Literatura académica sobre el tema "Bioplastic"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bioplastic".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Bioplastic"

1

Setiawan, Adhi, Febby Dwi Melanny Anggraini, Tarikh Azis Ramadani, Luqman Cahyono y Mochammad Choirul Rizal. "Pemanfaatan Jerami Padi Sebagai Bioplastik Dengan Menggunakan Metode Perlakuan Pelarut Organik". METANA 17, n.º 2 (6 de diciembre de 2021): 69–80. http://dx.doi.org/10.14710/metana.v17i2.42254.

Texto completo
Resumen
Jerami padi memilki kandungan selulosa yang dapat dimanfaatkan sebagai bahan baku pembuatan bioplastik. Penelitian ini bertujuan untuk mensintesis bioplastik dari bahan baku jerami padi menggunakan perlakuan pelarut organik serta menganalisis pengaruh rasio massa pati dengan selulosa karakteristik produk bioplastik. Proses delignifikasi jerami menggunakan larutan etanol 5% dan 35% pada suhu 80oC selama dua jam. Bioplastik dibuat dengan rasio massa pati dengan selulosa sebesar 1:0,5; 1:1; dan 1:1,5. Karakterisasi menggunakan metode SEM, XRD, TG-DTA, uji tarik, uji transmisi uap, serta uji degradasi. Hasil penelitian menunjukkan bahwa proses delignifikasi menggunakan etanol menyebabkan peningkatan kadar selulosa serta kristalinitas jerami. Morfologi bioplastik menunjukkan permukaan yang tidak rata serta terdapat bagian matriks yang terpisah dengan fiber. Hasil TG-DTA menunjukkan pengurangan massa bioplastik sebesar 81,01% pada suhu 550oC. Hasil kuat tarik terbaik pada bioplastik yang dibuat dengan rasio massa pati dengan selulosa 1:0,5 pada konsentrasi delignifikasi etanol 35%. Nilai kuat tarik yang diperoleh sebesar 8,773 Mpa. Pengujian degradasi bioplastik dilakukan selama 10 hari diperoleh nilai % degradasi terbesar bioplastik adalah sebesar 99,9%. Rice straw contains cellulose which can be used as raw material for making bioplastics. This study aims to synthesize bioplastics from rice straw using organic solvent treatment and analyze the effect of the mass ratio of starch to cellulose on the characteristics of bioplastic products. The straw delignification process used 5% and 35% ethanol solution at 80oC for two hours. Bioplastics are made with a mass ratio of starch to cellulose of 1:0.5; 1:1; and 1:1.5. Characterization using SEM, XRD, TG-DTA methods, tensile test, vapour transmission test, and degradation test. The results showed that the delignification process using ethanol caused an increase in cellulose content and straw crystallinity. The morphology of the bioplastic shows an uneven surface and there are parts of the matrix that are separated from the fiber. The results of TG-DTA showed a reduction the mass of bioplastic by 81.01% at a temperature of 550oC. The best tensile strength results in bioplastics made with a mass ratio of starch to cellulose 1:0.5 at a delignification concentration of 35% ethanol. The tensile strength value obtained was 8,773 Mpa. The bioplastic degradation test was carried out for 10 days and the largest percentage of bioplastic degradation was 99.9%.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Suwardi, Suwardi y Nur Hidayati. "Karakteristik Bioplastik Kitosan-Onggok Aren (Arenga pinnata) dengan Penambahan Serbuk Kunyit". Equilibrium Journal of Chemical Engineering 4, n.º 2 (18 de febrero de 2021): 65. http://dx.doi.org/10.20961/equilibrium.v4i2.47911.

Texto completo
Resumen
<p class="p1"><span class="s1"><strong>Abstrak. </strong></span>Bioplastik merupakan plastik organik yang salah satu fungsinya dapat digunakan sebagai pengemas bahan pangan. Bioplastik dikenal ramah lingkungan karena mudah terdegrasi oleh alam. Kitosan dapat dimodifikasi dengan pati onggok aren dalam pembuatan bioplastik untuk meningkatkan kekuatan bioplastik. Penambahan kunyit ke dalam bioplastik kitosan-serat onggok diharapkan dapat meningkatkan ketahanan terhadap mikroba sehingga bioplastic tersebut dapat digunakan sebagai bahan kemasan makanan.<span class="Apple-converted-space"> </span>Penelitian ini bertujuan untuk mengetahui karakteristik bioplastik kitosan-onggok aren yang ditambah kunyit dengan variasi 0,3- 1,2 %. Uji fisik yang dilakukan meliputi uji daya serap air, uji kuat tarik, uji elongisitas dan uji biodegradasi. Peningkatan banyaknya kunyit dalam air meningkatkan sifat daya serap air, kuat tarik dan biodegradasinya, sedangkan penurunan kemuluran plastik berkurang dengan peningkatan banyaknya kunyit dalam plastik.</p><p><strong>Abstract.</strong> Bioplastics are organic plastics which one of their functions can be used as food packaging. Bioplastics are known to be environmentally friendly because they are easily degraded by nature. Chitosan can be modified with onggok palm starch in making bioplastics to increase the strength of the bioplastics. The addition of turmeric to the chitosan-onggok bioplastic is expected to increase resistance to microbes so that the bioplastic can be used as a food packaging material. This study aims to determine the bioplastic characteristics of chitosan-onggok palm sugar added with turmeric with a variation of 0.3-1.2%. Physical tests carried out include water absorption test, tensile strength test, elongicity test and biodegradation test. The increase in the amount of turmeric in water increases its water absorption, tensile strength and biodegradation properties, while the decrease in plastic elongation decreases with the increase in the amount of turmeric in the plastic.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Yupa, Nor Pana, Sunardi Sunardi y Utami Irawati. "Synthesis And Characterization Of Alginate Based Bioplastic With The Addition Of Nanocellulose From Sago Frond As Filler". Justek : Jurnal Sains dan Teknologi 4, n.º 1 (5 de mayo de 2021): 30. http://dx.doi.org/10.31764/justek.v4i1.4308.

Texto completo
Resumen
Abstract: The bioplastic synthesis of alginate in this study has been carried out using nanocellulose from sago fronds as a filler. Bioplastic synthesis uses different nanocellulose concentrations, namely 0%; 0.2%; 0.4%; and 0.6% (w / w). This study aims to see how the characteristics of bioplastics with the addition of nanocellulose. The resulting bioplastics were analyzed for moisture content, solubility, thickness, transmission rate, and transparency. The results of the research on the addition of nanocellulose concentrations show that nanocellulose can improve the characteristics of bioplastics in the form of thickness, transparency, moisture content, solubility, and water vapor transmission. Abstrak: Sintesis bioplastik dari alginat dalam penelitian ini telah dilakukan dengan menggunakan nanoselulosa dari pelepah sagu sebagai pengisi. Sintesis bioplastik menggunakan konsentrasi nanoselulosa yang berbeda beda yaitu 0%; 0,2%; 0,4%; dan 0,6% (b/b). Penelitian ini bertujuan untuk melihat bagaimana karakteristik bioplastik dengan adanya penambahan nanoselulosa. Bioplastik yang dihasilkan dianalisis kadar air, kelarutan, ketebalan, laju transmisi dan transparansi. Hasil penelitian penambahan konsentrasi nanoselulosa menunjukkan bahwa nanoselulosa dapat memperbaiki karakteristik dari bioplastik berupa ketebalan, transparansi, kadar air, kelarutan dan transmisi uap air.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Widiastuti, Endang y Ari Marlina. "Sintesis Nanofiller Dari Rumput Alang-Alang untuk Pembuatan Film Bioplastik Berbahan Dasar Pati-Kitosan". Fluida 15, n.º 1 (8 de junio de 2022): 14–21. http://dx.doi.org/10.35313/fluida.v15i1.3268.

