Literatura académica sobre el tema "All optical Bose-Einstein condensation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "All optical Bose-Einstein condensation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "All optical Bose-Einstein condensation"
Arnold, K. J. y M. D. Barrett. "All-optical Bose–Einstein condensation in a 1.06μm dipole trap". Optics Communications 284, n.º 13 (junio de 2011): 3288–91. http://dx.doi.org/10.1016/j.optcom.2011.03.008.
Texto completoDeng, Shu-Jin, Peng-Peng Diao, Qian-Li Yu y Hai-Bin Wu. "All-Optical Production of Quantum Degeneracy and Molecular Bose-Einstein Condensation of 6 Li". Chinese Physics Letters 32, n.º 5 (mayo de 2015): 053401. http://dx.doi.org/10.1088/0256-307x/32/5/053401.
Texto completoSawicki, Krzysztof, Thomas J. Sturges, Maciej Ściesiek, Tomasz Kazimierczuk, Kamil Sobczak, Andrzej Golnik, Wojciech Pacuski y Jan Suffczyński. "Polariton lasing and energy-degenerate parametric scattering in non-resonantly driven coupled planar microcavities". Nanophotonics 10, n.º 9 (21 de mayo de 2021): 2421–29. http://dx.doi.org/10.1515/nanoph-2021-0079.
Texto completoGedela, Satyanarayana, Neeraj Pant, R. P. Pant y Jaya Upreti. "Relativistic anisotropic model of strange star SAX J1808.4-3658 admitting quadratic equation of state". International Journal of Modern Physics A 34, n.º 29 (20 de octubre de 2019): 1950179. http://dx.doi.org/10.1142/s0217751x19501793.
Texto completoJian-Ping, Yin, Gao Wei-Jian, Wang Hai-Feng, Long Quan y Wang Yu-Zhu. "Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation". Chinese Physics 11, n.º 11 (23 de octubre de 2002): 1157–70. http://dx.doi.org/10.1088/1009-1963/11/11/312.
Texto completoBAO, WEIZHU y YANZHI ZHANG. "DYNAMICS OF THE GROUND STATE AND CENTRAL VORTEX STATES IN BOSE–EINSTEIN CONDENSATION". Mathematical Models and Methods in Applied Sciences 15, n.º 12 (diciembre de 2005): 1863–96. http://dx.doi.org/10.1142/s021820250500100x.
Texto completoLin, Kai, Xiao-Mei Kuang, Wei-Liang Qian, Qiyuan Pan y A. B. Pavan. "Analysis of s-wave, p-wave and d-wave holographic superconductors in Hořava–Lifshitz gravity". Modern Physics Letters A 33, n.º 26 (24 de agosto de 2018): 1850147. http://dx.doi.org/10.1142/s021773231850147x.
Texto completoBall, Philip. "How cold atoms got hot: an interview with William Phillips". National Science Review 3, n.º 2 (9 de noviembre de 2015): 201–3. http://dx.doi.org/10.1093/nsr/nwv075.
Texto completoSavona, Vincenzo y Davide Sarchi. "Bose-Einstein condensation of microcavity polaritons". physica status solidi (b) 242, n.º 11 (septiembre de 2005): 2290–301. http://dx.doi.org/10.1002/pssb.200560964.
Texto completoHolzmann, M., P. Grüter y F. Laloë. "Bose-Einstein condensation in interacting gases". European Physical Journal B 10, n.º 4 (agosto de 1999): 739–60. http://dx.doi.org/10.1007/s100510050905.
Texto completoTesis sobre el tema "All optical Bose-Einstein condensation"
Barrett, Murray Douglas. "A QUEST for BEC : an all optical alternative". Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29520.
Texto completoSalomon, Guillaume. "Production tout optique de condensats de Bose-Einstein de 39K : des interactions contrôlables pour l’étude de gaz quantiques désordonnés en dimensions réduites". Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://www.theses.fr/2014IOTA0009/document.
Texto completoThis thesis presents the all optical production of 39K Bose-Einstein condensates. A key point in the process is the sub-Doppler cooling that allows for an efficient loading of an optical dipole trap. To this aim we use a gray molasses scheme working on the blue side of the D1 line of this alkali that leads to a high phase space density and a high number of trapped atoms in a 1550 nm optical trap. The cloud is then polarized and compressed in a crossed dipole trap before starting an efficient forced evaporation close to a Feshbach resonance. This process allows us to produce Bose-Einstein condensates every 7 seconds with our experiment. Those degenerate clouds represent the starting point of experiments aiming to study the influence of disorder on quantum gases in low dimensions. We discuss the perspectives to study of the phase diagram of the two-dimensional disordered Bose gas as well as the Anderson localization phenomenon in two dimensions and the behaviour of bright solitons in a disordered potential in a one-dimensional geometry
Fouche, Lauriane. "Gaz quantiques de potassium 39 à interactions contrôlables". Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2015. http://www.theses.fr/2015IOTA0003/document.
Texto completoPotassium 39 is an alkali allowing to control the interactions between atoms thanks to Feshbach resonances. This thesis presents a fast and efficient way to produce all-optical Bose-Einstein condensates of 39K. Our technique is first taking advantage of gray molasses cooling leading to a cold enough sample to directly load an optical trap. Then an optical evaporation is performed near a Feshbach resonance to control the collision rate. Studies in various spin mixtures have allowed us to observe new p-wave Feshbach resonances and a d-wave Feshbach resonance. The later presents unusual properties and has been studied in details to understand the collision processes involved. The model developped is a two stage model, each one of them involving a two body collision. It explains the experimental results obtained. In the produced 39K degenerate Bose gases, tuning interactions near the Feshbach resonance at 560,7 Gauss for the atoms in |F=1,mF=-1> has allowed us to adress different physical problems. For repulsive interactions, we study the expansion of a Bose-Einstein condensate in the 1D-3D dimensional crossover. For attractive interactions we produce bright solitons in a one-dimensional optical trap. Perspectives concerning the study of those degenerate self-confined Bose gases in disordered media are also discussed
Geursen, Reece Wim y n/a. "Experiments with Bose-Einstein condensates in optical potentials". University of Otago. Department of Physics, 2005. http://adt.otago.ac.nz./public/adt-NZDU20070131.162251.
Texto completoMcKinney, Sarah. "Dynamics of Bose-Einstein condensates in optical lattices /". Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9805.
Texto completoLouis, Pearl J. Y. "Matter-wave solitons in optical lattices and superlattices /". View electronic text, 2005. http://matter.sci.osaka-cu.ac.jp/~pearl/thesis.pdf.
Texto completoFeng, Yinqi. "Quantum optical states and Bose-Einstein condensation : a dynamical group approach". Thesis, Open University, 2001. http://oro.open.ac.uk/54440/.
Texto completoCennini, Giovanni. "Field-insensitive Bose-Einstein condensates and an all-optical atom laser". [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972737421.
Texto completoFigl, Cristina. "Optical collisions in crossed beams and Bose-Einstein condensation in a microtrap". Phd thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=97236143X.
Texto completoBerhane, Bereket H. "Quantum optical interactions in trapped degenerate atomic gases". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/29891.
Texto completoLibros sobre el tema "All optical Bose-Einstein condensation"
Kenyon, Ian R. Quantum 20/20. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198808350.001.0001.
Texto completoKivshar, Yuri S., Cornelia Denz y Sergej Flach. Nonlinearities in Periodic Structures and Metamaterials. Springer, 2011.
Buscar texto completoKivshar, Yuri S., Cornelia Denz y Sergej Flach. Nonlinearities in Periodic Structures and Metamaterials. Springer, 2012.
Buscar texto completoMorawetz, Klaus. Interacting Systems far from Equilibrium. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.001.0001.
Texto completoCapítulos de libros sobre el tema "All optical Bose-Einstein condensation"
Klingshirn, Claus. "Excitonic Bose-Einstein Condensation versus Electron-Hole Plasma Formation". En Frontiers of Optical Spectroscopy, 539–70. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-2751-6_15.
Texto completoArimondo, Ennio y Maria Allegrini. "Optical Components for a Robust Bose—Einstein Condensation Experiment". En Laser Physics at the Limits, 281–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04897-9_27.
