Literatura académica sobre el tema "Classification interlinguistique des textes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Classification interlinguistique des textes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Classification interlinguistique des textes"
Holl, Iris y Pilar Elena. "Análisis textual y jurídico comparado para la traducción: el caso de las capitulaciones matrimoniales alemanas y españolas". Meta 60, n.º 3 (5 de abril de 2016): 494–517. http://dx.doi.org/10.7202/1036140ar.
Texto completoBohn, Véronique. "Diversité des pratiques dans la production plurilingue de textes politiques. Comparaison entre trois partis suisses". Articles hors thème 29, n.º 1 (24 de julio de 2018): 161–83. http://dx.doi.org/10.7202/1050712ar.
Texto completoEmery, Peter G. "Text Classification and Text Analysis in Advances Translation Teaching". Meta 36, n.º 4 (30 de septiembre de 2002): 567–77. http://dx.doi.org/10.7202/002707ar.
Texto completoBaron, Irène. "Les syntagmes nominaux complexes dans les textes juridiques français". HERMES - Journal of Language and Communication in Business 5, n.º 9 (29 de julio de 2015): 19. http://dx.doi.org/10.7146/hjlcb.v5i9.21504.
Texto completoBanks, Jonathan y Lukas Neukom. "Description grammaticale du nateni (Benin): Systeme Verbal, Classification Nominale, Phrases Complexes, Textes". Language 76, n.º 1 (marzo de 2000): 197. http://dx.doi.org/10.2307/417413.
Texto completoChemla, Karine. "La pertinence du concept de classification pour l'analyse de textes mathématiques chinois". Extrême orient Extrême occident 10, n.º 10 (1988): 61–87. http://dx.doi.org/10.3406/oroc.1988.872.
Texto completoBarry, Catherine. "Les textes de Nag Hammadi et le problème de leur classification. Chronique d’un colloque". Laval théologique et philosophique 50, n.º 2 (1994): 421. http://dx.doi.org/10.7202/400847ar.
Texto completoForest, Dominic. "Vers une nouvelle génération d’outils d’analyse et de recherche d’information". Documentation et bibliothèques 55, n.º 2 (12 de marzo de 2015): 77–89. http://dx.doi.org/10.7202/1029091ar.
Texto completoBanks, Jonathan. "Description grammaticale du nateni (Bénin): Système verbal, classification nominale, phrases complexes, textes By Lukas Neukom". Language 76, n.º 1 (2000): 197–98. http://dx.doi.org/10.1353/lan.2000.0003.
Texto completoMezeg, Adriana. "Le vocabulaire militaire dans le corpus français-slovène FraSloK". Linguistica 58, n.º 1 (14 de marzo de 2019): 237–48. http://dx.doi.org/10.4312/linguistica.58.1.237-248.
Texto completoTesis sobre el tema "Classification interlinguistique des textes"
Mozafari, Marzieh. "Hate speech and offensive language detection using transfer learning approaches". Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAS007.
Texto completoThe great promise of social media platforms (e.g., Twitter and Facebook) is to provide a safe place for users to communicate their opinions and share information. However, concerns are growing that they enable abusive behaviors, e.g., threatening or harassing other users, cyberbullying, hate speech, racial and sexual discrimination, as well. In this thesis, we focus on hate speech as one of the most concerning phenomenon in online social media.Given the high progression of online hate speech and its severe negative effects, institutions, social media platforms, and researchers have been trying to react as quickly as possible. The recent advancements in Natural Language Processing (NLP) and Machine Learning (ML) algorithms can be adapted to develop automatic methods for hate speech detection in this area.The aim of this thesis is to investigate the problem of hate speech and offensive language detection in social media, where we define hate speech as any communication criticizing a person or a group based on some characteristics, e.g., gender, sexual orientation, nationality, religion, race. We propose different approaches in which we adapt advanced Transfer Learning (TL) models and NLP techniques to detect hate speech and offensive content automatically, in a monolingual and multilingual fashion.In the first contribution, we only focus on English language. Firstly, we analyze user-generated textual content to gain a brief insight into the type of content by introducing a new framework being able to categorize contents in terms of topical similarity based on different features. Furthermore, using the Perspective API from Google, we measure and analyze the toxicity of the content. Secondly, we propose a TL approach for identification of hate speech by employing a combination of the unsupervised pre-trained model BERT (Bidirectional Encoder Representations from Transformers) and new supervised fine-tuning strategies. Finally, we investigate the effect of unintended bias in our pre-trained BERT based model and propose a new generalization mechanism in training data by reweighting samples and then changing the fine-tuning strategies in terms of the loss function to mitigate the racial bias propagated through the model. To evaluate the proposed models, we use two publicly available datasets from Twitter.In the second contribution, we consider a multilingual setting where we focus on low-resource languages in which there is no or few labeled data available. First, we present the first corpus of Persian offensive language consisting of 6k micro blog posts from Twitter to deal with offensive language detection in Persian as a low-resource language in this domain. After annotating the corpus, we perform extensive experiments to investigate the performance of transformer-based monolingual and multilingual pre-trained language models (e.g., ParsBERT, mBERT, XLM-R) in the downstream task. Furthermore, we propose an ensemble model to boost the performance of our model. Then, we expand our study into a cross-lingual few-shot learning problem, where we have a few labeled data in target language, and adapt a meta-learning based approach to address identification of hate speech and offensive language in low-resource languages
Poirier, Damien. "Des textes communautaires à la recommandation". Phd thesis, Université d'Orléans, 2011. http://tel.archives-ouvertes.fr/tel-00597422.
Texto completoLAVAUR, JEAN-MARC. "Traitement du texte et transfert interlinguistique. Approche psycho-cognitive de la comprehension et de la memorisation de textes en langue maternelle et en langue etrangere". Nice, 1994. http://www.theses.fr/1994NICE2019.
Texto completoThe aim of this work is a psychological study of understanding and memorizing texts presented in maternal and in foreign language supported by 6 experiments performed with brasilian subjecrs studying french language. In a first series of experiments, data collected during input-processing (reading time) and output-processing (recalled information and sentence verification) show an effect of the proficiency level of the target language on the cognitive processing of texts. A second serie of experiments takes into account the knowledge elicited by texts in a specific area in addition with the proficiency level. Tree indices are observed during the cognitive processing (reading time, response time and response accuracy given to questions relative to the texts). Collected datas show that specific knowledge elicited by the texts leads to reduce the processing cosast and enhance its efficiency in the two languages. Furthermore, the effects of the form of questioning and of the position of questions during reading activity (embedded or not) show that the more the performed task needs retrieval activities, the more the level of kwowledge in text area seems facilitate the processing
Bouillot, Flavien. "Classification de textes : de nouvelles pondérations adaptées aux petits volumes". Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS167.
Texto completoEvery day, classification is omnipresent and unconscious. For example in the process of decision when faced with something (an object, an event, a person), we will instinctively think of similar elements in order to adapt our choices and behaviors. This storage in a particular category is based on past experiences and characteristics of the element. The largest and the most accurate will be experiments, the most relevant will be the decision. It is the same when we need to categorize a document based on its content. For example detect if there is a children's story or a philosophical treatise. This treatment is of course more effective if we have a large number of works of these two categories and if books had a large number of words. In this thesis we address the problem of decision making precisely when we have few learning documents and when the documents had a limited number of words. For this we propose a new approach based on new weights. It enables us to accurately determine the weight to be given to the words which compose the document.To optimize treatment, we propose a configurable approach. Five parameters make our adaptable approach, regardless of the classification given problem. Numerous experiments have been conducted on various types of documents in different languages and in different configurations. According to the corpus, they highlight that our proposal allows us to achieve superior results in comparison with the best approaches in the literature to address the problems of small dataset. The use of parameters adds complexity since it is then necessary to determine optimitales values. Detect the best settings and best algorithms is a complicated task whose difficulty is theorized through the theorem of No-Free-Lunch. We treat this second problem by proposing a new meta-classification approach based on the concepts of distance and semantic similarities. Specifically we propose new meta-features to deal in the context of classification of documents. This original approach allows us to achieve similar results with the best approaches to literature while providing additional features. In conclusion, the work presented in this manuscript has been integrated into various technical implementations, one in the Weka software, one in a industrial prototype and a third in the product of the company that funded this work
Vinot, Romain. "Classification automatique de textes dans des catégories non thématiques". Phd thesis, Télécom ParisTech, 2004. http://pastel.archives-ouvertes.fr/pastel-00000812.
Texto completoVinot, Romain. "Classification automatique de textes dans des catégories non thématiques /". Paris : École nationale supérieure des télécommunications, 2004. http://catalogue.bnf.fr/ark:/12148/cb39294964h.
Texto completoPaquet, Thierry. "Segmentation et classification de mots en reconnaissance optique de textes manuscrits". Rouen, 1992. http://www.theses.fr/1992ROUES007.
Texto completoRisch, Jean-Charles. "Enrichissement des Modèles de Classification de Textes Représentés par des Concepts". Thesis, Reims, 2017. http://www.theses.fr/2017REIMS012/document.
Texto completoMost of text-classification methods use the ``bag of words” paradigm to represent texts. However Bloahdom and Hortho have identified four limits to this representation: (1) some words are polysemics, (2) others can be synonyms and yet differentiated in the analysis, (3) some words are strongly semantically linked without being taken into account in the representation as such and (4) certain words lose their meaning if they are extracted from their nominal group. To overcome these problems, some methods no longer represent texts with words but with concepts extracted from a domain ontology (Bag of Concept), integrating the notion of meaning into the model. Models integrating the bag of concepts remain less used because of the unsatisfactory results, thus several methods have been proposed to enrich text features using new concepts extracted from knowledge bases. My work follows these approaches by proposing a model-enrichment step using a domain ontology, I proposed two measures to estimate to belong to the categories of these new concepts. Using the naive Bayes classifier algorithm, I tested and compared my contributions on the Ohsumed corpus using the domain ontology ``Disease Ontology”. The satisfactory results led me to analyse more precisely the role of semantic relations in the enrichment step. These new works have been the subject of a second experiment in which we evaluate the contributions of the hierarchical relations of hypernymy and hyponymy
Moulinier, Isabelle. "Une approche de la categorisation de textes par l'apprentissage symbolique". Paris 6, 1996. http://www.theses.fr/1996PA066638.
Texto completoLebboss, Georges. "Contribution à l’analyse sémantique des textes arabes". Thesis, Paris 8, 2016. http://www.theses.fr/2016PA080046/document.
Texto completoThe Arabic language is poor in electronic semantic resources. Among those resources there is Arabic WordNet which is also poor in words and relationships.This thesis focuses on enriching Arabic WordNet by synsets (a synset is a set of synonymous words) taken from a large general corpus. This type of corpus does not exist in Arabic, so we had to build it, before subjecting it to a number of pretreatments.We developed, Gilles Bernard and myself, a method of word vectorization called GraPaVec which can be used here. I built a system which includes a module Add2Corpus, pretreatments, word vectorization using automatically generated frequency patterns, which yields a data matrix whose rows are the words and columns the patterns, each component representing the frequency of a word in a pattern.The word vectors are fed to the neural model Self Organizing Map (SOM) ;the classification produced constructs synsets. In order to validate the method, we had to create a gold standard corpus (there are none in Arabic for this area) from Arabic WordNet, and then compare the GraPaVec method with Word2Vec and Glove ones. The result shows that GraPaVec gives for this problem the best results with a F-measure 25 % higher than the others. The generated classes will be used to create new synsets to be included in Arabic WordNet
Libros sobre el tema "Classification interlinguistique des textes"
Neukom, Lukas. Description grammaticale du nateni (Bénin): Système verbal, classification nominale, phrases complexes, textes. Zürich: Universität Zürich, 1995.
Buscar texto completoLafleur, Claude. Quatre introductions à la philosophie au XIIIe siècle: Textes critiques et étude historique. Montréal: Institut d'études médiévales, Université de Montréal, 1988.
Buscar texto completoLes textes de Nag Hammadi et le problème de leur classification. Actes du colloque tenu à Québec du 15 au 19 septembre 1993. Peeters, 1995.
Buscar texto completoCapítulos de libros sobre el tema "Classification interlinguistique des textes"
Boucher, C. "Classification et vulgarisation des «autorités» médiévales. Le propos encyclopédique des traducteurs, ou l’utilité des traductions vernaculaires des textes de savoir". En Reminisciences, 247–68. Turnhout: Brepols Publishers, 2008. http://dx.doi.org/10.1484/m.rem-eb.3.2749.
Texto completo"La classification des mots et des textes". En Analyse des données textuelles, 255–300. Presses de l'Université du Québec, 2019. http://dx.doi.org/10.2307/j.ctvq4bxws.13.
Texto completoTonello, Elisabetta. "The French manuscripts of Dante’s _Commedia_". En Edition de textes canoniques nationaux, 51–64. Editions des archives contemporaines, 2020. http://dx.doi.org/10.17184/eac.2782.
Texto completo