Texto completo
Resumen
Indonesia saat ini menempati urutan ke-2 sebagai negara penghasil sampah plastik. Oleh karena itu, dalam beberapa tahun terakhir, penelitian tentang plastik ramah lingkungan yang dikenal sebagai bioplastik sedang digalakkan. Bioplastik yang terbuat dari bahan alam, sifat mekaniknya tidak sebaik plastik jenis LDPE (Low Density Proly Ethylene). Salah satu bioplastik tersebut adalah berbahan dasar pati-kitosan, yaitu pati yang digunakan dari singkong atau disebut tapioka/pati. Pada penelitian ini, campuran pati-kitosan ditambahkan nanoselulosa dari rumput alang-alang sebagai nanofiller. Pertama, nanoselulosa diasetilasi kemudian dicampur dengan pati-kitosan. Bioplastik yang dibuat pada penelitian ini menggunakan perbandingan tapioka dan kitosan yakni 9 : 0,3. Bioplastik yang dibuat dari campuran pati-kitosan-nanoselulosa , memiliki kekuatan tarik 7,01 MPa, modulus Young atau kekuatan luluh 4,69 MPa dan perpanjangan putus 29,72% untuk ketebalan film 0,28 mm. Dari penelitian ini diketahui bahwa penambahan nanoselulosa dapat meningkatkan sifat mekanik bioplastik pati-kitosan, meskipun belum menyamai sifat mekanik bahan plastik LDPE. Indonesia is currently the 2nd largest producer of plastic waste. Therefore, research on environmentally friendly plastics, known as bioplastics, has been promoted in recent years. Bioplastic is made from natural materials, and its mechanical properties are not as good as LDPE (Low-Density Poly Ethylene) plastic. One of the bioplastics is made from starch-chitosan, the starch used from cassava or called tapioca/starch. In this study, a mixture of starch-chitosan was added with nanocellulose from alang-alang grass as a nanofiller. The first, nanocellulose was acetylated and then mixed with starch-chitosan. Bioplastics were made in this study using a tapioca-chitosan ratio of 9: 0.3. Bioplastic Bioplastic made from a mixture of starch-chitosan-nanocellulose has a tensile strength of 7.01 MPa, Young's modulus or yield strength of 4.69 MPa and elongation of break 29.72% for a film thickness of 0.28 mm. This research shows that the addition of nanocellulose can improve the mechanical properties of starch-chitosan bioplastic. However, it has not matched the mechanical properties of LDPE plastic material.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Sari, Nofita, Maudy Mairisya, Riska Kurniasari y Sari Purnavita. "Bioplastik Berbasis Galaktomanan Hasil Ekstraski Ampas Kelapa Dengan Campuran Polyvinyl Alkohol". METANA 15, n.º 2 (27 de noviembre de 2019): 71–78. http://dx.doi.org/10.14710/metana.v15i2.24892.

Texto completo
Resumen
Penelitian ini bertujuan untuk mendapatkan kondisi optimum yang meliputi luas permukaan dan jumlah solven pada proses ekstraksi galaktomanan dari ampas kelapa terhadap yield yang dihasilkan dan mendapatkan kondisi optimumpada proses pembuatan bioplastik yang meliputi jumlah sorbitol dan waktu pencampuran terhadap karakteristik bioplastik yang meliputi ketebalan, ketahanan air, kuat tarik, elongasi, waktu degradasi dan morfologi.Bioplastik merupakan plastik yang dapat diuraikan oleh mikroorganisme dalam waktu yang singkat, sehingga lebih ramah lingkungan dibandingkan plastik konvensional.Bioplastik terbuat dari bahan polimer alami seperti pati, selulosa atau lemak.Penelitian pembuatan bioplastik ini berbasis dari galaktomanan ampas kelapa dan PVA. Galaktomanan merupakan polimer alami yang memiliki kemampuan membuat lapisan film.Polyvinyl alkohol (PVA) merupakan polimer sintetik namun memiliki sifat mudah larut dalam air sehingga dapat digunakan sebagai bahan campuran pembuatan bioplastik. PVA juga mampu meningkatkan elastisitas dan kuat tarik bioplastik. Penelitian ini menghasilkan bioplastik dengan ketebalan terbaik 0,18 mm dan prosentase ketahanan air tertinggi 74,76%. Tensile strength bioplastik terbaik dengan nilai 7,55 MPa, sedangkan prosentase elongation terbaik 46,81%. Bioplastik pada penelitian ini memiliki titik leleh (MP) 120°C dan terdegradasi sempurna dalam 24 jam. This study aims to obtain optimum conditions which are including surface area and amount of solvent in the galactomannan extraction process from coconut pulp to the produced yield and obtaining the optimum conditions in the bioplastic manufacturing process which are included the amount of sorbitol and mixing time of the bioplastic characteristics including thickness, water resistance, tensile strength, elongation, degradation time and morphology. Bioplastics are plastics that can be decomposed by microorganisms in a short time, making them more environmentally friendly than conventional plastics bioplastics made from natural polymer materials such as starch, cellulose, or fat. The research in making bioplastics was based on galactomannan coconut pulp and PVA. Galactomannan is a natural polymer that can make film layers. Polyvinyl alcohol (PVA) is a synthetic polymer but has properties that are soluble in water so it can be used as a mixture of bioplastics. PVA is also able to increase the elasticity and strong pull of bioplastics. This study produced bioplastics with the best thickness of 0,18mm and the highest percentage of water resistance in 74,76%. The best bioplastic tensile strength at 7,55 MPa value, while the best percentage of elongation 46,81%. Bioplastics in this study had a melting point (MP) of 120 ° C and were degraded correctly in 24 hours.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ridlo, Ali, Sri Sedjati, Endang Supriyantini y Oetari Kusuma Putri. "Karakteristik Biofilm Komposit CMC- Gliserol-Alginat dari Sargassum sp pada Perlakuan dengan Kalsium Klorida". Jurnal Kelautan Tropis 25, n.º 2 (12 de abril de 2022): 257–65. http://dx.doi.org/10.14710/jkt.v25i2.13773.

