Literatura académica sobre el tema "Bioplastic"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bioplastic".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bioplastic"
Setiawan, Adhi, Febby Dwi Melanny Anggraini, Tarikh Azis Ramadani, Luqman Cahyono y Mochammad Choirul Rizal. "Pemanfaatan Jerami Padi Sebagai Bioplastik Dengan Menggunakan Metode Perlakuan Pelarut Organik". METANA 17, n.º 2 (6 de diciembre de 2021): 69–80. http://dx.doi.org/10.14710/metana.v17i2.42254.
Texto completoSuwardi, Suwardi y Nur Hidayati. "Karakteristik Bioplastik Kitosan-Onggok Aren (Arenga pinnata) dengan Penambahan Serbuk Kunyit". Equilibrium Journal of Chemical Engineering 4, n.º 2 (18 de febrero de 2021): 65. http://dx.doi.org/10.20961/equilibrium.v4i2.47911.
Texto completoYupa, Nor Pana, Sunardi Sunardi y Utami Irawati. "Synthesis And Characterization Of Alginate Based Bioplastic With The Addition Of Nanocellulose From Sago Frond As Filler". Justek : Jurnal Sains dan Teknologi 4, n.º 1 (5 de mayo de 2021): 30. http://dx.doi.org/10.31764/justek.v4i1.4308.
Texto completoWidiastuti, Endang y Ari Marlina. "Sintesis Nanofiller Dari Rumput Alang-Alang untuk Pembuatan Film Bioplastik Berbahan Dasar Pati-Kitosan". Fluida 15, n.º 1 (8 de junio de 2022): 14–21. http://dx.doi.org/10.35313/fluida.v15i1.3268.
Texto completoSari, Nofita, Maudy Mairisya, Riska Kurniasari y Sari Purnavita. "Bioplastik Berbasis Galaktomanan Hasil Ekstraski Ampas Kelapa Dengan Campuran Polyvinyl Alkohol". METANA 15, n.º 2 (27 de noviembre de 2019): 71–78. http://dx.doi.org/10.14710/metana.v15i2.24892.
Texto completoRidlo, Ali, Sri Sedjati, Endang Supriyantini y Oetari Kusuma Putri. "Karakteristik Biofilm Komposit CMC- Gliserol-Alginat dari Sargassum sp pada Perlakuan dengan Kalsium Klorida". Jurnal Kelautan Tropis 25, n.º 2 (12 de abril de 2022): 257–65. http://dx.doi.org/10.14710/jkt.v25i2.13773.
Texto completoMarsa, Yulandaris, A. B. Susanto y Rini Pramesti. "Bioplastik dari Karagenan Kappaphycus alvarezii dengan Penambahan Carboxymethyl Chitosan dan Gliserol". Buletin Oseanografi Marina 12, n.º 1 (29 de septiembre de 2022): 1–8. http://dx.doi.org/10.14710/buloma.v12i1.42859.
Texto completoFitria, Annisaa’, Widya Nilandita y Abdul Hakim. "Karakteristik Fisik dan Mekanik Bioplastik Berbahan Dasar Pati Limbah Kulit Pisang Raja Bulu (Musa paradisiaca L. var sapientum) dengan Variasi Jenis Plasticizer dan Kitosan". Jurnal Dampak 20, n.º 1 (31 de enero de 2023): 26. http://dx.doi.org/10.25077/dampak.20.1.26-32.2023.
Texto completoBordeos, Maria Erica R., Flyndon Mark S. Dagalea y Manuela Cecille G. Vicencio. "Characterization of a Bioplastic Product from the Ulva reticulata (Ribbon Sea Lettuce) Extract". Asian Journal of Chemical Sciences 14, n.º 2 (30 de marzo de 2024): 161–68. http://dx.doi.org/10.9734/ajocs/2024/v14i2301.
Texto completoSeptiati, Yosephina Ardiani, Mimin Karmini, Ade Kamaludin y Fatimah Fatimah. "Analisis Luas Bukaan Udara Penyimpanan Makanan terhadap Kadar Air dan Total Jamur Makanan Terkemas Bioplastik". Jurnal Kesehatan Lingkungan Indonesia 23, n.º 2 (7 de mayo de 2024): 226–33. http://dx.doi.org/10.14710/jkli.23.2.226-233.
Texto completoTesis sobre el tema "Bioplastic"
Kaidaniuk, Denys. "Starch bioplastic production". Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50627.
Texto completoPlastic production is a necessity for humanity today. It is impossible to imagine an industry without it, whether it is the production of children's toys or the production of test tubes. However, the issue of environmental pollution is growing in direct proportion to the increase in plastic production. For example, mankind has created about 380 tons of plastic in 2018, of which only a small part was disposed of. Therefore, the issue of alternatives to plastics that are tolerant of the environment and human health is only gaining momentum. The main task of this work is to create a viable bioplastic from starch that can compete in the market with the usual sample. In fact, starch has long been used in this industry, this polysaccharide is a successful raw material for plastic production due to its properties, which are provided by its components: amylase and amylopectin, amylase in turn responsible for stickiness and water absorption, and amylopectin for strength. Виробництво пластику - це необхідність для людства сьогодні. Неможливо уявити собі індустрію без нього, незалежно від того, чи є це виробництво дитячих іграшок чи виробництво пробірок. Однак питання забруднення навколишнього середовища зростає прямо пропорційно збільшенню виробництва пластмас. Наприклад, людство виробило близько 380 тонн пластмаси у 2018 році, з якої була використана лише невелика частина. Тому питання альтернатив пластмас, які є толерантними до навколишнього середовища та здоров'я людини, отримує лише імпульс. Основним завданням цієї роботи є створення стійкого біопластику з крохмалю, який може конкурувати на ринку зі звичайним зразком. Фактично, крохмаль давно використовується в цій галузі, цей полісахарид є успішною сировиною для виробництва пластмас завдяки своїм властивостям, які забезпечуються його компонентами: амілаза та амілопектин, амілаза, яка відповідає за липкість та поглинання води, а також амілопектин для міцності.
Sundin, Anton. "Produktion av bioplast i Värmland? : Fermentering av olika avfallströmmar". Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-36624.
Texto completoOne of the biggest environmental problems is the plastic littering. In many places traces of human presence is seen in the form of plastic littering. In the year 2011, 280 million tons of plastic was produced, which represents about 28 000 Eiffel Towers. In Sweden, about 880 000 tons of plastic a year is consumed, according to figures from 2010. Approximately 50 % of all the world's plastics are produced In Asia and China accounts for about half of it. North America and Europe account for about 40% of the world's plastic production. The remaining production is distributed between Africa and South America. Commercial plastic is made from small units called polymers. A polymer consists of smaller units called monomers. In present, these monomers are produced out of petroleum (crude oil/ mineral oil). Approximately 4% of the world’s oil consumption is spent as raw material to produce plastic and the same amount of oil is used as fuel in the plastic production process. The term bio-plastic is used for a family of materials which are biodegradable, bio- based or both. However, it is not given that bioplastics do possess both properties. PHA plastics are both bio based and biodegradable, which is why it is the focus for this thesis. Production of PHA plastic is a three-step process comprising a fermentation step, a selection step, and an accumulation stage. Finally, there is an extraction to release the PHA plastic from the organic material. The aim of this thesis is to aid the production of bioplastics in order to lessen the environmental load of plastics. The more bioplastic that can be produced, the greater the interest of a bioplastic-producing plant in Värmland. The goal is to make an inventory of industries around Värmland, primarily food industries and forest industries, and to quantify the potential of their process wastewaters to produce VFA. In this thesis, fermentation experiments conducted batch-wise was performed with process wastewater from OLW, Barilla (Wasa), Skoghall, Gruvön and Rottneros. The experiments showed the wastewaters potential to produce VFA. The experiments were performed with a constant pH of 6 and with varying residence time. The results showed that OLW and Barilla has the highest potential for VFA production with 4500 mg/l and 1610 mg/l, respectively. Dilution of OLWs and Barillas process water turned out to be favorable, as the VFA production increased rapidly in comparison with those tests that were conducted under non-dilution. The total production of VFA, however, was not as high. In further experiments, it is recommended to make another attempt at the OLWs and Barillas process wastewater since they showed the best potential for VFA production.
Maryniaka, K. "Modern step into future: bioplastic". Thesis, Молодіжна наукова ліга, 2020. https://er.knutd.edu.ua/handle/123456789/16771.
Texto completoJohnsson, Nathalie y Fredrik Steuer. "Bioplastic material from microalgae : Extraction of starch and PHA from microalgae to create a bioplastic material". Thesis, KTH, Materialvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231508.
Texto completoMikroalger som används i kloaker för att binda CO2 blir till slut restavfall. Genom att använda dess biomassa kan restalgerna få ett nytt syfte. I denna studie utfördes extraktionsförsök av stärkelse samt PHA från tre olika alger, Calothrix Scytonemicola, Scenedesmus Almeriensis och Neochloris Oleoabundans. Ytterligare försök genomfördes för att försöka framställa ett biobaserat plastmaterial. Både Scenedesmus Almeriensis och Neochloris Oleoabundans är stärkelserika mikroalger. Genom att tvätta dem med aceton, kryomalning, användning av en ultrasonic homogenizer och dialys kunde stärkelse troligtvis extraheras. Det extraherade materialet blandades med karboxymetylcellulosa (CMC) för att skapa en plastfilm. Filmen blev väldigt tunn och spröd, således behövs antingen en annat mjukningsmedel eller tillägg av additiv för att skapa ett mer användningsbart biobaserat plastmaterial. Den PHA-rika algen Calothrix Scytonemicola användes vid extraktionen av PHA. Algerna tvättades med aceton och kryomaldes innan PHA förhoppningsvis extraheras med hjälp av natriumhypoklorit(aq) och avjonat vatten. På grund av en för liten mängd tillgänglig alg extraherades endast en liten mängd material. Det var därför inte möjligt att skapa en plastfilm av vårt extrakt utan istället användes kommersiell PH3B, som är en typ av PHA. Tre försök genomfördes, en med endast kloroform, en med CMC och kloroform och den sista med sucrose octaacetate och kloroform. Den sistnämnda filmen gav det bästa plastmaterialet med avseende på de mekaniska egenskaperna.
Helgeson, Matthew Steven. "Horticultural evaluation of zein-based bioplastic containers". [Ames, Iowa : Iowa State University], 2009.
Buscar texto completoMONGILI, BEATRICE. "Biotechnological approches for green-based bioplastic production". Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2836776.
Texto completoBhardwaj, Rahul. "Modification of polylactide bioplastic using hyperbranched polymer based nanostructures". Diss., Connect to online resource - MSU authorized users, 2008.
Buscar texto completoKlinke, Stefan. "Production of bioplastic in recombinant bacteria : from basic research to application /". [S.l.] : [s.n.], 1999. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13448.
Texto completoMuppidi, Mahanand. "Toward libraries for increased bio plastic production in cyanobacteria". Thesis, KTH, Skolan för bioteknologi (BIO), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173649.
Texto completoSundäng, Peters Emil. "Bioplastics from food waste liquid fraction". Thesis, KTH, Skolan för bioteknologi (BIO), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215036.
Texto completoLibros sobre el tema "Bioplastic"
Kuddus, Mohammed y Roohi, eds. Bioplastics for Sustainable Development. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1823-9.
Texto completoVandenberghe, Luciana Porto de Souza, Ashok Pandey, Ranjna Sirohi y Carlos Ricardo Soccol. Second and Third Generation Bioplastics. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003344018.
Texto completoPilla, Srikanth. Handbook of bioplastics & biocomposites engineering applications. Hoboken, NJ: Wiley, 2011.
Buscar texto completoPilla, Srikanth, ed. Handbook of Bioplastics and Biocomposites Engineering Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118203699.
Texto completoMalinconico, Mario, ed. Soil Degradable Bioplastics for a Sustainable Modern Agriculture. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54130-2.
Texto completoKaneko, Tatsuo, ed. Photo-switched Biodegradation of Bioplastics in Marine Environments. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4354-8.
Texto completoWerber, F. X. Report ARS workshop: Bioplastics, films and coatings : Peoria, IL, June 21-22, 1994. Beltsville, Md.?: ARS, 1994.
Buscar texto completoGahlawat, Geeta. Green Bioplastic : Polyhydroxyalkanoates: Production Strategies. Springer International Publishing AG, 2019.
Buscar texto completoCapítulos de libros sobre el tema "Bioplastic"
Tabassum, Asma, A. Hira y R. Aliya. "Bioplastic: Food and Nutrition". En Bioplastics for Sustainable Development, 307–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1823-9_12.
Texto completoIsmail, Safina, Kalp Das y Ravindra Soni. "Current Status of Bioplastic Synthesis". En Advanced Strategies for Biodegradation of Plastic Polymers, 365–71. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-55661-6_15.
Texto completoTharani, D. y Muthusamy Ananthasubramanian. "Microalgae as Sustainable Producers of Bioplastic". En Microalgae Biotechnology for Food, Health and High Value Products, 373–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0169-2_11.
Texto completoGupta, A., B. Y. Alashwal, Md S. Bala y N. Ramakrishnan. "Keratin-based Bioplastic from Chicken Feathers". En Industrial Applications of Biopolymers and their Environmental Impact, 292–304. Boca Raton : CRC Press ; Taylor & Francis Group, [2020] | “A Science Publishers book.”: CRC Press, 2020. http://dx.doi.org/10.1201/9781315154190-13.
Texto completoSenapati, Tarakeshwar, Sukhendu Dey, Apurba Ratan Ghosh y Palas Samanta. "Bioplastic as Potential Food Packaging Material". En Encyclopedia of Green Materials, 1–8. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4921-9_89-1.
Texto completoRohidi, Nurin Najwa y Siti Amira Othman. "Properties of Irradiated Bioplastic-A Review". En Lecture Notes in Civil Engineering, 161–69. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7920-9_19.
Texto completoDöhler, Niklas Mathias y André Wolf. "Business Models for Innovative Bioplastic Feedstocks". En Second and Third Generation Bioplastics, 159–75. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003344018-12.
Texto completoJiménez-Rosado, M., V. Perez-Puyana, A. Guerrero y A. Romero. "Bioplastic Matrices for Sustainable Agricultural and Horticultural Applications". En Bioplastics for Sustainable Development, 399–429. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1823-9_16.
Texto completoMcLaughlin, Kristen, Allison Webb, Kaitlin Brӓtt y Daniel Saloni. "Bioplastic Modified with Woodflour for Additive Manufacturing". En Advances in Manufacturing, Production Management and Process Control, 86–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51981-0_11.
Texto completoRana, Ananya, Vikram Kumar, Tejpal Dhewa y Neetu Kumra Taneja. "Bioplastic Production Using Whey (Polyhydroxyalkanoates and Polyhydroxybutyrates)". En Whey Valorization, 103–13. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5459-9_6.
Texto completoActas de conferencias sobre el tema "Bioplastic"
Muhammed, N. S., S. D. Gallage, B. A. I. Eranga y T. H. Madushanka. "Adoptability of bioplastic as a sustainable material in Sri Lankan building construction industry". En World Construction Symposium - 2023. Ceylon Institute of Builders - Sri Lanka, 2023. http://dx.doi.org/10.31705/wcs.2023.8.
Texto completoQoirinisa, Siwi, Dodi Irwanto, Karmanto Karmanto y Endaruji Sedyadi. "The Effect of Adding TiO<sub>2</sub> Filler on The Physical and Mechanical Properties of Bioplastic Based Potato Starch (<i>Solanum tubersom</i> L.) and Glycerol from Waste Cooking Oil". En The 6th International Conference on Science and Engineering. Switzerland: Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-i5ymif.
Texto completoTan, Shiou Xuan, Andri Andriyana, Steven Lim, Hwai Chyuan Ong, Yean Ling Pang y Gek Cheng Ngoh. "Natural Deep Eutectic Solvent (NADES) as Plasticizer for Bioplastic Film Fabrication. A Comparative Study". En International Technical Postgraduate Conference 2022. AIJR Publisher, 2022. http://dx.doi.org/10.21467/proceedings.141.23.
Texto completoHEGDE, SWATI, ELIZABETH DELL, CHRISTOPHER LEWIS, THOMAS A. TRABOLD y CARLOS A. DIAZ. "Anaerobic Biodegradation of Bioplastic Packaging Materials". En The 21st IAPRI World Conference on Packaging. Lancaster, PA: DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/iapri2018/24453.
Texto completoMatthews, Sami, Panu Tanninen, Sanaz Afshariantorghabeh, Amir Toghyani, Ville Leminen y Juha Varis. "Geometrical evaluation of thermoformed bioplastic tray packages". En PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON RESEARCH ADVANCES IN ENGINEERING AND TECHNOLOGY - ITechCET 2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0191920.
Texto completoLuthfi, Janis Kafidzul, Yusuf Wahyu Adi y Suharti Suharti. "Optimization of bioplastic synthesis from carboxymethyl cellulose-keratin". En THE II INTERNATIONAL SCIENTIFIC CONFERENCE “INDUSTRIAL AND CIVIL CONSTRUCTION 2022”. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0138727.
Texto completoNovianti, Trisita, Issa Dyah Utami y Heri Awalul Ilhamsah. "Elongation Optimization of Bioplastic using Response Surface Methodology". En International Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0010313304480453.
Texto completoLeote, Rosangella. "3D Printed Art Using Bioplastic and Plant Based Resin". En ARTECH 2023: 11th International Conference on Digital and Interactive Arts. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3632776.3632818.
Texto completo"Sustainable Bioplastic Manufacturing: Unleashing Microbial Metabolites using Agricultural waste". En INTERNATIONAL CONFERENCE ON BIOLOGICAL RESEARCH AND APPLIED SCIENCE. Jinnah University for Women, 2024. http://dx.doi.org/10.37962/ibras/2024/65-66.
Texto completoGumayan, Efren G., Ian Ken D. Dimzon, Joel T. Maquiling, Rayno Vic Janayon, Caironesa P. Dulpina y Raphael A. Guerrero. "Bioplastic Diffraction Gratings Based on Chitosan from Crab Shell Waste Incorporated with Starch and Plasticizer". En Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fd1.4.
Texto completoInformes sobre el tema "Bioplastic"
Schrader, James, Kenneth McCabe, William Graves y David Grewell. Function and Biodegradation in Soil of Bioplastic Horticultural Containers made of PLA-BioResTM Composites. Ames: Iowa State University, Digital Repository, 2015. http://dx.doi.org/10.31274/farmprogressreports-180814-714.
Texto completovan Kampen, Arjen y Wolter Elbersen. Productie van bioplastics uit koolhydraten, een duurzaamheidsperspectief : Evaluatie van verschillende routes richting bioplastics vanuit duurzaamheidsperspectief. Wageningen: Wageningen Food & Biobased Research, 2023. http://dx.doi.org/10.18174/588699.
Texto completoKerdlap, Piya y James Baker. Is There A Case for Bioplastics? Experience from Thailand. Asian Development Bank, noviembre de 2023. http://dx.doi.org/10.22617/brf230490-2.
Texto completoHenna, Phillip H. Novel Bioplastics and biocomposites from Vegetable Oils. Office of Scientific and Technical Information (OSTI), enero de 2008. http://dx.doi.org/10.2172/939375.
Texto completoResch, Katharina, Andrea Klein y Gernot Oreski. IEA-SHC Task 39 INFO Sheet C5 - Bioplastics for solar collector components. IEA Solar Heating and Cooling Programme, mayo de 2015. http://dx.doi.org/10.18777/ieashc-task39-2015-0006.
Texto completoCrocker, Mark, Ashton Zeller, Jason Quinn, David Quiroz Nuila, Braden Beckstrom, Stephanie Kesner, Daniel Mohler, Robert Pace y Michael Wilson. CO2 to Bioplastics: Beneficial Re-use of Carbon Emissions from Coal-fired Power Plants using Microalgae. Office of Scientific and Technical Information (OSTI), julio de 2020. http://dx.doi.org/10.2172/1642109.
Texto completoShort, Samuel. Alternatives to single-use plastics in food packaging and production. Food Standards Agency, agosto de 2023. http://dx.doi.org/10.46756/sci.fsa.taf512.
Texto completo