Literatura académica sobre el tema "Big text data"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Big text data".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Big text data"
N.J., Anjala. "Algorithmic Assessment of Text based Data Classification in Big Data Sets". Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (31 de marzo de 2020): 1231–34. http://dx.doi.org/10.5373/jardcs/v12sp4/20201598.
Texto completoHassani, Hossein, Christina Beneki, Stephan Unger, Maedeh Taj Mazinani y Mohammad Reza Yeganegi. "Text Mining in Big Data Analytics". Big Data and Cognitive Computing 4, n.º 1 (16 de enero de 2020): 1. http://dx.doi.org/10.3390/bdcc4010001.
Texto completoKodabagi, M. M., Deepa Sarashetti y Vilas Naik. "A Text Information Retrieval Technique for Big Data Using Map Reduce". Bonfring International Journal of Software Engineering and Soft Computing 6, Special Issue (31 de octubre de 2016): 22–26. http://dx.doi.org/10.9756/bijsesc.8236.
Texto completoCourtney, Kyle, Rachael Samberg y Timothy Vollmer. "Big data gets big help: Law and policy literacies for text data mining". College & Research Libraries News 81, n.º 4 (9 de abril de 2020): 193. http://dx.doi.org/10.5860/crln.81.4.193.
Texto completoRajagopal, D. y K. Thilakavalli. "Efficient Text Mining Prototype for Big Data". International Journal of Data Mining And Emerging Technologies 5, n.º 1 (2015): 38. http://dx.doi.org/10.5958/2249-3220.2015.00007.5.
Texto completoIqbal, Waheed, Waqas Ilyas Malik, Faisal Bukhari, Khaled Mohamad Almustafa y Zubiar Nawaz. "Big Data Full-Text Search Index Minimization Using Text Summarization". Information Technology and Control 50, n.º 2 (17 de junio de 2021): 375–89. http://dx.doi.org/10.5755/j01.itc.50.2.25470.
Texto completoToon, Elizabeth, Carsten Timmermann y Michael Worboys. "Text-Mining and the History of Medicine: Big Data, Big Questions?" Medical History 60, n.º 2 (14 de marzo de 2016): 294–96. http://dx.doi.org/10.1017/mdh.2016.18.
Texto completoLepper, Marcel. "Big Data, Global Villages". Philological Encounters 1, n.º 1-4 (26 de enero de 2016): 131–62. http://dx.doi.org/10.1163/24519197-00000006.
Texto completoKhan, Zaheer y Tim Vorley. "Big data text analytics: an enabler of knowledge management". Journal of Knowledge Management 21, n.º 1 (13 de febrero de 2017): 18–34. http://dx.doi.org/10.1108/jkm-06-2015-0238.
Texto completoKagan, Pavel. "Big data sets in construction". E3S Web of Conferences 110 (2019): 02007. http://dx.doi.org/10.1051/e3sconf/201911002007.
Texto completoTesis sobre el tema "Big text data"
Šoltýs, Matej. "Big Data v technológiách IBM". Master's thesis, Vysoká škola ekonomická v Praze, 2014. http://www.nusl.cz/ntk/nusl-193914.
Texto completoLeis, Machín Angela 1974. "Studying depression through big data analytics on Twitter". Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/671365.
Texto completoNhlabano, Valentine Velaphi. "Fast Data Analysis Methods For Social Media Data". Diss., University of Pretoria, 2018. http://hdl.handle.net/2263/72546.
Texto completoDissertation (MSc)--University of Pretoria, 2019.
National Research Foundation (NRF) - Scarce skills
Computer Science
MSc
Unrestricted
Bischof, Jonathan Michael. "Interpretable and Scalable Bayesian Models for Advertising and Text". Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11400.
Texto completoStatistics
Abrantes, Filipe André Catarino. "Processos e ferramentas de análise de Big Data : a análise de sentimento no twitter". Master's thesis, Instituto Superior de Economia e Gestão, 2017. http://hdl.handle.net/10400.5/15802.
Texto completoCom o aumento exponencial na produção de dados a nível mundial, torna-se crucial encontrar processos e ferramentas que permitam analisar este grande volume de dados (comumente denominado de Big Data), principalmente os não estruturados como é o caso dos dados produzidos em formato de texto. As empresas, hoje, tentam extrair valor destes dados, muitos deles gerados por clientes ou potenciais clientes, que lhes podem conferir vantagem competitiva. A dificuldade subsiste na forma como se analisa dados não estruturados, nomeadamente, os dados produzidos através das redes digitais, que são uma das grandes fontes de informação das organizações. Neste trabalho será enquadrada a problemática da estruturação e análise de Big Data, são apresentadas as diferentes abordagens para a resolução deste problema e testada uma das abordagens num bloco de dados selecionado. Optou-se pela abordagem de análise de sentimento, através de técnica de text mining, utilizando a linguagem R e texto partilhado na rede Twitter, relativo a quatro gigantes tecnológicas: Amazon, Apple, Google e Microsoft. Conclui-se, após o desenvolvimento e experimento do protótipo realizado neste projeto, que é possível efetuar análise de sentimento de tweets utilizando a ferramenta R, permitindo extrair informação de valor a partir de grandes blocos de dados.
Due to the exponential increase of global data, it becomes crucial to find processes and tools that make it possible to analyse this large volume (usually known as Big Data) of unstructured data, especially, the text format data. Nowadays, companies are trying to extract value from these data, mostly generated by customers or potential customers, which can assure a competitive leverage. The main difficulty is how to analyse unstructured data, in particular, data generated through digital networks, which are one of the biggest sources of information for organizations. During this project, the problem of Big Data structuring and analysis will be framed, will be presented the different approaches to solve this issue and one of the approaches will be tested in a selected data block. It was selected the sentiment analysis approach, using text mining technique, R language and text shared in Twitter, related to four technology giants: Amazon, Apple, Google and Microsoft. In conclusion, after the development and experimentation of the prototype carried out in this project, that it is possible to perform tweets sentiment analysis using the tool R, allowing to extract valuable information from large blocks of data.
info:eu-repo/semantics/publishedVersion
Hill, Geoffrey. "Sensemaking in Big Data: Conceptual and Empirical Approaches to Actionable Knowledge Generation from Unstructured Text Streams". Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1433597354.
Texto completoChennen, Kirsley. "Maladies rares et "Big Data" : solutions bioinformatiques vers une analyse guidée par les connaissances : applications aux ciliopathies". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ076/document.
Texto completoOver the last decade, biomedical research and medical practice have been revolutionized by the post-genomic era and the emergence of Big Data in biology. The field of rare diseases, are characterized by scarcity from the patient to the domain knowledge. Nevertheless, rare diseases represent a real interest as the fundamental knowledge accumulated as well as the developed therapeutic solutions can also benefit to common underlying disorders. This thesis focuses on the development of new bioinformatics solutions, integrating Big Data and Big Data associated approaches to improve the study of rare diseases. In particular, my work resulted in (i) the creation of PubAthena, a tool for the recommendation of relevant literature updates, (ii) the development of a tool for the analysis of exome datasets, VarScrut, which combines multi-level knowledge to improve the resolution rate
Soen, Kelvin y Bo Yin. "Customer Behaviour Analysis of E-commerce : What information can we get from customers' reviews through big data analysis". Thesis, KTH, Entreprenörskap och Innovation, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254194.
Texto completoEntrepreneurship & Innovation Management
Lindén, Johannes. "Huvudtitel: Understand and Utilise Unformatted Text Documents by Natural Language Processing algorithms". Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-31043.
Texto completoSavalli, Antonino. "Tecniche analitiche per “Open Data”". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17476/.
Texto completoLibros sobre el tema "Big text data"
Jo, Taeho. Text Mining: Concepts, Implementation, and Big Data Challenge (Studies in Big Data). Springer, 2018.
Buscar texto completoJo, Taeho. Text Mining: Concepts, Implementation, and Big Data Challenge. Springer, 2019.
Buscar texto completoStruhl, Steven. Practical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence. Kogan Page, 2016.
Buscar texto completoPractical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence. Kogan Page, 2015.
Buscar texto completoZaydman, Mikhail. Tweeting About Mental Health: Big Data Text Analysis of Twitter for Public Policy. RAND Corporation, 2017. http://dx.doi.org/10.7249/rgsd391.
Texto completoDeep Text: Using Text Analytics to Conquer Information Overload, Get Real Value from Social Media, and Add Bigger Text to Big Data. Information Today Inc, 2016.
Buscar texto completoBrayne, Sarah. Predict and Surveil. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190684099.001.0001.
Texto completoJockers, Matthew L. Theme. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0008.
Texto completoMorin, Jean-Frédéric, Christian Olsson y Ece Özlem Atikcan, eds. Research Methods in the Social Sciences: An A-Z of key concepts. Oxford University Press, 2021. http://dx.doi.org/10.1093/hepl/9780198850298.001.0001.
Texto completoJockers, Matthew L. Revolution. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0001.
