Literatura académica sobre el tema "Algebraic Modeling"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Algebraic Modeling".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Algebraic Modeling"

1

Letychevskyi, O. О. "Algebraic modeling and its application". Visnik Nacional'noi' academii' nauk Ukrai'ni, n.º 03 (25 de marzo de 2021): 59–66. http://dx.doi.org/10.15407/visn2021.03.059.

Texto completo
Resumen
The article is devoted to the scientific development of the Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine on the application of algebraic and insertional modeling technologies created on the basis of behavioral algebra. Technologies of formalization, algebraic verification, and testing of software and hardware specifications within the model-driven development method are considered. The use of algebraic modeling in biological research, development of systems based on blockchain platforms, analysis of legal and economic models is covered. One of the main areas of application of these technologies is the field of cybersecurity, which uses the method of algebraic matching and formalization of patterns of vulnerabilities and cyberattacks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Panaras, Argyris G. "Algebraic Turbulence Modeling for Swept". AIAA Journal 35, n.º 3 (marzo de 1997): 456–63. http://dx.doi.org/10.2514/2.151.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Andrianov, S. N., N. S. Edamenko y A. A. Dyatlov. "Algebraic modeling and parallel computing". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 558, n.º 1 (marzo de 2006): 150–53. http://dx.doi.org/10.1016/j.nima.2005.11.036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Jusevičius, Vaidas y Remigijus Paulavičius. "Web-Based Tool for Algebraic Modeling and Mathematical Optimization". Mathematics 9, n.º 21 (29 de octubre de 2021): 2751. http://dx.doi.org/10.3390/math9212751.

Texto completo
Resumen
In this article, we present a new open-source tool for algebraic modeling and mathematical optimization. We begin by distilling the main gaps within the existing algebraic modeling languages and tools (varying performance, limited cross-compatibility, complex syntax, and different solver, feature, and problem type support). Later, we propose a state-of-the-art web-based tool (WebAML and Optimization System) for algebraic modeling languages and mathematical optimization. The tool does not require specific algebraic language knowledge, allows solving problems using different solvers, and utilizes the best characteristics of existing algebraic modeling languages. We also provide clear extension points and ideas on how we could further improve such a tool.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Patrikalakis, N. M. y P. V. Prakash. "Surface Intersections for Geometric Modeling". Journal of Mechanical Design 112, n.º 1 (1 de marzo de 1990): 100–107. http://dx.doi.org/10.1115/1.2912565.

Texto completo
Resumen
Evaluation of planar algebraic curves arises in the context of intersections of algebraic surfaces with piecewise continuous rational polynomial parametric surface patches useful in geometric modeling. We address a method of evaluating these curves of intersection that combines the advantageous features of analytic representation of the governing equation of the algebraic curve in the Bernstein basis within a rectangular domain, adaptive subdivision and polyhedral faceting techniques, and the computation of turning and singular points, to provide the basis for a reliable and efficient solution procedure. Using turning and singular points, the intersection problem can be partitioned into subdomains that can be processed independently and which involve intersection segments that can be traced with faceting methods. This partitioning and the tracing of individual segments is carried out using an adaptive subdivision algorithm for Bezier/B-spline surfaces followed by Newton correction of the approximation. The method has been successfully tested in tracing complex algebraic curves and in solving actual intersection problems with diverse features.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wang, Bo, Yi Li, Wei Yan Xing y Dong Liu. "Algebraic Modeling for Dynamic Gates in Dynamic Fault Trees". Applied Mechanics and Materials 232 (noviembre de 2012): 573–77. http://dx.doi.org/10.4028/www.scientific.net/amm.232.573.