Texto completoKatz, N., E. Rowen, R. Ozeri, J. Steinhauer, E. Gershnabel y N. Davidson. "Atom Optics with Bose-Einstein Condensation Using Optical Potentials". En Decoherence, Entanglement and Information Protection in Complex Quantum Systems, 589–600. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3283-8_41.
Texto completoChapman, M. "All optical formation of a Bose Einstein condensate". En Coherence and Quantum Optics VIII, 107. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_8.
Texto completoKeeling, Jonathan, Marzena H. Szymańska y Peter B. Littlewood. "Keldysh Green’s function approach to coherence in a non-equilibrium steady state: connecting Bose-Einstein condensation and lasing". En Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures, 293–329. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12491-4_12.
Texto completo"Bose–Einstein Condensation". En World Scientific Series on Atomic, Molecular and Optical Physics, 635–82. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812567857_0009.
Texto completoPitaevskii, Lev y Sandro Stringari. "Quantum Gases in Optical Lattices". En Bose-Einstein Condensation and Superfluidity, 428–58. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198758884.003.0022.
Texto completo"Introduction to Bose–Einstein Condensation". En Optical Trapping and Manipulation of Neutral Particles Using Lasers, 259–78. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774897_0016.
Texto completo"Recent Work on Bose–Einstein Condensation". En Optical Trapping and Manipulation of Neutral Particles Using Lasers, 303–21. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774897_0020.
Texto completo"Optical Lattices". En Fundamentals and New Frontiers of Bose-Einstein Condensation, 277–95. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789812839602_0011.
Texto completoActas de conferencias sobre el tema "All optical Bose-Einstein condensation"
Johanning, Michael, Rainer Dumke, Jonathan D. Weinstein, Kevin M. Jones y Paul D. Lett. "All-Optical Bose-Einstein-Condensation of Sodium in a Crossed Dipole Trap". En Laser Science. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/ls.2005.lwg1.
Texto completoChapman, M. S. "Bose-Einstein condensation of interacting spin-1 /sup 87/Rb atoms in an all-optical trap". En International Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/iqec.2005.1561138.
Texto completoBarrett, M. D., M. S. Chang, C. Hamley, K. Fortier, J. A. Sauer y M. S. Chapman. "All-Optical Atomic Bose-Einstein Condensates". En Proceedings of the XVIII International Conference on Atomic Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705099_0004.
Texto completoCornell, Eric A. y Paul C. Haljan. "Ultralow-temperature magnifying glass: how Bose-Einstein condensation makes quantum mechanics visible". En International Symposium on Optical Science and Technology, editado por Carmina Londono. SPIE, 2001. http://dx.doi.org/10.1117/12.431254.
Texto completoHung, Chen-Lung, Xibo Zhang, Nathan Gemelke y Cheng Chin. "Runaway Evaporative Cooling to Bose-Einstein Condensation of Cesium Atoms in Optical Traps". En Laser Science. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/ls.2008.ltug4.
Texto completoKlaers, Jan, Julian Schmitt, Tobias Damm, David Dung, Frank Vewinger y Martin Weitz. "Bose-Einstein condensation of photons in a microscopic optical resonator: towards photonic lattices and coupled cavities". En SPIE LASE, editado por Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko, Lutz Aschke y Kunihiko Washio. SPIE, 2013. http://dx.doi.org/10.1117/12.2001831.
Texto completoCENNINI, G., G. RITT, C. GECKELER y M. WEITZ. "ALL-OPTICAL REALIZATION OF AN ATOM LASER BASED ON FIELD-INSENSITIVE BOSE-EINSTEIN CONDENSATES". En Proceedings of the XVI International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812703002_0029.
Texto completoMuradyan, A. Z. y H. L. Haroutyunyan. "Bose-Einstein condensation of ideal gas in a shallow periodic field of a resonant quasi-standing wave". En ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, editado por Anatoli V. Andreev, Sergei N. Bagayev, Anatoliy S. Chirkin y Vladimir I. Denisov. SPIE, 1999. http://dx.doi.org/10.1117/12.340104.
Texto completo