Texto completoCapítulos de libros sobre el tema "Big text data"
Ye, Zhonglin, Haixing Zhao, Ke Zhang, Yu Zhu y Yuzhi Xiao. "Text-Associated Max-Margin DeepWalk". En Big Data, 301–21. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2922-7_21.
Texto completoJo, Taeho. "Text Summarization". En Studies in Big Data, 271–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_13.
Texto completoJo, Taeho. "Text Segmentation". En Studies in Big Data, 295–317. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_14.
Texto completoJo, Taeho. "Text Indexing". En Studies in Big Data, 19–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_2.
Texto completoJo, Taeho. "Text Encoding". En Studies in Big Data, 41–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_3.
Texto completoJo, Taeho. "Text Association". En Studies in Big Data, 59–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_4.
Texto completoAswin, T. S., Rahul Ignatius y Mathangi Ramachandran. "Integration of Text Classification Model with Speech to Text System". En Big Data Analytics, 103–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72413-3_7.
Texto completoJo, Taeho. "Text Clustering: Approaches". En Studies in Big Data, 203–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_10.
Texto completoJo, Taeho. "Text Clustering: Implementation". En Studies in Big Data, 225–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_11.
Texto completoJo, Taeho. "Text Clustering: Evaluation". En Studies in Big Data, 249–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_12.
Texto completoActas de conferencias sobre el tema "Big text data"
Lee, Song-Eun, Kang-Min Kim, Woo-Jong Ryu, Jemin Park y SangKeun Lee. "From Text Classification to Keyphrase Extraction for Short Text". En 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006409.
Texto completoBuchler, Marco, Greta Franzini, Emily Franzini y Maria Moritz. "Scaling historical text re-use". En 2014 IEEE International Conference on Big Data (Big Data). IEEE, 2014. http://dx.doi.org/10.1109/bigdata.2014.7004449.
Texto completoBlanke, Tobias y Jon Wilson. "Identifying epochs in text archives". En 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258172.
Texto completoRichardet, Renaud, Jean-Cedric Chappelier, Shreejoy Tripathy y Sean Hill. "Agile text mining with Sherlok". En 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363910.
Texto completoVandierendonck, Hans, Karen Murphy, Mahwish Arif y Dimitrios S. Nikolopoulos. "HPTA: High-performance text analytics". En 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840632.
Texto completoGe, Lihao y Teng-Sheng Moh. "Improving text classification with word embedding". En 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258123.
Texto completoLulli, Alessandro, Thibault Debatty, Matteo Dell'Amico, Pietro Michiardi y Laura Ricci. "Scalable k-NN based text clustering". En 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363845.
Texto completoSong, Xiaoli, XiaoTong Wang y Xiaohua Hu. "Semantic pattern mining for text mining". En 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840600.
Texto completoBingmann, Timo, Simon Gog y Florian Kurpicz. "Scalable Construction of Text Indexes with Thrill". En 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622171.
Texto completoAlzhrani, Khudran, Ethan M. Rudd, C. Edward Chow y Terrance E. Boult. "Automated big security text pruning and classification". En 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7841028.
Texto completoInformes sobre el tema "Big text data"
Currie, Janet, Henrik Kleven y Esmée Zwiers. Technology and Big Data Are Changing Economics: Mining Text to Track Methods. Cambridge, MA: National Bureau of Economic Research, enero de 2020. http://dx.doi.org/10.3386/w26715.
Texto completoDoucet, Rachel A., Deyan M. Dontchev, Javon S. Burden y Thomas L. Skoff. Big Data Analytics Test Bed. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2013. http://dx.doi.org/10.21236/ada589903.
Texto completoCerdeira, Pablo, Marcus Mentzingen de Mendonça y Urszula Gabriela Lagowska. Políticas públicas orientadas por dados: Os caminhos possíveis para governos locais. Editado por Mauricio Bouskela, Marcelo Facchina y Hallel Elnir. Inter-American Development Bank, octubre de 2020. http://dx.doi.org/10.18235/0002727.
Texto completode Caritat, Patrice, Brent McInnes y Stephen Rowins. Towards a heavy mineral map of the Australian continent: a feasibility study. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.031.
Texto completoHolland, Darren y Nazmina Mahmoudzadeh. Foodborne Disease Estimates for the United Kingdom in 2018. Food Standards Agency, enero de 2020. http://dx.doi.org/10.46756/sci.fsa.squ824.
Texto completoTransfer of Air Force technical procurement bid set data to small businesses, using CALS and EDI: Test report. Office of Scientific and Technical Information (OSTI), agosto de 1994. http://dx.doi.org/10.2172/46712.
Texto completo