Texto completo
Resumen
This paper proposed a novel algebraic framework for modeling dynamic gates in dynamic fault trees (DFTs). The algebraic modeling of DFTs tries to avoid the ambiguities and inconsistencies of the natural languages-based original definitions. Aim to solve this issue, preliminarily a formal framework is defined, including the definitions, properties, rules and theorems. Then, under the framework, algebraic approaches and automatic conversion algorithms for any form of dynamic gates are developed. Finally, an instance verifies the validity of the approaches. Algebraic modeling helps to build the more rigorous mathematical theoretical systems of DFTs. Meanwhile, automatic conversion algorithms are conducive to effective computer-aided modeling for DFTs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kallrath, Josef. "Polylithic modeling and solution approaches using algebraic modeling systems". Optimization Letters 5, n.º 3 (8 de abril de 2011): 453–66. http://dx.doi.org/10.1007/s11590-011-0320-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Santri, Diah Dwi, Yusuf Hartono y Somakim Somakim. "Mathematical modeling for learning algebraic operation". Journal of Education and Learning (EduLearn) 13, n.º 2 (1 de mayo de 2019): 201. http://dx.doi.org/10.11591/edulearn.v13i2.8996.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ennassiri, Brahim, Marouane Moukhliss, Said Abouhanifa, Elmostapha Elkhouzai, Azizi Elmostafa y Benkenza Najia. "Analysis of the Institutional Relationship of the Modeling Activity in a Moroccan High School Textbook". Academic Journal of Interdisciplinary Studies 12, n.º 1 (5 de enero de 2023): 248. http://dx.doi.org/10.36941/ajis-2023-0020.

Texto completo
Resumen
To identify the institutional relationship to modeling as an element of algebraic thinking, this article aims at analyzing the algebraic potential residing in the modeling activities that appear in the school textbook "Al-Moufid"; referring to the Anthropological Theory of Didactics (TAD) developed by Chevalard(1999) and to the Epistemological Reference Model of Algebraic Thinking (MERPA) proposed by Najar et al.( 2021). This official textbook is for 1st-year secondary Moroccan students (Age 12 to 13), as a level in which the arithmetic-algebra transition is manifested. In this institution, the pedagogical guidelines treat modeling as a skill to be developed in students without making an explicit definition or a link with the development of algebraic thinking. This analysis shows the considerable presence of modeling activities but with insufficient algebraic potential. On the other hand, several proposed modeling activities do not allow students to go completely through the modeling process as described by Chevallard (Chevallard, 1989). Received: 17 October 2022 / Accepted: 29 December 2022 / Published: 5 January 2023
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Yusrina, Siti Laiyinun y Masriyah Masriyah. "Profil Berpikir Aljabar Siswa SMP dalam Memecahkan Masalah Matematika Kontekstual Ditinjau dari Kemampuan Matematika". MATHEdunesa 8, n.º 3 (12 de agosto de 2019): 477–84. http://dx.doi.org/10.26740/mathedunesa.v8n3.p477-484.

Texto completo
Resumen
Algebra is one of the important concepts in mathematics and began to be taught in class VII of junior high school. One way to find out students' thinking and reasoning abilities algebraically is to algebraic thinking. Algebraic thinking is a mental activity consisting of generalization, abstraction, dynamic thinking, modeling, analytic thinking, and organization. The means that can be used to explore students' algebraic thinking is problem solving. The problem used in this research is contextual mathematical problems. Algebraic thinking in each student in solving contextual mathematical problems varies based on the level of mathematical abilities. The purpose of this research is to describe the algebraic thinking’s profile of junior high school students in solving contextual mathematical problems based on mathematical abilities. This research uses a qualitative approach with methods of collecting data through tests and interviews. The subjects of this research were one student with high mathematical abilities, one student with medium mathematical abilities, and one student with low mathematical abilities. The results of this research indicate algebraic thinking of student with high mathematical abilities, consists of generalization, abstraction, dynamic thinking, modeling, analytic thinking, and organization. Algebraic thinking of student with medium mathematical abilities, consists of generalization, abstraction, dynamic thinking, modeling, analytic thinking, and organization. Algebraic thinking of student with low mathematical abilities, consists of generalization, dynamic thinking, and organization.Keywords: algebraic thinking, problem solving, contextual mathematical problems, mathematical abilities
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Algebraic Modeling"

1

Wintz, Julien. "Algebraic methods for geometric modeling". Nice, 2008. http://www.theses.fr/2008NICE4005.

Texto completo
Resumen
The two fields of algebraic geometry and algorithmic geometry, though closely related, are traditionally represented by almost disjoint communities. Both fields deal with curves and surfaces but objects are represented in different ways. While algebraic geometry defines objects by the mean of equations, algorithmic geometry use to work with linear models. The current trend is to apply algorithmic geometry algorithms to non linear models such as those found in algebraic geometry. Such algorithms play an important role in many practical fields such as Computer Aided Geometric Design. Their use raises important questions when it comes to developing software featuring such models. First, the manipulation of their representation implies the use of symbolic numeric computations which still represent one major research interest. Second, their visualization and manipulation is not straightforward because of their abstract nature. The first part of this thesis covers the use of algebraic methods in geometric modeling, with an emphasis on topology, intersection and self-intersection for arrangement computation of semi-algebraic sets with either implicit or parametric representation. Special care is given to the genericity of the algorithms which can be specified whatever the context, and then specialized to meet specific representation requirements. The second part of this thesis presents a prototype of an algebraic geometric modeling environment which aim is to provide a generic yet efficient way to model with algebraic geometric objects such as implicit or parametric curves or surfaces, both from a user and developer point of view, by using symbolic numeric computational libraries as a backend for the manipulation of the polynomials defining the geometric objects
Les domaines de géométrie algébrique et de géométrie algorithmique, bien qu'étroitement liés, sont traditionnellement représentés par des communautés de recherche disjointes. Chacune d'entre elles utilisent des courbes et surfaces, mais représentent les objets de différentes manières. Alors que la géométrie algébrique définit les objets par le biais d'équations polynomiales, la géométrie algorithmique a pour habitude de manipuler des modèles linéaires. La tendance actuelle est d'appliquer les algorithmes traditionnels de géométrie algorithmique sur des modèles non linéaires tels que ceux trouvés en géométrie algébrique. De tels algorithmes jouent un rôle important dans de nombreux champs d'application tels que la Conception Assistée par Ordinateur. Leur utilisation soulève d'importantes questions en matière de développement logiciel. Tout d'abord, la manipulation de leur représentation implique l'utilisation de calculs symboliques numériques qui représentent toujours un domaine de recherche majeur. Deuxièmement, leur visualisation et leur manipulation n'est pas évidente, en raison de leur caractère abstrait. La première partie de cette thèse porte sur l'utilisation de méthodes algébriques en modélisation géométrique, l'accent étant mis sur la topologie, l'intersection et l'auto-intersection dans le cadre du calcul d'arrangement d'ensembles semi-algébriques comme les courbes et surfaces à représentation implicite ou paramétrique. Une attention particulière est portée à la généricité des algorithmes qui peuvent être spécifiés quel que soit le contexte, puis spécialisés pour répondre aux exigences d'une certaine représentation. La seconde partie de cette thèse présente le prototypage d'un environnement de modélisation géométrique dont le but est de fournir un moyen générique et efficace pour modéliser des solides à partir d'objets géométriques à représentation algébrique tels que les courbes et surfaces implicites ou paramétriques, à la fois d'un point de vue utilisateur et d'un point de vue de développeur, par l'utilisation de librairies de calcul symbolique numérique pour la manipulation des polynômes définissant les objets géométriques
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Murrugarra, Tomairo David M. "Algebraic Methods for Modeling Gene Regulatory Networks". Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28388.

Texto completo
Resumen
So called discrete models have been successfully used in engineering and computational systems biology. This thesis discusses algebraic methods for modeling and analysis of gene regulatory networks within the discrete modeling context. The first chapter gives a background for discrete models and put in context some of the main research problems that have been pursued in this field for the last fifty years. It also outlines the content of each subsequent chapter. The second chapter focuses on the problem of inferring dynamics from the structure (topology) of the network. It also discusses the characterization of the attractor structure of a network when a particular class of functions control the nodes of the network. Chapters~3 and 4 focus on the study of multi-state nested canalyzing functions as biologically inspired functions and the characterization of their dynamics. Chapter 5 focuses on stochastic methods, specifically on the development of a stochastic modeling framework for discrete models. Stochastic discrete modeling is an alternative approach from the well-known mathematical formalizations such as stochastic differential equations and Gillespie algorithm simulations. Within the discrete setting, a framework that incorporates propensity probabilities for activation and degradation is presented. This approach allows a finer analysis of discrete models and provides a natural setup for cell population simulations. Finally, Chapter 6 discusses future research directions inspired by the work presented here.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bose, Jyoti Sankar. "Modeling turbulence anisotropy using algebraic Reynolds stress models". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq22277.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

YODER, DENNIS ALLEN. "ALGEBRAIC REYNOLDS STRESS MODELING OF PLANAR MIXING LAYER FLOWS". University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1115637717.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Borchert, Katja. "Disassociation between arithmetic and algebraic knowledge in mathematical modeling /". Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/9141.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lorenzetti, David Michael. "Numerical solution of nonlinear algebraic systems in building energy modeling". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10752.

Texto completo
Resumen
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture and Planning, 1997.
Includes bibliographical references (p. 249-251).
When solving a system of nonlinear equations by Newton-Raphson's method, a common means of avoiding divergence requires each step to reduce some vector norm of the residual errors, usually the convenient and tractable sum of squares. Unfortunately, the descent requirement subjects the solver to difficulties typically associated with function minimization-- stagnation, and convergence to local minima. The descent requirement also can disrupt a successful Newton-Raphson sequence. To explore these problems, the thesis reformulates the theory of function minimization in terms of the familiar Jacobian matrix, which linearizes the equations, and a vector which relates first-order changes in the norm to first-order changes in the residuals. The resulting expressions give the norm's gradient, and approximate its Hessian, as functions of the key variables defining the underlying equations. Therefore when Newton- raphson diverges, the solver can choose a reasonable alternate search strategy directly from the Jacobian model, and subsequently construct an appropriate norm for evaluating the search. Applying these results, the thesis modifies a standard equation-solving algorithm, the double dogleg method. Replacing the published algorithm's r-square norm with a general family of weighted r-square norms, it develops and tests a variety of rules for choosing the particular weighting factors. Selecting new weights at each iteration avoids local minima; in tests on a standard suite of nonlinear systems, the resulting algorithms prove more robust to stagnation, and often converge faster, than the double dogleg. In separate investigations, the thesis specializes to equation-solving a double dogleg variation which minimizes the norm model in the plane of its steepest descent and Newton-Raphson directions, and develops a scalar measure of divergence which, unlike a residual norm, does not depend on results from function minimization.
by David Michael Lorenzetti.
Ph.D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kwong, Gordon Houng. "Approximations for Nonlinear Differential Algebraic Equations to Increase Real-time Simulation Efficiency". Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/42753.

Texto completo
Resumen
Full-motion driving simulators require efficient real-time high fidelity vehicle models in order to provide a more realistic vehicle response. Typically, multi-body models are used to represent the vehicle dynamics, but these have the unfortunate drawback of requiring the solution of a set of coupled differential algebraic equations (DAE). DAE's are not conducive to real-time implementation such as in a driving simulator, without a very expensive processing capability. The primary objective of this thesis is to show that multi-body models constructed from DAE's can be reasonably approximated with linear models using suspension elements that have nonlinear constitutive relationships. Three models were compared in this research, an experimental quarter-car test rig, a multi-body dynamics differential algebraic equation model, and a linear model with nonlinear suspension elements. Models constructed from differential algebraic equations are computationally expensive to compute and are difficult to realize for real-time simulations. Instead, a linear model with nonlinear elements was proposed for a more computationally efficient solution that would retain the nonlinearities of the suspension. Simplifications were made to the linear model with nonlinear elements to further reduce computation time for real-time simulation. The development process of each model is fully described in this thesis. Each model was excited with the same input and their outputs were compared. It was found that the linear model with nonlinear elements provides a reasonably good approximation of actual model with the differential algebraic equations.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Gordon, Brandon W. (Brandon William). "State space modeling of differential-algebraic systems using singularly perturbed sliding manifolds". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9340.

Texto completo
Resumen
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1999.
Includes bibliographical references (p. 126-128).
This thesis introduces a new approach for modeling and control of algebraically constrained dynamic systems. The formulation of dynamic systems in terms of differential equations ·and algebraic constraints provides a systematic framework that is well suited for object oriented modeling of thermo-fluid systems. In this approach, differential equations are used to describe the evolution of subsystem states and algebraic equations are used to define the interconnections between the subsystems (boundary conditions). Algebraic constraints also commonly occur as a result of modeling simplifications such as steady state approximation of fast dynamics and rigid body assumptions that result in kinematic constraints. Important examples of algebraically constrained dynamic systems include multi-body problems, chemical processes, and two phase thermo-fluid systems. Differential-algebraic equation (DAE) systems often referred to as descriptor, implicit, or singular systems present a number of difficult problems in simulation and control. One of the key difficulties is that DAEs are not expressed in an explicit state space form required by many simulation and control design methods. This is particularly true in control of nonlinear DAE systems for which there are few known results. Existing control methods for nonlinear DAEs have so far relied on deriving state space models for limited classes of problems. A new approach for state space modeling of DAEs is developed by formulating an equivalent nonlinear control problem. The zero dynamics of the control system represent the dynamics of the original DAE. This new connection between DAE model representation and nonlinear control is used to obtain state space representations for a general class of differential-algebraic systems. By relating nonlinear control concepts to DAE structural properties a sliding manifold is constructed that asymptotically satisfies the constraint equations. Sliding control techniques are combined with elements of singular perturbation theory to develop an efficient state space model with properties necessary for controller synthesis. This leads to the singularly perturbed sliding manifold (SPSM) approach for state space realization. The new approach is demonstrated by formulating a state space model of vapor compression cycles. This allows verification of the method and provides more insight into the problems associated with modeling differential algebraic systems.
by Brandon W. Gordon.
Ph.D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Song, Xuefeng. "Dynamic modeling issues for power system applications". Texas A&M University, 2003. http://hdl.handle.net/1969.1/1591.