Texto completo
Resumen
Bioplastics are plastics made from renewable raw materials such as polysaccharides, proteins and lipids. One of the alternative sources of bioplastic raw materials is hydrocolloid from seaweed, which is abundantly available in Indonesia, so that this hydrocolloid-based bioplastic is very prospective to be developed, and can increase the added value of seaweed. The physical and mechanical properties of alginate bioplastics can be improved by combining them with other materials into biocomposite materials that have superior properties and meet specifications. This study aims to determine the effect of calcium chloride (CaCl2) on the physical and mechanical properties of the CMC-Glycerol-Alginate composite bioplastic from Sargassum sp. Bioplastics were made by mixing 0.5 g of alginate flour, added CMC (1.5 g), and 100 ml of distilled water, then stirred with a magnetic stirrer for 10 minutes at 90oC. After that, the temperature was lowered to 40oC and 5 ml of glycerol was added and then homogenized again for 15 minutes. The mixture was filtered and then poured into a glass mold and the surface was leveled using a stainless steel cylinder, then dried in an oven at 80oC for 12 hours. After that the bioplastic is released from the glass plate. In the soaking method, the bioplastic sheets were immersed in a 2% CaCl¬2 solution for 5 minutes, then dried and stored in a desiccator. In the mixing method, 1 gram of CaCl¬2 was put directly into the alginate-CMC-glycerol mixture and homogenized with a magnetic stirrer at 90oC for 15 minutes, then printed on a glass plate, then dried at 100oC for 12 hours. CaCl2 treatment by mixing and soaking decreased elongation, tensile strength, biodegradability and transparency, but increased water resistance and thickness of the alginate-CMC-glycerol composite bioplastic, and changed the surface properties of the bioplastic to be rougher. No new functional groups were formed due to the interaction between alginate, CMC, glycerol, distilled water and CaCl2. Bioplastik adalah plastik yang dibuat dari bahan baku terbarukan seperti polisakarida, protein dan lipida. Salah satu alternatif sumber bahan baku bioplastik adalah hidrokoloid dari rumput laut yang tersedia melimpah di Indonesia, sehingga bioplastik berbahan hidrokoloid ini sangat prospektif untuk dikembangkan, serta dapat meningkatkan nilai tambah rumput laut.Sifat fisik dan mekanik bioplastik alginat dapat ditingkatkan dengan cara dikombinasi dengan bahan lain menjadi material biokomposit yang memiliki sifat unggul dan memenuhi spesifikasi.Penelitian ini bertujuan untuk mengetahui pengaruh kalsium klorida (CaCl2) terhadap sifat fisik dan mekanik bioplastik komposit CMC- Gliserol-Alginat dari Sargassum sp.Bioplastik dibuat mdengan mencampurkan tepung alginat sebanyak 0,5 g ditambahkan CMC ( 1,5 g), dan akuades 100 ml, lalu diaduk dengan magnetic stirrer selama 10 menit pada suhu 90oC. Setelah itu, suhu diturunkan sampai 40oC dan ditambahkan gliserol 5 ml lalu dihomogenkan lagi selama 15 menit. Campuran disaring lalu dituang dalam cetakan kaca dan diratakan permukaannya menggunakan silinder stainless steel, kemudian dikeringkan dalam oven pada suhu 80oC selama 12 jam. Setelah itu bioplastik dilepaskan dari pelat kaca. Pada metoda soaking lembaran bioplastik direndam dalam larutan CaCl­2 2% selama 5 menit, lalu dikeringkan dan disimpan dalam desikator. Pada metoda mixing, CaCl­2 sebanyak 1 gram dimasukkan langsung ke dalam campuran alginat-CMC-gliserol dan dihomogenkan dengan magnetic stirrer pada suhu 90oC selama 15 menit, lalu dicetak dalam pelat kaca, lalu dikeringkan pada suhu 100oC selama 12 jam. Perlakuan CaCl2 dengan cara mixing dan soaking menurunkan elongasi, kuat tarik, biodegradabilitas dan transparansi, tetapi meningkatkan ketahanan air dan ketebalan bioplastik komposit alginat-CMC-gliserol, serta mengubah sifat permukaan bioplastik menjadi lebih kasar. Tidak terdapat gugus fungsi baru yang terbentuk akibat interaksi antara alginat, CMC, gliserol, akuades dan CaCl2.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Marsa, Yulandaris, A. B. Susanto y Rini Pramesti. "Bioplastik dari Karagenan Kappaphycus alvarezii dengan Penambahan Carboxymethyl Chitosan dan Gliserol". Buletin Oseanografi Marina 12, n.º 1 (29 de septiembre de 2022): 1–8. http://dx.doi.org/10.14710/buloma.v12i1.42859.

Texto completo
Resumen
Plastik sintetis yang digunakan sebagai pembungkus makanan dapat menimbulkan masalah lingkungan, karena sulit terurai sehingga menjadi sampah. Bioplastik dapat menjadi alternatif plastik komersial karena terbuat dari bahan alami sehingga mudah terurai. Berbagai bahan dasar pembuatan bioplastik telah ditemukan, salah satunya berbahan dasar karagenan. Bioplastik memiliki kekurangan seperti teksturnya yang kaku dan rapuh, sehingga perlu ditambahkan gliserol sebagai pemlastis. Bioplastik dapat terdegradasi lebih cepat sehingga perlu ditambahkan pengawet alami. Karboksimetil kitosan adalah polimer alami yang digunakan sebagai pengawet karena memiliki aktivitas antibakteri. Penelitian ini bertujuan mengetahui penambahan karboksimetil kitosan terhadap waktu degradasi bioplastik. Metode yang digunakan dalam penelitian bersifat eksperimental labolatoris. Pembuatan bioplastik menggunakan karboksimetil kitosan dengan konsentrasi 2 g, 3 g, 4 g dan 5 g, karagenan 3 g dan gliserol 1,7 ml. Berdasarkan hasil penelitian diperoleh nilai ketebalan sebesar 0,25 mm – 0,82 mm, nilai kuat tarik sebesar 1,04 MPa – 1,61 MPa, uji biodegradabilitas tercepat selama 116 menit dan terlama selama 373 menit. Pemberian karboksimetil kitosan dapat mempengaruhi waktu degradasi bioplastik dan pada konsentrasi karboksimetil kitosan 5 gram dapat terdegradasi lebih lama.The use of food wrapping plastic (synthetic) becomes waste that pollutes the environment, because its difficult to decompose. Bioplastics can be an alternative to commercial plastics because is making from natural materials so they are easily biodegradable. Various basic materials for making bioplastics have been found, one of which is carrageenan. Bioplastics have drawbacks such as their rigid and brittle texture, so additional ingredients such as glycerol are needed to be added as plasticizers. Bioplastics can be degraded more quickly, so natural preservatives need to be added. Carboxymethyl chitosan is a natural polimer that is used as a preservative because it has antibacterial activity. This study aims to determine the bioplastic characteristics of carrageenan with the addition of glycerol and carboxymethyl chitosan and to determine the appropriate concentration of carboxymethyl chitosan so that bioplastics from carrageenan and glycerol can last a long time. The method used was experimental laboratory, making bioplastics using carboxymethyl chitosan with concentrations of 2 g, 3 g, 4 g and 5 g, carrageenan 3 g and glycerol 1.7 ml. Results of the research that has been carried out, the results of the bioplastic characteristics in the form of a thickness value of 0.25 mm - 0.82 mm, a tensile strength value of 1.04 MPa - 1.61 MPa, the fastest biodegradability test for 116 minutes and the longest for 373 minutes. Carboxymethyl chitosan affects the bioplastic degradation time of carrageenan.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Fitria, Annisaa’, Widya Nilandita y Abdul Hakim. "Karakteristik Fisik dan Mekanik Bioplastik Berbahan Dasar Pati Limbah Kulit Pisang Raja Bulu (Musa paradisiaca L. var sapientum) dengan Variasi Jenis Plasticizer dan Kitosan". Jurnal Dampak 20, n.º 1 (31 de enero de 2023): 26. http://dx.doi.org/10.25077/dampak.20.1.26-32.2023.

