Literatura académica sobre el tema "Catalytic Cracking and Pyrolysis"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Catalytic Cracking and Pyrolysis".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Catalytic Cracking and Pyrolysis"

1

Liao, Hang Tao, Xiao Ning Ye, Qiang Lu, and Chang Qing Dong. "Overview of Bio-Oil Upgrading via Catalytic Cracking." Advanced Materials Research 827 (October 2013): 25–29. http://dx.doi.org/10.4028/www.scientific.net/amr.827.25.

Texto completo
Resumen
Fast pyrolysis of biomass to produce bio-oil is an important technology to utilize lignocellulosic biomass, because the liquid bio-oil is regarded as a promising candidate of petroleum fuels. However, bio-oil is a low-grade liquid fuel, and required to be upgraded before it can be directly utilized in existing thermal devices. Catalytic cracking is an effective way to upgrade bio-oil, which can be performed either on the liquid bio-oil or the pyrolysis vapors. Various catalysts have been prepared and used for catalytic cracking, and they exhibited different catalytic capabilities. This paper w
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wang, Chuansheng, Xiaolong Tian, Baishun Zhao, Lin Zhu, and Shaoming Li. "Experimental Study on Spent FCC Catalysts for the Catalytic Cracking Process of Waste Tires." Processes 7, no. 6 (2019): 335. http://dx.doi.org/10.3390/pr7060335.

Texto completo
Resumen
Research on the synergistic high-value reuse of waste tires and used catalysts in spent fluid catalytic cracking (FCC) catalysts was carried out in this study to address the serious ecological and environmental problems caused by waste tires and spent FCC catalysts. The experiment, in which a spent FCC catalyst was applied to the catalytic cracking of waste tires, fully utilized the residual activity of the spent FCC catalyst and was compared with a waste tire pyrolysis experiment. The comparative experimental results indicated that the spent FCC catalyst could improve the cracking efficiency
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wang, Yulong, Ruifang Zhao, Chun Zhang, Guanlong Li, Jing Zhang, and Fan Li. "The Investigation of Reducing PAHs Emission from Coal Pyrolysis by Gaseous Catalytic Cracking." Scientific World Journal 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/528413.

Texto completo
Resumen
The catalytic cracking method of PAHs for the pyrolysis gaseous products is proposed to control their pollution to the environment. In this study, the Py-GC-MS is used to investigate in situ the catalytic effect of CaO and Fe2O3on the 16 PAHs from Pingshuo coal pyrolysis under different catalytic temperatures and catalyst particle sizes. The results demonstrate that Fe2O3is effective than that of CaO for catalytic cracking of 16 PAHs and that their catalytic temperature corresponding to the maximum PAHs cracking rates is different. The PAHs cracking rate is up to 60.59% for Fe2O3at 600°C and i
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mante, Ofei Daku, Foster A. Agblevor, and Ron McClung. "Fluid catalytic cracking of biomass pyrolysis vapors." Biomass Conversion and Biorefinery 1, no. 4 (2011): 189–201. http://dx.doi.org/10.1007/s13399-011-0019-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kang, Wenyue, and Zhijun Zhang. "Selective Production of Acetic Acid via Catalytic Fast Pyrolysis of Hexoses over Potassium Salts." Catalysts 10, no. 5 (2020): 502. http://dx.doi.org/10.3390/catal10050502.

Texto completo
Resumen
Glucose and fructose are widely available and renewable resources. They were used to prepare acetic acid (AA) under the catalysis of potassium acetate (KAc) by thermogravimetric analysis (TGA) and pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). The TGA result showed that the KAc addition lowered the glucose’s thermal decomposition temperatures (about 30 °C for initial decomposition temperature and 40 °C for maximum mass loss rate temperature), implying its promotion of glucose’s decomposition. The Py-GC/MS tests illustrated that the KAc addition significantly altere
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Park, Young-Kwon, Se Jeong Lim, Muhammad Zain Siddiqui, Jong-Ki Jeon, Kyung-Seun Yoo, and Young-Min Kim. "The Use of Low Cost Nanoporous Catalysts on the Catalytic Pyrolysis of Polyethylene Terephthalate." Journal of Nanoscience and Nanotechnology 21, no. 7 (2021): 4121–24. http://dx.doi.org/10.1166/jnn.2021.19198.

Texto completo
Resumen
This study evaluated the feasibility of low-cost nanoporous catalysts, such as dolomite and red mud, on the production of aromatic hydrocarbons via the catalytic pyrolysis of polyethylene terephthalate (PET). Compared to the non-catalytic pyrolysis of PET, catalytic pyrolysis over both dolomite and red mud produced larger amounts of aromatic hydrocarbons owing to their catalytic cracking efficiency and decarboxylation efficiency. Between the two catalysts, red mud, having a larger BET surface area and higher basicity than dolomite, showed higher efficiency for the production of aromatic hydroc
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Msheik, Malek, Sylvain Rodat, and Stéphane Abanades. "Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis." Energies 14, no. 11 (2021): 3107. http://dx.doi.org/10.3390/en14113107.

Texto completo
Resumen
Currently, hydrogen is mainly generated by steam methane reforming, with significant CO2 emissions, thus exacerbating the greenhouse effect. This environmental concern promotes methane cracking, which represents one of the most promising alternatives for hydrogen production with theoretical zero CO/CO2 emissions. Methane cracking has been intensively investigated using metallic and carbonaceous catalysts. Recently, research has focused on methane pyrolysis in molten metals/salts to prevent both reactor coking and rapid catalyst deactivation frequently encountered in conventional pyrolysis. Ano
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lee, Younghyun, Soosan Kim, Jisu Kim, et al. "Catalytic Pyrolysis as a Technology to Dispose of Herbal Medicine Waste." Catalysts 10, no. 8 (2020): 826. http://dx.doi.org/10.3390/catal10080826.

Texto completo
Resumen
The use of herbal medicine has increased tremendously over the last decades, generating a considerable amount of herbal medicine waste. Pyrolysis is a promising option to dispose of biomass and organic waste such as herbal medicine waste. Herein, an activated carbon-supported Pt catalyst (Pt/AC) and carbon dioxide (CO2) were applied to the pyrolysis of real herbal medicine waste to develop a thermal disposal method to prevent the formation of benzene derivatives that are harmful to the environment and human health. When using the Pt/AC catalyst in the pyrolysis of the herbal medicine waste at
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Liu, Chang Bo, and Chang Sheng Yue. "Metal Sulfide Assisted Coal Catalytic Hydrogenated Microwave Pyrolysis." Materials Science Forum 999 (June 2020): 178–90. http://dx.doi.org/10.4028/www.scientific.net/msf.999.178.

Texto completo
Resumen
The efficient cleaning conversion of coal is more and more attracted due to resource exhaustion and environmental pollution. To improve the yield and quality of products of coal pyrolysis, the catalytic hydrogenated microwave pyrolysis was introduced, and the effects of metal sulfide on hydrogenated microwave pyrolysis were focused on discuss via the detection methods of proximate and ultimate analyses, SEM-EDS, FT-IR and GC-MS in this work. The results shown that because of the “hot-spot” effect and the characteristics of electromagnetic loss of metal sulfide, the temperature-rising rates wit
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Setiadi, Jayusandi Mulya Sentosa, and Joshua Jesse Karubaba. "The combined process of pyrolysis and catalytic conversion from rice straw toward light olefin hydrocarbon with supported metal catalyst." E3S Web of Conferences 67 (2018): 02025. http://dx.doi.org/10.1051/e3sconf/20186702025.

Texto completo
Resumen
Light olefins are one of the most common petrochemical raw materials produced using non-renewable natural resources. Nowadays, lignocellulosic biomass is a promising source of feedstock ingredients for the production of olefins by pyrolysis. This study, the process is developed by a combination of pyrolysis and catalytic cracking processes with operating temperature around 500°C and N2 flow rate around 150 ml/min. The supported metal catalyst namely La/Al2O3 and Zn/Al2O3 made with the impregnation method are used as catalysts. The catalytic pyrolysis process was carried out in a fixed bed turb
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Catalytic Cracking and Pyrolysis"

1

Kantarelis, Efthymios. "Catalytic Steam Pyrolysis of Biomass for Production of Liquid Feedstock." Doctoral thesis, KTH, Energi- och ugnsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142412.

Texto completo
Resumen
The current societal needs for fuels and chemical commodities strongly depend on fossil resources. This dependence can lead to economic instabilities, political problems and insecurity of supplies. Moreover, global warming, which is associated with the massive use of fossil resources, is a dramatic “collateral damage” that endangers the future of the planet. Biomass is the main renewable source available today that can, produce various liquid, gaseous and solid products. Due to their lignocellulosic origin are considered CO2 neutral and thus can generate CO2 credits. Biomass processing can mee
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Conti, Roberto <1986&gt. "Analytical Pyrolysis and Microextraction Methods to Characterize Oil and Biochar from Thermal and Catalytic Cracking of Biomass." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7320/.

Texto completo
Resumen
In this dissertation thermal and catalytic pyrolysis of protein-rich biomass was investigated. The study was focused on the liquid and solid products. This thesis was aimed to gather chemical information on the thermal behavior of proteinaceous substrates in the presence of zeolite and compare with lignocellulosic biomass. Furthermore, the thesis was focused on the development of reliable analytical methods by means of Py-GC-MS in order to predicting bio-oil composition and to investigating biochar structure and its correlation with thermal stability. In addition a sampling procedure for the d
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hörnell, Christina. "Thermochemical and Catalytic Upgrading in a Fuel Context : Peat, Biomass and Alkenes." Doctoral thesis, KTH, Chemical Engineering and Technology, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3164.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Smith, Bradley Joseph. "Steam-Assisted Catalysis of n-Dodecane as a Jet Fuel Analogue in a Flow Reactor System for Hypersonic Thermal Management." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1577978953025703.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Thegarid, Nicolas. "Synthèse d’essences hybrides par co-traitement de distillats de pétrole et d’huiles de pyrolyse de bio-masse en craquage catalytique." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10034.

Texto completo
Resumen
La pyrolyse de la biomasse ligno-cellulosique permet la production de bio-huiles dans la perspective à court terme de carburants hybrides contenant une fraction de bio-carbone dans un carburant conventionnel d'origine fossile (essence ou diesel). Cependant, la forte concentration en oxygène dans ces huiles, leur instabilité et faible densité énergétique (comparée aux carburants fossiles) imposent des pré-traitements permettant cette co-synthèse de carburants hybrides. Ainsi, après hydrotraitement ou ajout d’un catalyseur durant la pyrolyse, ces bio-huiles peuvent être mélangées à un distillat
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Authier, Olivier. "Etude découplée des phénomènes physicochimiques impliqués dans les réacteurs de gazéification de la biomasse. Application au cas d'un lit fluidisé double." Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL015N/document.

Texto completo
Resumen
Parmi les technologies de gazéification de la biomasse, le gazéifieur à lit fluidisé double permet la production d’un gaz de synthèse contenant du méthane. L’étude des processus physicochimiques impliqués dans le gazéifieur est rendue difficile par le fait qu’ils se produisent simultanément. Dans cette thèse, les principales réactions chimiques sont étudiées de manière découplée, indépendamment les unes des autres à l’aide de dispositifs de laboratoire originaux et dans des conditions thermiques semblables à celles du gazéifieur. Les processus intraparticulaires contrôlant la pyrolyse de la bi
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ofoma, Ifedinma. "Catalytic Pyrolysis of Polyolefins." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10439.

Texto completo
Resumen
Due to the migration of scientists towards green chemistry, landfilling and incineration will no longer be acceptable options for plastics waste disposal in the future. Consequently new methods for recycling plastics and plastic products such as carpets are being researched. This study serves as a preliminary effort to study the catalytic feedstock recycling of polyolefins, specifically PP and PE, as source for gasoline range fuels, as well as an alternative for plastic waste disposal. Several studies have been conducted on the pyrolysis of waste polyolefins using commercial cracking catalys
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Oliveira, Ricardo Miguel de. "Craqueamento termocatal?tico de ?leo de girassol na presen?a da peneira molecular SAPO-5." Universidade Federal do Rio Grande do Norte, 2011. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17637.

Texto completo
Resumen
Made available in DSpace on 2014-12-17T15:41:53Z (GMT). No. of bitstreams: 1 RicardoMO_DISSERT.pdf: 2015893 bytes, checksum: dea62cb9390752fd7430293c73c9a1dd (MD5) Previous issue date: 2011-12-06<br>Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico<br>The catalytic cracking of triglycerides presents itself as a possible alternative to the production of biofuels with low emission of pollutants. In this work were synthesized the SAPO-5, the catalysts for the cracking reaction of soybean oil is presented. The solids were powder X-ray diffraction (XRD), thermogravimetric analysis (TG
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Castro, Kesia Kelly Vieira de. "S?ntese, caracteriza??o e aplica??o do MCM-41 e A1-MCM-41 na pir?lise do res?duo atmosf?rico de petr?leo." Universidade Federal do Rio Grande do Norte, 2009. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17616.

Texto completo
Resumen
Made available in DSpace on 2014-12-17T15:41:47Z (GMT). No. of bitstreams: 1 KesiaKV.pdf: 2272602 bytes, checksum: 46f23a52fbc9d4e74dfd9f25d2f58e11 (MD5) Previous issue date: 2009-02-19<br>In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to becom
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nicolson, Iain Sinclair. "Catalytic pyrolysis of nitro aromatic compounds." Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/15526.

Texto completo
Resumen
The work contained in this thesis was intended to study the rearrangement of <i>o</i>-nitrotoluene to anthranil which has previously been shown to occur under a variety of conditions. Flash Vacuum Pyrolysis (FVP) of nitrotoluene over zeolite 13X was carried out. <i>o</i>-Nitrotoluene was found to give conversion to toluene in 5.5% yield with recovery of starting material (12%). FVP of <i>m</i>-nitrotoluene gave recovery of toluene in 8% yield and starting material (7%). FVP of <i>p</i>-nitrotoluene gave only a trace of toluene with mainly recovery of unreacted starting material (12%). FVP of 1
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Catalytic Cracking and Pyrolysis"

1

Occelli, Mario L., ed. Fluid Catalytic Cracking. American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0375.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sadeghbeigi, Reza. Fluid catalytic cracking handbook. Gulf Pub. Co., 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Occelli, Mario L., and Paul O'Connor, eds. Fluid Catalytic Cracking III. American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0571.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Occelli, Mario L., ed. Fluid Catalytic Cracking II. American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0452.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

1948-, Young George W., Benslay Roger M. 1941-, and American Institute of Chemical Engineers., eds. Advanced fluid catalytic cracking technology. American Institute of Chemical Engineers, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wilson, Joseph W. Fluid catalytic cracking technolgy and operations. PenWell Pub. Co., 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

1951-, Corma Avelino, ed. Catalytic cracking: Catalysts, chemistry, and kinetics. M. Dekker, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Magee, J. S. Petroleum catalysis in nontechnical language. PennWell, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units. 3rd ed. Elsevier/BH, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sasidharan, N. Sathi. Catalytic oxidative pyrolysis of spent organic ION exchange resins from nuclear power plants. Bhabha Atomic Research Centre, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Catalytic Cracking and Pyrolysis"

1

Samolada, M. C., and I. A. Vasalos. "Catalytic Cracking of Biomass Flash Pyrolysis Liquids." In Developments in Thermochemical Biomass Conversion. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1559-6_52.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Naik, Desavath Viswanatha, Vimal Kumar, and Basheshwar Prasad. "Pyrolysis Oil Upgrading to Fuels by Catalytic Cracking: A Refinery Perspective." In Prospects of Alternative Transportation Fuels. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7518-6_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Avidan, Amos A. "Fluid catalytic cracking." In Circulating Fluidized Beds. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0095-0_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lloyd, Lawrie. "Catalytic Cracking Catalysts." In Handbook of Industrial Catalysts. Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-49962-8_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Czernik, Stefan. "Catalytic Pyrolysis of Biomass." In Advanced Biofuels and Bioproducts. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3348-4_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Bagheri, Samira. "Catalytic Pyrolysis of Biomass." In Catalysis for Green Energy and Technology. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43104-8_8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Speight, James G. "Fluid-Bed Catalytic Cracking." In Springer Handbook of Petroleum Technology. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49347-3_19.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Frączak, Daria. "Chemical Recycling of Polyolefins (PE, PP): Modern Technologies and Products." In Current Topics in Recycling [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99084.

Texto completo
Resumen
Chemical recycling is one of the most intensively developed potential solutions for the global plastic waste issue. This broadly defined term covers several different technologies that lead to many diverse products. Polyolefins (polyethylene and polypropylene) can be chemically recycled by pyrolysis (cracking) or gasification. These polymers’ chemical composition and structure make them a great potential source of valuable hydrocarbons or carbon atoms for syngas production. Thermal and catalytic cracking of polyethylene and polypropylene can be optimised to maximise specific types of hydrocarbons that, after optional additional processing, such as hydrotreatment, steam cracking or distillation, can be used as intermediates in petrochemical plants, fuels or fuel components, monomers for polymerisation of new, virgin polymers or as specialty chemicals (final market products). Gasification of plastic waste transforms polymers into a mixture of hydrogen, carbon monoxide and carbon dioxide, which can be further used as a source of these gasses, transformed into chemicals and fuels, or used directly to produce energy. This chapter presents all of these process paths with examples of existing technologies and their level of technology readiness and perspectives for scale-up.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Al Jamri, Mohamed, Robin Smith, and Jie Li. "Molecular Modelling of Co-processing Biomass Pyrolysis Oil with Vacuum Gasoil in an Oil Refinery Fluid Catalytic Cracking Unit." In Computer Aided Chemical Engineering. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-818634-3.50166-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Pattiya, A. "Catalytic pyrolysis." In Direct Thermochemical Liquefaction for Energy Applications. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-101029-7.00002-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Catalytic Cracking and Pyrolysis"

1

Guo, Zuogang, Shurong Wang, Yingying Zhu, Xinbao Li, and Zhongyang Luo. "Catalytic Cracking of Ketone Components in Biomass Pyrolysis Oil." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448408.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ates¸, Funda. "Fast Pyrolysis of Biomass With Activated Alumina." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54689.

Texto completo
Resumen
In this study, corncob was chosen as a biomass sample and the pyrolysis of this sample was carried out with or without catalyst at different conditions in a well-swept fixed-bed reactor. In the experimental studies, firstly the raw material was analysed for its moisture, ash, volatile matter and fixed carbon. Then, experiments were conducted with a heating rate of 700 °C/min, mean particle size and between 300–800 °C pyrolysis temperatures with or without catalyst. The catalytic experiments involved a dry mixing of the catalyst with the biomass using an in bed-mode in the nitrogen atmosphere.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Huang, He, Xia Tang, and Martin Haas. "In-Situ Continuous Coke Deposit Removal by Catalytic Steam Gasification for Fuel-Cooled Thermal Management." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68012.

Texto completo
Resumen
Fuel-cooled thermal management, including endothermic cracking and reforming of hydrocarbon fuels, is an enabling technology for advanced aero engines and offers potential for cycle improvements and pollutant emissions control. The principal engine operability issue that will affect this enabling hydrocarbon fuel cooling technology is coke formation. Furthermore, the extent to which the benefits of high heat sink cooling technology can be realized is directly related to our ability to suppress coke formation. The successful implementation of this enabling technology is, therefore, predicated o
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yan Zhou, Shurong Wang, Xiujuan Guo, Mengxiang Fang, and Zhongyang Luo. "Catalytic pyrolysis of cellulose with zeolites." In 2011 World Congress on Sustainable Technologies (WCST). IEEE, 2011. http://dx.doi.org/10.1109/wcst19361.2011.6114217.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Fan, Xuejun, Gong Yu, Jianguo Li, X. Lu, and Chih-Jen Sung. "Catalytic Cracking of Supercritical Aviation Kerosene." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4868.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zsemberi, Andor, Zoltán Siménfalvi, and Árpád Bence Palotás. "Thermal and Thermo Catalytic Co-Cracking." In MultiScience - XXX. microCAD International Multidisciplinary Scientific Conference. University of Miskolc, 2016. http://dx.doi.org/10.26649/musci.2016.107.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Jaimon, Anjusha P., and P. Subha Hency Jose. "Temperature control of catalytic cracking process." In 2015 International Conference on Innovations in Information,Embedded and Communication Systems (ICIIECS). IEEE, 2015. http://dx.doi.org/10.1109/iciiecs.2015.7192960.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kumaran, K. Tarun, and Ishu Sharma. "Catalytic pyrolysis of plastic waste: A Review." In 2020 Advances in Science and Engineering Technology International Conferences (ASET). IEEE, 2020. http://dx.doi.org/10.1109/aset48392.2020.9118286.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

CHAN, CHAO CHIN, MING ZEN CHANG, and YEUH HUI LIN. "Catalytic Pyrolysis of Dual Wastes into Worth." In Third International Conference on Advances in Applied Science and Environmental Technology - ASET 2015. Institute of Research Engineers and Doctors, 2015. http://dx.doi.org/10.15224/978-1-63248-084-2-70.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Dang, Phuong T., Hy G. Le, Giang T. T. Pham, et al. "Catalytic pyrolysis of biomass by novel nanostructured catalysts." In SPIE Micro+Nano Materials, Devices, and Applications, edited by James Friend and H. Hoe Tan. SPIE, 2013. http://dx.doi.org/10.1117/12.2033667.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Catalytic Cracking and Pyrolysis"

1

Ng, S. H., H. Seoud, M. Stanciulescu, and Y. Sugimoto. Conversion of polyethylene to transportation fuels through pyrolysis and catalytic cracking. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/304612.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Arzoumanidis, G. G., M. J. McIntosh, and E. J. Steffensen. Catalytic pyrolysis of automobile shredder residue. Office of Scientific and Technical Information (OSTI), 1995. http://dx.doi.org/10.2172/95489.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Biddy, Mary J., Abhijit Dutta, Susanne B. Jones, and Pimphan A. Meyer. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1073582.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Biddy, Mary J., Abhijit Dutta, Susanne B. Jones, and Pimphan A. Meyer. In-Situ Catalytic Fast Pyrolysis Technology Pathway. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1073583.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Biddy, M., A. Dutta, S. Jones, and A. Meyer. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1076635.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Biddy, M., A. Dutta, S. Jones, and A. Meyer. In-Situ Catalytic Fast Pyrolysis Technology Pathway. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1076660.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ng, S., and E. Castellanos. Catalytic cracking of deasphalted non-conventional residues. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/304564.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ng, S. H., L. E. Curts, and K. R. Dymock. Catalytic cracking of hydrotreated conventional and synthetic feedstocks. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/302678.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Abdullah, Zia, Brad Chadwell, Rachid Taha, Barry Hindin, and Kevin Ralston. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1209232.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Larocca, M., S. Ng, and H. de Lasa. Fast catalytic cracking of heavy gas oils: modeling coke deactivation. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/304414.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!