Texto completo
Resumen
Power system dynamics are commonly modeled by parameter dependent nonlinear differential-algebraic equations (DAE) x p y x f ) and 0 = p y x g ) . Due to (,, (,, the algebraic constraints, we cannot directly perform integration based on the DAE. Traditionally, we use implicit function theorem to solve for fast variables y to get a reduced model in terms of slow dynamics locally around x or we compute y numerically at each x . However, it is well known that solving nonlinear algebraic equations analytically is quite difficult and numerical solution methods also face many uncertainties since nonlinear algebraic equations may have many solutions, especially around bifurcation points. In this thesis, we apply the singular perturbation method to model power system dynamics in a singularly perturbed ODE (ordinary-differential equation) form, which makes it easier to observe time responses and trace bifurcations without reduction process. The requirements of introducing the fast dynamics are investigated and the complexities in the procedures are explored. Finally, we propose PTE (Perturb and Taylor’s expansion) technique to carry out our goal to convert a DAE to an explicit state space form of ODE. A simplified unreduced Jacobian matrix is also introduced. A dynamic voltage stability case shows that the proposed method works well without complicating the applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Gabrielson, Donald D. "Battle group stationing algebraic modeling system : an anti-air warfare tactical decision aid methodology /". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA296246.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Algebraic Modeling"

1

Kallrath, Josef, ed. Algebraic Modeling Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23592-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hartwig, Andreas. Algebraic 3-D modeling. Wellesley, Mass: A K. Peters, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Algebraic 3-D modeling. Wellesley, Mass: A K. Peters, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Elkadi, Mohamed, Bernard Mourrain y Ragni Piene, eds. Algebraic Geometry and Geometric Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33275-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Jüttler, Bert y Ragni Piene, eds. Geometric Modeling and Algebraic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72185-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

B, Jüttler, Piene Ragni, Dokken Tor y European Science Foundation Workshop, eds. Geometric modeling and algebraic geometry. Berlin: Springer, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Rockswold, Gary K. College algebra with modeling and visualization. 3a ed. Boston: Pearson Addison Wesley, 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Rockswold, Gary K. College algebra with modeling and visualization. 4a ed. Boston: Pearson Addison-Wesley, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Martínez-Moro, Edgar. Algebraic geometry modeling in information theory. New Jersey: World Scientific, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

service), SpringerLink (Online, ed. Algebraic Modeling Systems: Modeling and Solving Real World Optimization Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Algebraic Modeling"

1

Furia, Carlo A., Dino Mandrioli, Angelo Morzenti y Matteo Rossi. "Algebraic Formalisms". En Modeling Time in Computing, 325–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32332-4_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

de Launey, Warwick y Dane Flannery. "Modeling Λ-equivalence". En Algebraic Design Theory, 63–69. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/surv/175/05.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kallrath, Josef. "Algebraic Modeling Languages: Introduction and Overview". En Algebraic Modeling Systems, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hecker, Axel y Arnd vom Hofe. "VisPlain®: Insight by Visualization". En Algebraic Modeling Systems, 185–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Britz, Wolfgang y Josef Kallrath. "Economic Simulation Models in Agricultural Economics: The Current and Possible Future Role of Algebraic Modeling Languages". En Algebraic Modeling Systems, 199–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kallrath, Josef. "A Practioner’s Wish List Towards Algebraic Modeling Systems". En Algebraic Modeling Systems, 213–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Schodl, Peter, Arnold Neumaier, Kevin Kofler, Ferenc Domes y Hermann Schichl. "Towards a Self-Reflective, Context-Aware Semantic Representation of Mathematical Specifications". En Algebraic Modeling Systems, 11–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bussieck, Michael R., Michael C. Ferris y Timo Lohmann. "GUSS: Solving Collections of Data Related Models Within GAMS". En Algebraic Modeling Systems, 35–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ruiz, Juan P., Jan-H. Jagla, Ignacio E. Grossmann, Alex Meeraus y Aldo Vecchietti. "Generalized Disjunctive Programming: Solution Strategies". En Algebraic Modeling Systems, 57–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Heipcke, Susanne. "Xpress–Mosel". En Algebraic Modeling Systems, 77–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Algebraic Modeling"