Texto completo
Resumen
This study aims to determine the physical and mechanical characteristics of bioplastics made from Raja Bulu banana peel waste starch, which include tensile strength, elongation, thickness values, water absorption values, and how long this bioplastic can be decomposed. This research is experimentally based in a laboratory, starting with the manufacture of starch extraction, the process of making bioplastics, the testing process, and data analysis. Other additives used are plasticizers, which include glycerol and sorbitol, as well as the addition of chitosan. There are 2 variations in this study. The first variation is bioplastic with glycerol, sorbitol, and a mixture of glycerol + sorbitol without the addition of chitosan (A1, B1, and C1), while the second variation is bioplastic with glycerol, sorbitol plasticizer, and a mixture of glycerol + sorbitol with the addition of chitosan (A2, B2, and C2). The results of the tensile strength test for bioplastics made from banana peel waste starch ranged from 1.9 to 21.17 Mpa, with the highest tensile strength value being sample B2 and the lowest tensile strength value being sample A1. The resulting elongation value ranges from 12.62 to 64.22%, with the highest elongation value being sample A1 and the lowest elongation value being sample B2. The value of the resulting absorption ranges from 43.4–120.2% with the highest absorption value being sample B1 and the lowest absorption value being A2. The results of the biodegradability test show that bioplastics without chitosan can decompose for 14–15 days, while bioplastics with chitosan can decompose within 19–20 days. Keywords: bioplastic, plasticizer, chitosan, skin flour of Raja Bulu banana ABSTRAK Penelitian ini bertujuan untuk mengetahui karakteristik fisik dan mekanik bioplastik berbahan baku pati kulit pisang Raja Bulu yang meliputi kuat tarik, kemuluran, nilai ketebalan, nilai daya serap air, dan berapa lama bioplastik ini dapat terurai. Penelitian ini berbasis eksperimen di laboratorium, dimulai dengan pembuatan ekstraksi pati, proses pembuatan bioplastik, proses pengujian, dan analisis data. Aditif lain yang digunakan adalah plasticizer, yang meliputi gliserol dan sorbitol, serta penambahan kitosan. Ada 2 variasi dalam penelitian ini. Variasi pertama adalah bioplastik dengan gliserol, sorbitol, dan campuran gliserol + sorbitol tanpa penambahan kitosan (A1, B1, dan C1), sedangkan variasi kedua adalah bioplastik dengan gliserol, plasticizer sorbitol, dan campuran gliserol + sorbitol. dengan penambahan kitosan (A2, B2, dan C2). Hasil uji kuat tarik bioplastik berbahan pati limbah kulit pisang berkisar antara 1,9 hingga 21,17 Mpa, dengan nilai kuat tarik tertinggi pada sampel B2 dan nilai kuat tarik terendah pada sampel A1. Nilai elongasi yang dihasilkan berkisar antara 12,62 hingga 64,22%, dengan nilai elongasi tertinggi pada sampel A1 dan nilai elongasi terendah pada sampel B2. Nilai serapan yang dihasilkan berkisar antara 43,4-120,2% dengan nilai serapan tertinggi adalah sampel B1 dan nilai serapan terendah adalah A2. Hasil uji biodegradabilitas menunjukkan bahwa bioplastik tanpa kitosan dapat terurai selama 14–15 hari, sedangkan bioplastik dengan kitosan dapat terurai dalam waktu 19–20 hari. Kata kunci: bioplastik, plasticizer, kitosan, pati kulit pisang raja bulu
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bordeos, Maria Erica R., Flyndon Mark S. Dagalea y Manuela Cecille G. Vicencio. "Characterization of a Bioplastic Product from the Ulva reticulata (Ribbon Sea Lettuce) Extract". Asian Journal of Chemical Sciences 14, n.º 2 (30 de marzo de 2024): 161–68. http://dx.doi.org/10.9734/ajocs/2024/v14i2301.

Texto completo
Resumen
Humans have a strong reliance in using petroleum-based plastics which take several decades to degrade and cause a lot of environmental problems such as pollution. This study intended to develop bioplastics from Ulva reticulata (Ribbon sea lettuce) and to determine the bioplastic’s physicochemical properties. The sample was collected in Allen, Northern Samar, Philippines, water samples were also collected. After the extraction, development of bioplastic from the sample extract commenced. The developed bioplastic underwent several test to check the stability of the product – its includes physicochemical analysis, tensile strength, thickness, moisture content, and soil degradation test. The Ribbon sea lettuce bioplastic solution was slightly acidic. The seaweed bioplastic have an average thickness of 0.30mm. The Ribbon sea lettuce bioplastic sample was both insoluble in the three solvents. The sample bioplastic can handle an average load of 55.12g. An average moisture content of 51.534% have been observed in the three trial of the seaweed bioplastic sample. The seaweed bioplastic sample naturally degraded during the soil biodegradation test and have lost an average weight percentage of 82.05% after 21 days of being buried in soil. The results showed that the seaweed bioplastic has a potential as an alternative to the non-biodegradable plastic and can be used in agricultural, industrial and economic purposes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Septiati, Yosephina Ardiani, Mimin Karmini, Ade Kamaludin y Fatimah Fatimah. "Analisis Luas Bukaan Udara Penyimpanan Makanan terhadap Kadar Air dan Total Jamur Makanan Terkemas Bioplastik". Jurnal Kesehatan Lingkungan Indonesia 23, n.º 2 (7 de mayo de 2024): 226–33. http://dx.doi.org/10.14710/jkli.23.2.226-233.

Texto completo
Resumen
Latar belakang: Pengemas makanan berinteraksi dengan lingkungan dan makanan sehingga mempengaruhi kualitas makanan.Bioplastik berbasis pati bersifat penghalang tinggi terhadap uap air dan gas O2 yang dapat mengantikan palstik sintetis. Aman untuk makanan dan kesehatan karena tidak melepaskan polimer plastik kemakanan. Penyimpanan makanan dengan aliran udara rendah menyebabkan bioplastik berjamur. Aman untuk makanan dan kesehatan karena tidak melepaskan polimer plastik kemakanan. Penelitian bertujuan menganalisis pengaruh bukaan udara tempat penyimpanan makanan terhadap kadar air dan total jamur makanan terkemas bioplastik.Metode: Penelitian eksperimen skala lapangan, desain post test with control. Variabel penelitian yaitu bukaan udara tempat penyimpanan sebagai variabel independen dan variabel dependennya adalah kadar air dan total jamur pada dodol dikemas bioplastik. Sampel yang digunakan dodol Garut diambil secara acak. Penelitian dilaksanakan bulan Februari-September 2023. Data dikumpulkan melalui pemeriksaan fisik dan pemeriksaan laboratorium menggunakan mikrometer skrup, thermohygrometer, timbangan analitik dan coloni counter. Analisis deskriptif untuk ketebalan bioplastik, dan uji kruskal wallis untuk pengaruh luas bukaan udara terhadap total jamur dan kadar air makanan. Hasil: Bioplastik penambahan 4 ml gliserol dengan ketebalan 0,026 mm, mampu menghalangi pencemar terbesar pada luas bukaan udara tempat penyimpanan makanan 262,60 mm2 dan 423,90 mm2 dengan kadar air dan total jamur terendah. Menunjukan ada pengaruh luas bukaan udara tempat penyimpanan makanan terhadap kadar air dan kandungan Total jamur makanan.Simpulan: Paparan lingkungan mempengaruhi bioplastik sebagai pengemas, mencegah paparan air dan Total Jamur pada makanan, sehingga bioplastik dapat menjadi alternatif sebagai pengemas primer dodol. ABSTRACTTitle: Analysis of The Area of Air Release in The Storage Area on The Air Content and Total Fungi on Bioplastic Packaged.Background: Food packaging interacts with the environment and food, thus affecting food quality. Starch-based bioplastics have a high barrier to water vapor and O2 gas which can replace synthetic plastics. Safe for food and health because it does not release food plastic polymers. Food store with low air flow causes bioplastics to fungus quickly.The research aims to analyze the effect of destroying the air in food storage areas on the air and total fungus content of bioplastic packaged foods.Method: Field-scale experimental research, post-test design with control. The independent variable was air release from the storage area and the dependent variable was water content and total fungus in dodol packaged in bioplastic. The sample was Garut dodol, taken using a random sampling technique. The research was carried out in February-September 2023. Data was collected through physical test and laboratory test using a screw micrometer, thermohygrometer, analytical balance, and colony counter. Descriptive analysis for bioplastic thickness, and the Kruskal Wallis test to influence the area of air openings on total fungus and food moisture content.Results: Bioplastic with the addition of 4 ml of glycerol with a thickness of 0.026 mm, was able to block the largest pollutants in the air permit area of food storage areas of 262.60 mm2 and 423.90 mm2 with the lowest water content and total Fungus. Shows the influence of the air area where food is stored on the air content and total food fungus content.Conclusion: Environmental exposure affects bioplastics as packaging, preventing exposure to water content and total of fungus in food, so bioplastics can be an alternative as primary packaging for dodol.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Bioplastic"

1

Kaidaniuk, Denys. "Starch bioplastic production". Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50627.

Texto completo
Resumen
1. Tang H., Ando H., Watanabe K. et al. Fine structures of amylose and amylopectin from large, medium and small waxy barley starch granules. Cereal Chemistry. 2001. Vol. 78. P. 111–115.
Plastic production is a necessity for humanity today. It is impossible to imagine an industry without it, whether it is the production of children's toys or the production of test tubes. However, the issue of environmental pollution is growing in direct proportion to the increase in plastic production. For example, mankind has created about 380 tons of plastic in 2018, of which only a small part was disposed of. Therefore, the issue of alternatives to plastics that are tolerant of the environment and human health is only gaining momentum. The main task of this work is to create a viable bioplastic from starch that can compete in the market with the usual sample. In fact, starch has long been used in this industry, this polysaccharide is a successful raw material for plastic production due to its properties, which are provided by its components: amylase and amylopectin, amylase in turn responsible for stickiness and water absorption, and amylopectin for strength. Виробництво пластику - це необхідність для людства сьогодні. Неможливо уявити собі індустрію без нього, незалежно від того, чи є це виробництво дитячих іграшок чи виробництво пробірок. Однак питання забруднення навколишнього середовища зростає прямо пропорційно збільшенню виробництва пластмас. Наприклад, людство виробило близько 380 тонн пластмаси у 2018 році, з якої була використана лише невелика частина. Тому питання альтернатив пластмас, які є толерантними до навколишнього середовища та здоров'я людини, отримує лише імпульс. Основним завданням цієї роботи є створення стійкого біопластику з крохмалю, який може конкурувати на ринку зі звичайним зразком. Фактично, крохмаль давно використовується в цій галузі, цей полісахарид є успішною сировиною для виробництва пластмас завдяки своїм властивостям, які забезпечуються його компонентами: амілаза та амілопектин, амілаза, яка відповідає за липкість та поглинання води, а також амілопектин для міцності.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sundin, Anton. "Produktion av bioplast i Värmland? : Fermentering av olika avfallströmmar". Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-36624.

Texto completo
Resumen
Ett av världens största miljöproblem är plastnedskräpning. På många platser kan spår av mänsklig närvaro ses i form av skräp av plast. År 2011 tillverkades det 280 miljoner ton plast, det motsvarar ungefär 28 000 Eiffeltorn. I Sverige förbrukades år 2010 ungefär 880 000 ton plast. I Asien produceras ungefär 50 % av all världens plast och Kina står för cirka hälften av detta. Nordamerika och Europa står för cirka 40 % av världens plastproduktion. Resterande produktion av plast är fördelat på Afrika och Sydamerika. Kommersiell plast är uppbyggd av små enheter kallade polymerer. Polymerer är i sin tur uppbyggda av ännu mindre enheter som kallas monomerer. Dessa monomerer är i dagsläget framställda av petroleum (råolja/mineralolja). Ungefär 4 % av världens oljekonsumtion går åt som råvara till att producera plast och lika mycket olja används som bränsle i tillverkningsprocessen. Begreppet bioplast är en hel familj av material som är biologiskt nedbrytbar, biobaserade eller bådadera. Det är dock inte en självklarhet att bioplaster besitter båda egenskaperna. PHA-plast är biobaserad och biologisk nedbrytbar, vilket är anledningen till att den står i fokus under detta examensarbete. För produktion av PHA-plast används en trestegsprocess, vilket innefattar ett fermenteringssteg, ett selektionssteg och ett ackumuleringssteg. Sist sker en extraktion för att frigöra PHA- plasten från det övriga organiska materialet. Syftet med det här examensarbetet är att med hjälp av framställning av bioplast främja miljön, vilket en anläggning som producerar bioplast skulle göra eftersom en del av den fossiloljebaserade plasten skulle kunna bytas ut mot bioplasten PHA. Större framställningsmöjligheter av bioplast i Värmland skulle medföra ett ökat intresse av en produktionsanläggning. Målet är att inventera olika industrier runt om i Värmland, i första hand matindustrier och skogsindustrier, och utreda deras processavloppsvattens potential att producera VFA. I detta examensarbete har fermenteringsförsök genomförts satsvis på processavloppsvatten från OLW, Barilla (Wasa), Skoghall, Gruvön och Rottneros. Försöken visar deras potential att producera VFA. Experimenten utfördes med ett konstant pH på 6 och varierande uppehållstid. Resultaten visade att OLW och Barilla har bäst potential till VFA-produktion med 4500 mg/l respektive 1610 mg/l. Spädning av OLWs och Barillas processavloppsvatten visade sig vara en gynnsam åtgärd, då VFA-produktionen ökade snabbare i jämförelse med de tester som utfördes vid icke-spädning. Dock erhölls inte lika stor totalmängd av VFA. Det är dock bättre att producera en större mängd VFA och på så vis låta processen ta längre tid. Vid fortsatta experiment rekommenderas att göra ytterligare försök på OLW och Barillas processavloppsvatten då de visade bäst potential till VFA-produktion.
One of the biggest environmental problems is the plastic littering. In many places traces of human presence is seen in the form of plastic littering. In the year 2011, 280 million tons of plastic was produced, which represents about 28 000 Eiffel Towers. In Sweden, about 880 000 tons of plastic a year is consumed, according to figures from 2010. Approximately 50 % of all the world's plastics are produced In Asia and China accounts for about half of it. North America and Europe account for about 40% of the world's plastic production. The remaining production is distributed between Africa and South America. Commercial plastic is made from small units called polymers. A polymer consists of smaller units called monomers. In present, these monomers are produced out of petroleum (crude oil/ mineral oil). Approximately 4% of the world’s oil consumption is spent as raw material to produce plastic and the same amount of oil is used as fuel in the plastic production process. The term bio-plastic is used for a family of materials which are biodegradable, bio- based or both. However, it is not given that bioplastics do possess both properties. PHA plastics are both bio based and biodegradable, which is why it is the focus for this thesis. Production of PHA plastic is a three-step process comprising a fermentation step, a selection step, and an accumulation stage. Finally, there is an extraction to release the PHA plastic from the organic material. The aim of this thesis is to aid the production of bioplastics in order to lessen the environmental load of plastics. The more bioplastic that can be produced, the greater the interest of a bioplastic-producing plant in Värmland. The goal is to make an inventory of industries around Värmland, primarily food industries and forest industries, and to quantify the potential of their process wastewaters to produce VFA. In this thesis, fermentation experiments conducted batch-wise was performed with process wastewater from OLW, Barilla (Wasa), Skoghall, Gruvön and Rottneros. The experiments showed the wastewaters potential to produce VFA. The experiments were performed with a constant pH of 6 and with varying residence time. The results showed that OLW and Barilla has the highest potential for VFA production with 4500 mg/l and 1610 mg/l, respectively. Dilution of OLWs and Barillas process water turned out to be favorable, as the VFA production increased rapidly in comparison with those tests that were conducted under non-dilution. The total production of VFA, however, was not as high. In further experiments, it is recommended to make another attempt at the OLWs and Barillas process wastewater since they showed the best potential for VFA production.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Maryniaka, K. "Modern step into future: bioplastic". Thesis, Молодіжна наукова ліга, 2020. https://er.knutd.edu.ua/handle/123456789/16771.

Texto completo
Resumen
Modern chemistry has reached the level of molecular research, which made it possible to reveal the mechanisms of many processes in a living organism, synthesize substances that do not exist in nature, and decipher the genetic mechanisms of heredity. The development of the production of both biologically derived and biodegradable polymers cannot be stopped. Nowadays biopolymers in many areas represent a serious alternative to traditional polymeric materials. The notion that they are not competitive will not hold out for a long time. What is more, they certainly will not become a panacea for all environmental problems. The concept of biopolymers as 100% resource conserving agents is also premature. However, they open up new prospects in the post-oil era.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Johnsson, Nathalie y Fredrik Steuer. "Bioplastic material from microalgae : Extraction of starch and PHA from microalgae to create a bioplastic material". Thesis, KTH, Materialvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231508.

Texto completo
Resumen
Microalgae used in sewers to capture CO2 eventually turns into waste material. Through the use oftheir biomass, the waste algae can be given a new purpose. In this study attempts to extract starch or PHA from three different algae; Calothrix Scytonemicola, Scenedesmus Almeriensis and Neochloris Oleoabundans, were made. We also attempted to create a bio-based plastic material. Both Scenedesmus Almeriensis and Neochloris Oleoabundans are starch rich microalga. By washing with acetone, cryo grinding, use of ultrasonic homogenizer and dialysis, starch was likely extracted successfully. The extracted material and the plasticiser Carboxymethyl Cellulose (CMC) was used to cast plastic film. The cast film was very thin and brittle; perhaps by using different plasticisers or additives a more usable bio-based plastic material can be created. The PHA rich algae Calothrix Scytonemicola was used to extract PHA. The algae was washed with acetone, cryo grinded and then mixed with Sodium Hypochlorite(aq) and deionised water to extract the desired PHA. Due to a shortage of algae very small amounts of material could be extracted. Therefore, the casting of a plastic film was performed with commercial PH3B, which is a type of PHA. Three attempts were conducted. The first one with only chloroform, the second one with CMC and chloroform and the last one with Sucrose Octaacetate and chloroform. The film with Sucrose Octaacetate gave the best plastic material in regards to mechanical properties.
Mikroalger som används i kloaker för att binda CO2 blir till slut restavfall. Genom att använda dess biomassa kan restalgerna få ett nytt syfte. I denna studie utfördes extraktionsförsök av stärkelse samt PHA från tre olika alger, Calothrix Scytonemicola, Scenedesmus Almeriensis och Neochloris Oleoabundans. Ytterligare försök genomfördes för att försöka framställa ett biobaserat plastmaterial. Både Scenedesmus Almeriensis och Neochloris Oleoabundans är stärkelserika mikroalger. Genom att tvätta dem med aceton, kryomalning, användning av en ultrasonic homogenizer och dialys kunde stärkelse troligtvis extraheras. Det extraherade materialet blandades med karboxymetylcellulosa (CMC) för att skapa en plastfilm. Filmen blev väldigt tunn och spröd, således behövs antingen en annat mjukningsmedel eller tillägg av additiv för att skapa ett mer användningsbart biobaserat plastmaterial. Den PHA-rika algen Calothrix Scytonemicola användes vid extraktionen av PHA. Algerna tvättades med aceton och kryomaldes innan PHA förhoppningsvis extraheras med hjälp av natriumhypoklorit(aq) och avjonat vatten. På grund av en för liten mängd tillgänglig alg extraherades endast en liten mängd material. Det var därför inte möjligt att skapa en plastfilm av vårt extrakt utan istället användes kommersiell PH3B, som är en typ av PHA. Tre försök genomfördes, en med endast kloroform, en med CMC och kloroform och den sista med sucrose octaacetate och kloroform. Den sistnämnda filmen gav det bästa plastmaterialet med avseende på de mekaniska egenskaperna.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Helgeson, Matthew Steven. "Horticultural evaluation of zein-based bioplastic containers". [Ames, Iowa : Iowa State University], 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

MONGILI, BEATRICE. "Biotechnological approches for green-based bioplastic production". Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2836776.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Bhardwaj, Rahul. "Modification of polylactide bioplastic using hyperbranched polymer based nanostructures". Diss., Connect to online resource - MSU authorized users, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Klinke, Stefan. "Production of bioplastic in recombinant bacteria : from basic research to application /". [S.l.] : [s.n.], 1999. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13448.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Muppidi, Mahanand. "Toward libraries for increased bio plastic production in cyanobacteria". Thesis, KTH, Skolan för bioteknologi (BIO), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173649.

Texto completo
Resumen
Cyanobateria are promising cell factories due to their minimal nutrient requirements and utilization of asmospheric carbon di-oxide as its sole carbon source. In particular, polyhydroxybutyrate (PHB) is an industrially useful bio plastic that is produced naturally by some cyanobacteria. Furthermore, PHB biosynthetic pathway is a starting point for production of the biofuel, 1-butanol. There has been much genetic engineering effort toward increasing the production of PHB from cyanobacteria. These have been focused on increasing the pool of acetyl-CoA precursor, or increasing the amount of the reductant NADPH. The upstream process for increasing these reactants is complex and involves many genes. In this contect, cyanobacteria libraries will contribute to reveal genes or gene fragments that are responsible for production of PHB, alkanes and other high value compounds. In pursuit of finding these novel genes or genefragments, a transcription factor library is created in this study with 50 transcription factors. Furthermore, the process is optimized towards the creation of genomic fragment library and metagenomic fragment library with 26 diverse strains. Membersof the transcription factor library are over-expressed by a PHB - producing host Synechocystis PCC 6803 and the process towards creation of genomic and metagenomic libraries is optimized. The members of the metagenomic library can be screened for increased PHB, alkanes, lactate and other high value products and the potential members can be isolated and characterized.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sundäng, Peters Emil. "Bioplastics from food waste liquid fraction". Thesis, KTH, Skolan för bioteknologi (BIO), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Bioplastic"

1

Kuddus, Mohammed y Roohi, eds. Bioplastics for Sustainable Development. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1823-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Vandenberghe, Luciana Porto de Souza, Ashok Pandey, Ranjna Sirohi y Carlos Ricardo Soccol. Second and Third Generation Bioplastics. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003344018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Pilla, Srikanth. Handbook of bioplastics & biocomposites engineering applications. Hoboken, NJ: Wiley, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pilla, Srikanth, ed. Handbook of Bioplastics and Biocomposites Engineering Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118203699.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Malinconico, Mario, ed. Soil Degradable Bioplastics for a Sustainable Modern Agriculture. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54130-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kaneko, Tatsuo, ed. Photo-switched Biodegradation of Bioplastics in Marine Environments. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4354-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Werber, F. X. Report ARS workshop: Bioplastics, films and coatings : Peoria, IL, June 21-22, 1994. Beltsville, Md.?: ARS, 1994.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Gahlawat, Geeta. Green Bioplastic : Polyhydroxyalkanoates: Production Strategies. Springer International Publishing AG, 2019.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lackner, Maximilian. Bioplastics. Wiley & Sons, Incorporated, John, 2025.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lackner, Maximilian. Bioplastics. Wiley & Sons, Limited, John, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Bioplastic"

1

Tabassum, Asma, A. Hira y R. Aliya. "Bioplastic: Food and Nutrition". En Bioplastics for Sustainable Development, 307–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1823-9_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ismail, Safina, Kalp Das y Ravindra Soni. "Current Status of Bioplastic Synthesis". En Advanced Strategies for Biodegradation of Plastic Polymers, 365–71. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-55661-6_15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tharani, D. y Muthusamy Ananthasubramanian. "Microalgae as Sustainable Producers of Bioplastic". En Microalgae Biotechnology for Food, Health and High Value Products, 373–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0169-2_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gupta, A., B. Y. Alashwal, Md S. Bala y N. Ramakrishnan. "Keratin-based Bioplastic from Chicken Feathers". En Industrial Applications of Biopolymers and their Environmental Impact, 292–304. Boca Raton : CRC Press ; Taylor & Francis Group, [2020] | “A Science Publishers book.”: CRC Press, 2020. http://dx.doi.org/10.1201/9781315154190-13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Senapati, Tarakeshwar, Sukhendu Dey, Apurba Ratan Ghosh y Palas Samanta. "Bioplastic as Potential Food Packaging Material". En Encyclopedia of Green Materials, 1–8. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4921-9_89-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rohidi, Nurin Najwa y Siti Amira Othman. "Properties of Irradiated Bioplastic-A Review". En Lecture Notes in Civil Engineering, 161–69. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7920-9_19.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Döhler, Niklas Mathias y André Wolf. "Business Models for Innovative Bioplastic Feedstocks". En Second and Third Generation Bioplastics, 159–75. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003344018-12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jiménez-Rosado, M., V. Perez-Puyana, A. Guerrero y A. Romero. "Bioplastic Matrices for Sustainable Agricultural and Horticultural Applications". En Bioplastics for Sustainable Development, 399–429. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1823-9_16.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

McLaughlin, Kristen, Allison Webb, Kaitlin Brӓtt y Daniel Saloni. "Bioplastic Modified with Woodflour for Additive Manufacturing". En Advances in Manufacturing, Production Management and Process Control, 86–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51981-0_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rana, Ananya, Vikram Kumar, Tejpal Dhewa y Neetu Kumra Taneja. "Bioplastic Production Using Whey (Polyhydroxyalkanoates and Polyhydroxybutyrates)". En Whey Valorization, 103–13. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5459-9_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Bioplastic"

1

Muhammed, N. S., S. D. Gallage, B. A. I. Eranga y T. H. Madushanka. "Adoptability of bioplastic as a sustainable material in Sri Lankan building construction industry". En World Construction Symposium - 2023. Ceylon Institute of Builders - Sri Lanka, 2023. http://dx.doi.org/10.31705/wcs.2023.8.

Texto completo
Resumen
The Sri Lankan construction industry is facing significant challenges in building construction projects due to the negative impacts of using traditional building materials. Consequently, there has been a surge of interest in sustainable materials, and among them, bioplastics have emerged as a promising alternative. The aim of this study is to investigate the potential of bioplastics as a sustainable building material specifically for the Sri Lankan construction industry. To achieve this, the study applied a qualitative research approach to collect data through semi-structured interviews. The research objectives are to identify alternative sustainable materials used in construction and identify how bioplastics could contribute to the construction industry as ta sustainable material. In addition to that, the study also identifies the motivators and challenges to the use of polymer building materials in Sri Lanka and subsequently develop a framework including potential strategies to use bioplastic as a sustainable construction material. The study's findings have identified significant factors that establish bioplastics as a sustainable material suitable for the Sri Lankan construction sector. Moreover, the research offers valuable recommendations to address challenges related to the adoption of polymer building materials. Furthermore, the study would contribute to the formulation of policies and regulations that promote the use of bioplastics as a sustainable building material.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Qoirinisa, Siwi, Dodi Irwanto, Karmanto Karmanto y Endaruji Sedyadi. "The Effect of Adding TiO<sub>2</sub> Filler on The Physical and Mechanical Properties of Bioplastic Based Potato Starch (<i>Solanum tubersom</i> L.) and Glycerol from Waste Cooking Oil". En The 6th International Conference on Science and Engineering. Switzerland: Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-i5ymif.

Texto completo
Resumen
The manufacture of bioplastic from potato starch (Solanum tuberosum L.) and glycerol from waste cooking oil with the addition of TiO2 has been done by varying the concentration of TiO2. This study aims to study the effect of the addition of TiO2 on the physical and mechanical properties of potato starch and glycerol from leech oil. The research was conducted by making glycerol from waste cooking oil, making bioplastic film with various concentrations of TiO2 (0; 1; 2; 3 and 4%), characterization of bioplastic, which includes physical and mechanical properties. The addition of TiO2 as a bioplastic filler can affect its physical and mechanical properties. The result showed that each addition of 1% TiO2 increased the thickness by 22,966 microns, the tensile strength value by 0.0853 N/mm2, the average Young’s modulus by 0.0599 MPa, and decreased elongation by 5.0987%. The best bioplastic mechanical test results were produced at a starch composition of 2.5 grams and 2% (w/w) of TiO2 particles.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tan, Shiou Xuan, Andri Andriyana, Steven Lim, Hwai Chyuan Ong, Yean Ling Pang y Gek Cheng Ngoh. "Natural Deep Eutectic Solvent (NADES) as Plasticizer for Bioplastic Film Fabrication. A Comparative Study". En International Technical Postgraduate Conference 2022. AIJR Publisher, 2022. http://dx.doi.org/10.21467/proceedings.141.23.

Texto completo
Resumen
Incorporation of chitosan into the bioplastic film could improve its mechanical properties. However, aqueous acidic solution is required to dissolve the chitosan. The aim of the present work was to explore the potential use of acidic NADES as the plasticizer as well as a solvent for chitosan without the addition of aqueous acidic solution. The film-forming solution consisted of sago starch as the matrix and chitosan as the filler was prepared by solution casting and evaporation method in the presence of acidic NADES. Acidic NADES was obtained by mixing choline chloride (ChCl) and lactic acid (LA) as the hydrogen bond acceptor and hydrogen bond donor, respectively. The mechanical properties and water uptake ability of chitosan-reinforced starch-based bioplastic films plasticized with acidic NADES were compared with the bioplastic films plasticized with conventional plasticizer, glycerol in the absence and presence of acetic acid solution. The results revealed that acidic NADES was capable of plasticizing the starch and dissolve the chitosan. Bioplastic film plasticized with acidic NADES achieved higher tensile strength and lower water uptake than the bioplastic film plasticized with glycerol in the presence of acetic acid solution. The interaction between chitosan and acidic NADES was confirmed by Fourier-transform infrared spectroscopy (FTIR). FTIR results exhibited that the amide II band of chitosan in the ChCl/LA film had shifted, and its intensity had decreased to almost undetectable.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

HEGDE, SWATI, ELIZABETH DELL, CHRISTOPHER LEWIS, THOMAS A. TRABOLD y CARLOS A. DIAZ. "Anaerobic Biodegradation of Bioplastic Packaging Materials". En The 21st IAPRI World Conference on Packaging. Lancaster, PA: DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/iapri2018/24453.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Matthews, Sami, Panu Tanninen, Sanaz Afshariantorghabeh, Amir Toghyani, Ville Leminen y Juha Varis. "Geometrical evaluation of thermoformed bioplastic tray packages". En PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON RESEARCH ADVANCES IN ENGINEERING AND TECHNOLOGY - ITechCET 2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0191920.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Luthfi, Janis Kafidzul, Yusuf Wahyu Adi y Suharti Suharti. "Optimization of bioplastic synthesis from carboxymethyl cellulose-keratin". En THE II INTERNATIONAL SCIENTIFIC CONFERENCE “INDUSTRIAL AND CIVIL CONSTRUCTION 2022”. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0138727.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Novianti, Trisita, Issa Dyah Utami y Heri Awalul Ilhamsah. "Elongation Optimization of Bioplastic using Response Surface Methodology". En International Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0010313304480453.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Leote, Rosangella. "3D Printed Art Using Bioplastic and Plant Based Resin". En ARTECH 2023: 11th International Conference on Digital and Interactive Arts. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3632776.3632818.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

"Sustainable Bioplastic Manufacturing: Unleashing Microbial Metabolites using Agricultural waste". En INTERNATIONAL CONFERENCE ON BIOLOGICAL RESEARCH AND APPLIED SCIENCE. Jinnah University for Women, 2024. http://dx.doi.org/10.37962/ibras/2024/65-66.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Gumayan, Efren G., Ian Ken D. Dimzon, Joel T. Maquiling, Rayno Vic Janayon, Caironesa P. Dulpina y Raphael A. Guerrero. "Bioplastic Diffraction Gratings Based on Chitosan from Crab Shell Waste Incorporated with Starch and Plasticizer". En Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fd1.4.

Texto completo
Resumen
We report the successful fabrication, through soft lithography, of bioplastic diffraction gratings from chitosan extracted from crab shell waste and blended with starch and glycerol. Diffraction experiments confirm the fidelity of the replication process.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Bioplastic"

1

Schrader, James, Kenneth McCabe, William Graves y David Grewell. Function and Biodegradation in Soil of Bioplastic Horticultural Containers made of PLA-BioResTM Composites. Ames: Iowa State University, Digital Repository, 2015. http://dx.doi.org/10.31274/farmprogressreports-180814-714.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

van Kampen, Arjen y Wolter Elbersen. Productie van bioplastics uit koolhydraten, een duurzaamheidsperspectief : Evaluatie van verschillende routes richting bioplastics vanuit duurzaamheidsperspectief. Wageningen: Wageningen Food & Biobased Research, 2023. http://dx.doi.org/10.18174/588699.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kerdlap, Piya y James Baker. Is There A Case for Bioplastics? Experience from Thailand. Asian Development Bank, noviembre de 2023. http://dx.doi.org/10.22617/brf230490-2.

Texto completo
Resumen
This brief outlines how the environmental benefits of bioplastics are tempered by waste disposal challenges and why Thailand and countries in Southeast Asia should consider policies and incentives to capitalize on rocketing bioplastics demand. Noting Thailand is the world’s second-largest bioplastics producer, the brief explains the costs, production processes, and uses of the materials. It looks closely at their greenhouse gas emissions and complex issues around end-of-life biodegradation. It shows why countries should invest in infrastructure such as industrial composting facilities and provide fresh financial incentives for manufacturers to help meet growing demand and drive the shift to a bio-based economy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Henna, Phillip H. Novel Bioplastics and biocomposites from Vegetable Oils. Office of Scientific and Technical Information (OSTI), enero de 2008. http://dx.doi.org/10.2172/939375.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Resch, Katharina, Andrea Klein y Gernot Oreski. IEA-SHC Task 39 INFO Sheet C5 - Bioplastics for solar collector components. IEA Solar Heating and Cooling Programme, mayo de 2015. http://dx.doi.org/10.18777/ieashc-task39-2015-0006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Crocker, Mark, Ashton Zeller, Jason Quinn, David Quiroz Nuila, Braden Beckstrom, Stephanie Kesner, Daniel Mohler, Robert Pace y Michael Wilson. CO2 to Bioplastics: Beneficial Re-use of Carbon Emissions from Coal-fired Power Plants using Microalgae. Office of Scientific and Technical Information (OSTI), julio de 2020. http://dx.doi.org/10.2172/1642109.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Short, Samuel. Alternatives to single-use plastics in food packaging and production. Food Standards Agency, agosto de 2023. http://dx.doi.org/10.46756/sci.fsa.taf512.

Texto completo
Resumen
This rapid evidence assessment undertaken by RSM UK Consulting LLP (RSM) and Dr Samuel Short (University of Cambridge) aimed to develop an understanding of the alternatives to single-use plastics in food packaging and production in terms of their risks and opportunities, as well as potential future developments. Literature from within and beyond the UK was gathered from academic databases and reports published by government and non-governmental organisations such as environmental charities. Evidence from the literature was supplemented by findings from a workshop with experts in the field from a variety of industries such as academia, manufacturing, and government. Two broad groups of alternatives were established: material/product alternatives (traditional materials, natural fibres, biopolymers synthesised from biomass, biopolymers synthesised from bioderived monomers, biopolymers produced by microorganisms) and, and system/process alternatives (reducing, reusing, and recycling food packaging and, active and intelligent packaging). These alternatives and systems vary considerably in terms of their properties, such as effectiveness as a barrier to moisture or contamination, convenience for consumers, production costs, and potential for commercialisation. Our review also highlighted gaps in the current knowledge, for example in terms of consumer acceptance and carbon footprint at each stage of their life cycle. The capacity to produce bioplastics (i.e. biopolymers that look and feel similar to conventional plastics but are made from natural materials rather than fossil fuels and are biodegradable or compostable) is anticipated to increase globally from 2.1 million tonnes in 2019 to 6.3 million tonnes by 2027. This growth appears to be enabled by increased consumer awareness of environmental issues and existing regulation and legislation encouraging the development and establishment of a circular economy. However, there are barriers that may challenge this growth. These include already established industry regimes, high production cost of novel materials and a lack of waste management guidance. Overall, fossil-based conventional plastics are a very cheap, versatile material compared to the alternatives currently being developed and tested. Because of this, they might remain the preferred industry choice for certain applications, while alternatives continue to be optimised and commercially scaled. To add to this, the reviewed evidence suggests that there is unlikely to be one single solution to the single-use plastics problem. The solution will likely draw on a range of materials and systems depending on food type and context.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía