conditions on straight flat oval apparent relative roughness a thesis presented to the faculty of the Graduate School, Tennessee Technological University /". Click to access online, 2009. http://proquest.umi.com/pqdweb?index=0&did=2000385011&SrchMode=1&sid=1&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1277822700&clientId=28564.
Texto completoBesarla, Dhaman Kumar. "Modeling and optimization of air flow in a cabin air filtration test duct a thesis presented to the faculty of the Graduate School, Tennessee Technological University /". Click to access online, 2008. http://proquest.umi.com/pqdweb?index=0&did=1679682361&SrchMode=1&sid=2&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1254155722&clientId=28564.
Texto completoSanchez, Marc. "Etude des extracteurs d'air hybrides éoliens : conception de géométries et analyse des écoulements". Thesis, Perpignan, 2015. http://www.theses.fr/2015PERP0040/document.
Texto completoThis PhD work concerns the study of hybrid air extractors. It is composed of upstream and applied investigations. In the upstream part, fine simulations are realized in square duct flow with and without rotation to analyse the impact of rotation on turbulence. It is found that rotation removes symmetry property of the flow with turbulent Reynolds number of 600. The applied part is dedicated to the conception of a new air extractor geometry. This geometry is proposed from the analyse of RANS simulations. Its performances are confirmed by experimental measurements on test rig. Wind tunnel tests of a wind power capturing system, designed for the extractor, show a good adequation to the operating regime of the extractor. Experimental investigations on the complete air extractor, show the wind power capturing system brings a significant part of the energy. Wind tunnel tests allow to observe the complete air extractor behaviour
Trinder, M. C. J. "Active noise control in finite length ducts". Thesis, University of Essex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371924.
Texto completoLibros sobre el tema "Air ducts Ventilation. Air flow"
Gladstone, John. Moving air through fans and ducts. Coral Gables, FL: Engineer's Press, 1992.
Buscar texto completoHaskell, Ted. Improved air distribution systems for forced-air heating. [Portland, OR]: Bonneville Power Administration, 1995.
Buscar texto completoWallis, R. Allan. Axial flow fans and ducts. Malabar, Fla: Krieger Pub. Co., 1993.
Buscar texto completoInternational, ORTECH. Study of residential ventilation duct energy losses. Ottawa, Ont: Efficiency and Alternative Energy Technology Branch/CANMET, Energy, Mines and Resources Canada, 1992.
Buscar texto completoInternational, ORTECH. Study of residential ventilation duct energy losses. Ottawa, Ont: Energy Efficiency Division, Energy Technology Branch/CANMET, 1993.
Buscar texto completoEtheridge, David. Building ventilation: Theory and measurement. Chichester: John Wiley & Sons, 1996.
Buscar texto completoPerzak, F. J. Fire tests of rigid plastic ventilation ducts. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1987.
Buscar texto completoL, Felker Travis, ed. Dampers and airflow control. Atlanta, Ga: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2009.
Buscar texto completoFinkelstein, Hal. Variable air volume system operation: A guide to engineering design and operations. Washington, DC: National Resource Center, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Air ducts Ventilation. Air flow"
Akiyama, M., H. Sugiyama, N. Ninomiya y A. Leoni-Schmid. "Numerical Analysis and Visualization of Air Ventilation Systems". En Flow Visualization VI, 463–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_80.
Texto completoYildirim, Kemal-Edip, Matthias Finkenrath, Mehmet Gökoglu y Frank Seidel. "Monitoring the Fresh-Air Flow Rate for Energy-Efficient Bus Ventilation". En Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, 147–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47196-9_12.
Texto completoSofu, Tanju, Fon-Chieh Chang, Ron Dupree, Srinivas Malipeddi, Sudhindra Uppuluri y Steven Shapiro. "Measurement and Analysis of Underhood Ventilation Air Flow and Temperatures for an Off-Road Machine". En The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, 373–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44419-0_34.
Texto completoCrooke, P. S., A. M. Kaynar y J. R. Hotchkiss. "A Mathematical Model of Air-Flow Induced Regional Over-Distention during Mechanical Ventilation: Comparing Pressure-Controlled and Volume-Controlled Modes". En Advances in the Theory of Control, Signals and Systems with Physical Modeling, 269–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16135-3_22.
Texto completo"ventilation air flow". En Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 1480. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_220329.
Texto completoCory, WTW (Bill). "Air and gas flow". En Fans and Ventilation, 43–75. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044626-4/50005-x.
Texto completoThakur, Pramod. "Air Flow in Mine Airways". En Advanced Mine Ventilation, 17–34. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-100457-9.00002-x.
Texto completo"Aerodynamics of Dust Airflows in the Spectra of Air Exhaust Ducts". En Local Exhaust Ventilation, 1–8. CRC Press, 2015. http://dx.doi.org/10.1201/b18488-2.
Texto completo"Aerodynamic Properties of Particles in the Gravitational Flow of a Chuted Bulk Material". En Industrial Air Quality and Ventilation, 49–90. CRC Press, 2014. http://dx.doi.org/10.1201/b16549-4.
Texto completo"Appendix 9: Fume and dust control, air ventilation hose and ducts". En Humidification and Ventilation Management in Textile Industry, 424–30. Elsevier, 2009. http://dx.doi.org/10.1533/9780857092847.424.
Texto completoActas de conferencias sobre el tema "Air ducts Ventilation. Air flow"
Toriyama, H. y Y. Asako. "Effect of a Permanent Magnet on CHS (Compost Heating System)". En ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12350.
Texto completoScanlon, T., P. Wilson, G. Priestman y J. Tippetts. "Development of a Novel Flow Control Device for Limiting the Efflux of Air Through a Failed Pipe". En ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59662.
Texto completoAlizadeh, Sohail y Barrie Moss. "Modelling Sub-Grid Scale Features in Congested Engine Ventilation Zones". En ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90461.
Texto completoParayil, Paulson, Somnath Sen, Anit Sen y Arunkumar Goel. "Iterative Study to Improve Air Flow Distribution on Ventilation Unit Duct Using CFD Analysis". En Thermal Management Systems Conference 2020. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-28-0030.
Texto completoMaqsood, Asim y A. M. Birk. "Effect of a Bend on the Performance of an Oblong Ejector". En ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27851.
Texto completoNakielska, Magdalena y Krzysztof Pawłowski. "Enhancement of Gravity Ventilation in Buildings". En Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.269.
Texto completoChen, Qi y A. M. Birk. "Experimental Study of an Exhaust Ejector With Entraining Diffuser". En ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68654.
Texto completoFumizawa, Motoo y Hidenori Horiuchi. "Helium-Air Exchange Flow Rate Measurement Through a Small Opening". En ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37008.
Texto completoHassan, Nik Normunira Mat, A. M. Leman, Muhammad Alif Mohamed Noor Zafarullah, Zuliazura Salleh, K. A. Rahman, Rais Hanizam Madon, S. Muzarpar y A. R. Shayfull Zamree. "Characterization of flow rate and heat loss in heating, ventilation and air conditioning (HVAC) duct system for office building". En PROCEEDINGS OF GREEN DESIGN AND MANUFACTURE 2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0044697.
Texto completoNeale, J., S. S. Leong, T. Barber, K. Byrne y E. Leonardi. "Noise Treatment Strategies for High Velocity HVAC Ducts in Ocean Going Fast Ferries". En ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61403.
Texto completoInformes sobre el tema "Air ducts Ventilation. Air flow"
Goolsby, G. K. Position paper -- Tank ventilation system design air flow rates. Office of Scientific and Technical Information (OSTI), enero de 1995. http://dx.doi.org/10.2172/10117825.
Texto completo