1

Letychevskyi, Oleksandr, Volodymyr Peschanenko, Yuliia Tarasich y Vladislav Volkov. "Algebraic Approach in Molecular Modeling". En 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). IEEE, 2022. http://dx.doi.org/10.1109/iceccme55909.2022.9988227.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Best, Christoph. "Algebraic multigrid operators for disordered systems and lattice gauge theory". En Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386842.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Huchette, Joey, Miles Lubin y Cosmin Petra. "Parallel Algebraic Modeling for Stochastic Optimization". En 2014 First Workshop for High Performance Technical Computing in Dynamic Languages (HPTCDL). IEEE, 2014. http://dx.doi.org/10.1109/hptcdl.2014.6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Blechschmidt, James L. y D. Nagasuru. "The Use of Algebraic Functions As a Solid Modeling Alternative: An Investigation". En ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0005.

Texto completo
Resumen
Abstract An investigation of surface and solid modeling using a single unbounded algebraic function for objects requiring free form surfaces is discussed. The purpose of this investigation is to determine if a single closed algebraic function can be effectively used to represent objects. Curve fitting techniques are developed. Surfaces using implicit algebraic functions are developed using the techniques of revolution about an axis and extrusion along a curve segment. Infinite extrusions of a planar cross section along an axis of the form y = f(x) are developed. The boolean operators of union, intersection, and difference are developed using the defining function form of algebraic functions. All of the operations have been accomplished in algebra using polynomial multiplication, addition, and subtraction. Examples of all the operations are presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zeng, Zhonggang. "Geometric modeling and regularization of algebraic problems". En ISSAC '20: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3373207.3404066.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Meftah, Imen Tayari, Nhan Le Thanh y Chokri Ben Amar. "Towards an Algebraic Modeling of Emotional States". En 2010 Fifth International Conference on Internet and Web Applications and Services. IEEE, 2010. http://dx.doi.org/10.1109/iciw.2010.82.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Roy, Sourajeet y Anestis Dounavis. "RLC interconnect modeling using delay algebraic equations". En 2009 IEEE Dallas Circuits and Systems Workshop (DCAS). IEEE, 2009. http://dx.doi.org/10.1109/dcas.2009.5505769.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Frolov, A. B. y A. M. Vinnikov. "Modeling Cryptographic Protocols Using the Algebraic Processor". En 2018 IV International Conference on Information Technologies in Engineering Education (Inforino). IEEE, 2018. http://dx.doi.org/10.1109/inforino.2018.8581781.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Khrennikov, A. Yu. "On the algebraic aspect of singular solutions to conservation laws systems". En MATHEMATICAL MODELING OF WAVE PHENOMENA: 2nd Conference on Mathematical Modeling of Wave Phenomena. AIP, 2006. http://dx.doi.org/10.1063/1.2205804.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

MAVRIPLIS, DIMITRI. "Algebraic turbulence modeling for unstructured and adaptive meshes". En 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1653.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Algebraic Modeling"

1

Thompson, David C., Joseph Maurice Rojas y Philippe Pierre Pebay. Computational algebraic geometry for statistical modeling FY09Q2 progress. Office of Scientific and Technical Information (OSTI), marzo de 2009. http://dx.doi.org/10.2172/984161.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lee, Martin J. A proposed Global Optimum Algebraic Iterative Solver for Modeling of Lattice Element Errors. Office of Scientific and Technical Information (OSTI), abril de 2011. http://dx.doi.org/10.2172/1104724.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Newcomb, Harry. Modeling Bus Bunching with Petri Nets and Max-Plus Algebra. Portland State University Library, enero de 2014. http://dx.doi.org/10.15760/honors.66.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bayak, Igor V. Applications of the Local Algebras of Vector Fields to the Modelling of Physical Phenomena. Jgsp, 2015. http://dx.doi.org/10.7546/jgsp-38-2015-1-23.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía