Literatura académica sobre el tema "Cowpea – Growth"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cowpea – Growth".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cowpea – Growth"
Wang, Guangyao, Milton E. McGiffen y Jeff D. Ehlers. "Competition and growth of six cowpea (Vigna unguiculata) genotypes, sunflower (Helianthus annuus), and common purslane (Portulaca oleracea)". Weed Science 54, n.º 5 (octubre de 2006): 954–60. http://dx.doi.org/10.1614/we-06-045r.1.
Texto completoMarsh, Lurline E. y Mohsen Dkhili. "GERMINATION AND GROWTH OF COWPEA AND PIGEONPEAS AT CONTROLLED LOW TEMPERATURES". HortScience 27, n.º 6 (junio de 1992): 682f—682. http://dx.doi.org/10.21273/hortsci.27.6.682f.
Texto completoSari, Lili Agustina. "GROWTH AND RESULTS OF CORN AND NUTS IN THE INTERCROPPING SYSTEM". JURNAL PERTANIAN 10, n.º 2 (22 de octubre de 2019): 102. http://dx.doi.org/10.30997/jp.v10i2.2023.
Texto completoSebetha, E. T. y A. T. Modi. "Influence of Management Practices on Selected Cowpea Growth Attributes and Soil Organic Carbon". Journal of Agricultural Science 8, n.º 11 (11 de octubre de 2016): 20. http://dx.doi.org/10.5539/jas.v8n11p20.
Texto completoWang, Guangyao, Milton E. McGiffen, John L. Lindquist, Jeff D. Ehlers y Ivan Sartorato. "(316) Simulation Study of the Competitive Ability of Erect, Semi-erect, and Prostrate Cowpea Genotypes". HortScience 41, n.º 4 (julio de 2006): 1044C—1044. http://dx.doi.org/10.21273/hortsci.41.4.1044c.
Texto completoXu, Nicole W., Shizhong Xu y Jeff Ehlers. "Estimating the Broad-Sense Heritability of Early Growth of Cowpea". International Journal of Plant Genomics 2009 (7 de junio de 2009): 1–4. http://dx.doi.org/10.1155/2009/984521.
Texto completoWang, Guangyao, Milton E. McGiffen, Jeff D. Ehlers y Edilene C. S. Marchi. "Competitive ability of cowpea genotypes with different growth habit". Weed Science 54, n.º 4 (agosto de 2006): 775–82. http://dx.doi.org/10.1614/ws-06-011r.1.
Texto completoAkanji, AM, OE Fasina y AM Ogungbesan. "Effect of raw and processed cowpea on growth and heamatological profile of broiler chicken". Bangladesh Journal of Animal Science 45, n.º 1 (24 de abril de 2016): 62–68. http://dx.doi.org/10.3329/bjas.v45i1.27490.
Texto completoIDERAWUMI, ABDULRAHEEM MUKHTAR. "Effect of cowpea on growth and yield parameter in a maize-cowpea intercrop". Journal of Management and Science 1, n.º 1 (30 de junio de 2014): 37–42. http://dx.doi.org/10.26524/jms.2014.5.
Texto completoOLIVEIRA, LEANDRO BARBOSA DE, RODRIGO LUIZ NEVES BARROS, WELLITON BARROS DE MAGALHÃES, LEONARDO OLIVEIRA MEDICI y CARLOS PIMENTEL. "COWPEA GROWTH AND YIELD IN SOLE CROP AND INTERCROPPED WITH MILLET". Revista Caatinga 30, n.º 1 (marzo de 2017): 53–58. http://dx.doi.org/10.1590/1983-21252017v30n106rc.
Texto completoTesis sobre el tema "Cowpea – Growth"
Nelson, Suzanne Cathleen. "Genotype and cropping system effects on cowpea growth and yield". Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186596.
Texto completoMakoi, JHJR, SBM Chimphango y FD Dakora. "Effect of legume plant density and mixed culture on symbiotic N2 fixation in five cowpea (Vigna unguiculata L. Walp.) genotypes in South Africa". Symbiosis, 2009. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001476.
Texto completoBelane, AK y FD Dakora. "Measurement of N, fixation in 30 cowpea (Vigna unguiculata L. Walp.) genotypes under field conditions in Ghana, using the 15N natural abundance technique". Balaban, 2009. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001672.
Texto completoKambonde, Lovisa Hinandyooteti. "Activation of oxidoreductases in millet and cowpea grains improves protein utilization for growth". Diss., Connect to online resource - MSU authorized users, 2006.
Buscar texto completoTitle from PDF t.p. (viewed on June 19, 2009) Includes bibliographical references (p. 67-70). Also issued in print.
Thobatsi, Jacob Thobatsi. "Growth and yield responses of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in an intercropping system". Diss., Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-10122009-184005.
Texto completoMakoi, Joachim HJR. "Seed flavonoid concentration in cowpea genotypes and the effect of plant density on growth, N₂ fixation and rhizosphere phosphatases and grain yield of cowpea intercropped with sorghum". Thesis, Cape Peninsula University of Technology, 2009. http://hdl.handle.net/20.500.11838/727.
Texto completoA 3-factorial experiment involving two cowpea densities (83,000 and 167,000 plants.ha-1), two cropping systems (i.e. monoculture and mixed culture) and five cowpea genotypes (i.e. three farmer-selected cultivars, Bensogla, Sanzie and Omondaw and two improved varieties, ITH98-46 and TVu1509) was conducted in the field for two consecutive years in 2005 and 2006. The aim was to assess the effect of plant density, cropping system and cowpea genotypes on: (i) chlorophyll and gas-exchange, (ii) rhizosphere mineral concentration and tissue uptake of nutrients, (iii) acid and alkaline phosphatase activities in the rhizosphere, (iv) plant growth and symbiotic performance, and (v) concentration of flavonoids and anthocyanins in seed extracts and plant organs and their effect on pest infestation and diseases. The results showed that high plant density (167,000 plants.ha-1) and mixed culture significantly decreased gas-exchange parameters, leaf chlorophyll content, 13C and %C in both cowpea and sorghum plants compared with low plant density (83,000 plants.ha-1) and monoculture. The data also showed significantly higher 13C and lower %C in ITH98-46 and TVu1509 compared with Bensogla, Omondaw and Sanzie genotypes with a significant correlation between 13C and water-use efficiency. At harvest, grain yield of cowpea and sorghum was significantly decreased by high plant density and mixed culture compared with low plant density and monoculture. Sanzie genotype was generally superior in grain yield (2,550 kg.ha-1) followed by cvs. Omondaw and Bensogla (2,250 and 2,150 kg.ha-1, respectively) compared with the improved cultivars. Sorghum plants in mixture with cv. TVu1509 or cv. ITH98-46 performed better (1,570 and 1,550 kg.ha-1, respectively) compared with those in mixture with other cultivars. The results also showed greater land equivalent ratio (LER = 1.42 to 1.52), suggesting that mixed culture produced greater total yields per unit land area compared with monoculture.
Bock, Eva. "Deposition and growth of various nanomaterials at nanostructured interfaces". [S.l. : s.n.], 2009. http://nbn-resolving.de/urn:nbn:de:bsz:16-opus-89466.
Texto completoNeves, AntÃnia Leila Rocha. "Irrigation of cowpea with saline water at different growth stages and their effects on the plant and soil". Universidade Federal do CearÃ, 2008. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5227.
Texto completoA sensibilidade à salinidade varia com o estÃdio de desenvolvimento da cultura. O feijÃo-de-corda [Vigna unguiculata (L.) Walp.] constitui uma das principais culturas, em diversas regiÃes semi-Ãridas do mundo. Avaliou-se o efeito da irrigaÃÃo com Ãgua salina, aplicada em diferentes estÃdios de desenvolvimento de plantas de feijÃo-de-corda. O experimento foi conduzido no campo, e obedeceu ao delineamento em blocos ao acaso, com cinco tratamentos (T1, T2, T3, T4 e T5) e cinco repetiÃÃes. O feijÃo-de-corda foi cultivado no espaÃamento de 0,8 m entre linhas e 0,3 m entre plantas, com duas plantas por cova. Os tratamentos utilizados foram: T1 - plantas irrigadas com Ãgua do poÃo (CEa de 0,8 dS m-1) durante todo o ciclo; T2 - Ãgua salina com CEa de 5,0 dS m-1, com aplicaÃÃo iniciada apÃs a germinaÃÃo e permanecendo atà o final do ciclo; T3 - Ãgua salina com CEa de 5,0 dS m-1, da semeadura atà 22 dias apÃs o plantio (DAP), correspondendo Ãs fases de germinaÃÃo e crescimento inicial, e Ãgua do poÃo no restante do ciclo; T4 - Ãgua salina com CEa de 5,0 dS m-1, aplicada de 23 a 42 DAP (fase de intenso crescimento vegetativo atà a prÃ-floraÃÃo), e Ãgua do poÃo nas demais fases do ciclo; T5 - Ãgua do poÃo da semeadura atà 42 DAP e Ãgua salina (CEa de 5,0 dS m- 1) aplicada a partir dos 43 DAP (floraÃÃo e frutificaÃÃo). Foram avaliadas a cobertura vegetal do solo, crescimento vegetativo, fotossÃntese, transpiraÃÃo, condutÃncia estomÃtica, produtividade, partiÃÃo de matÃria seca, os teores, os totais extraÃdos e a distribuiÃÃo dos nutrientes na planta, a eficiÃncia nutricional, eficiÃncia no uso da Ãgua e o acÃmulo de sais no solo. A irrigaÃÃo com a combinaÃÃo de Ãgua do poÃo com Ãgua salina reduziu o acÃmulo de sais no solo, em relaÃÃo ao T2. O T2 reduziu as taxas de fotossÃntese e transpiraÃÃo, em relaÃÃo ao T1. O T3 provocou reduÃÃo das trocas gasosas somente na primeira mediÃÃo, enquanto, que similar aplicaÃÃo nos outros estÃdios (T4 e T5) nÃo provocou reduÃÃes significativas nas trocas gasosas das plantas. O T2 inibiu o crescimento vegetativo da planta, enquanto o T3 provocou retardo no desenvolvimento da planta. Os tratamentos T2 e T3 provocaram reduÃÃes significativas no nÃmero de vagens e na produÃÃo de sementes por planta, em relaÃÃo aos demais tratamentos. Por outro lado, os tratamentos T4 e T5 nÃo afetaram o crescimento e a produtividade da cultura, sendo que o T4 causou aceleraÃÃo no ciclo reprodutivo da cultura. Os minerais foram extraÃdos pelo feijÃo-de-corda na seguinte ordem decrescente: N > K > Cl > Ca > Na > P > Fe > Zn > Mn > Cu, no entanto, o T2 reduziu a extraÃÃo da maioria dos elementos analisados, com exceÃÃo do Na e Cl. Os minerais Na, Cl, K, Ca, Fe e Mn permaneceram preferencialmente nas partes vegetativas enquanto N e P foram exportados em maiores proporÃÃes pelos frutos. O T3 reduziu a eficiÃncia de utilizaÃÃo da maioria dos nutrientes. O T2 reduziu a eficiÃncia agronÃmica de utilizaÃÃo de N, P e K, entretanto nÃo afetou a eficiÃncia de utilizaÃÃo dos nutrientes extraÃdos pelas plantas.
The sensitivity of crops to salinity often changes from one growth stage to another. Cowpea [Vigna unguiculata (L.) Walp.] is an important crop specie cultivated in different semi-arid regions of the world. The objective of this work was to evaluate the effect of the irrigation with saline water, applied at different growth development stages of cowpea. The experiment was set up in the field, during the dry season. A completely randomized block design, with five treatments (T1, T2, T3, T4 and T5) and five repetitions, was adopted. The distance between lines and plants were 0.8 m and 0.3 m, respectively, with two plants per hole. The treatments studied were: T1 - Groundwater with electrical conductivity (ECw) of 0.8 dS m-1 during the whole crop cycle; T2 - Saline water (ECw = 5.0 dS m-1) during the whole crop cycle, starting after germination; T3 - Saline water (ECw = 5.0 dS m-1) from sowing until the 22th day after sowing (germination and initial growth) and groundwater in remaining stages of the crop cycle; T4 - Saline water (ECw = 5.0 dS m-1) from the 23th to the 42nd day after germination (intense growth and pre-flowering), and groundwater irrigation for the remaining growth stages. T5 - Groundwater from sowing to the 42nd day after sowing and saline water (ECw = 5.0 dS m-1) during flowering and pod-filling stages. Soil coverage, gas exchange, vegetative growth and crop yield were measured. The mineral concentration and quantity of nutrient removed from the soil, as well as the nutrient use efficiency and salt accumulation in soil were also determined. The irrigation with combination of groundwater and saline water reduced the salt accumulation in soil, in relation to continuous use of saline water. The continuous application of water with ECw of 5.0 dS m-1 (T2) reduced the rates of photosynthesis and transpiration, in relation to the well water (T1). Plants of the treatment 3 showed reduction in gas exchanges only in the first measurement, while the saline water application in other growth stages (T 4 and T5) did not provoke significant reductions in leaf in the gas exchanges of the plants. It was found that the continuous use of saline water inhibits plant growth, while the irrigation with saline water during germination and initial growth causes retardation in plant development. For treatments 2 and 3, reduction in the number of pods and in seed production was verified. Irrigation with saline water from the 23rd to the 42nd day (T4) and from the 43rd to the 63rd (T5) day after sowing did not affect reproductive and vegetative growth, but the saline water application in the pre-flowering (T4) caused anticipation of reproductive cycle. Cowpea plants removed the minerals analyzed in the following decreasing sequence: N > K > Cl > Ca > Na > P > Fe > Zn > Mn > Cu, but the continuous use of saline water (T2) reduced the total extracted for the most nutrients, except for Na e Cl. The minerals Na, Cl, K, Ca, Fe and Mn were distributed preferentially to vegetative plant parts, while the most of N and P were exported in the pods. The irrigation with saline water during germination and initial growth stage (T3) reduced the mineral use efficiency of most of analyzed nutrients. The continuous application of saline water (T2) reduced the agronomic efficiency of the fertilizer application (N, P and K), but it did not affect the nutrient use efficiency by the plants.
Belane, AK y FD Dakora. "Symbiotic N2 fixation in 30 field-grown cowpea (Vigna unguiculata L. Walp.) genotypes in the Upper West Region of Ghana measured using 15N natural abundance". Springer, 2009. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001434.
Texto completoDookie, Edris Kamal. "Effects of limestone applications and tillage on Cowpea (Vigna unguiculata L. Walp.) growth in acid soils of the intermediate savannahs of Guyana". Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72837.
Texto completoLibros sobre el tema "Cowpea – Growth"
Riding for the brand: 150 years of Cowden Ranching : being an account of the adventures and growth in Texas and New Mexico of the Cowden Land & Cattle Company. Norman: University of Oklahoma Press, 2006.
Buscar texto completoMaua, James Odhiambo. Establishment and early growth of Prosopis juliflora and Azadirachta indica interplanted with greengrams, cowpeas, and lab-lab beans under irrigated conditions at Bura. Nairobi, Kenya: Kenya Forestry Research Institute, 1992.
Buscar texto completoRiding For The Brand 150 Years Of Cowden Ranching Being An Account Of The Adventures And Growth In Texas And New Mexico Of The Cowden Land Cattle Company. University of Oklahoma Press, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Cowpea – Growth"
Liu, R. y E. L. Schmidt. "Isolation and characterization of cowpea (Vigna unguiculata) lectin". En The Rhizosphere and Plant Growth, 187. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3336-4_38.
Texto completoMartínez-García, J. F. y J. L. García-Martínez. "Phytochrome modulation of gibberellin metabolism in cowpea epicotyls". En Progress in Plant Growth Regulation, 585–90. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2458-4_70.
Texto completoMaia, Josemir Moura, Cristiane E. C. Macedo, Ivanice da Silva Santos, Yuri Lima Melo y Joaquim A. G. Silveira. "Antioxidant Mechanisms Involved in the Control of Cowpea Root Growth Under Salinity". En Saline and Alkaline Soils in Latin America, 415–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52592-7_21.
Texto completoBuerkert, Barbara, Joachim Banzhaf, Andreas Buerkert y Dietrich E. Leihner. "Effects of Natural Savannah Windbreaks and Soil Ridging on Wind Erosion and Growth of Cowpea and Millet". En Wind Erosion in Niger, 87–104. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1618-0_6.
Texto completoNakanishi, Tomoko M. "Real-Time Water Movement in a Plant". En Novel Plant Imaging and Analysis, 39–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4992-6_2.
Texto completo"Common Bean and Cowpea". En Growth and Mineral Nutrition of Field Crops, Third Edition, 391–424. CRC Press, 2010. http://dx.doi.org/10.1201/b10160-14.
Texto completoSouza, Marcelo Ferreira de, José Ivo Soares, Ana Cristina Macedo de Oliveira, Sebastião Erailson de Sousa Santos, Maíres Alves Cordeiro, Jeyce Layse Bezerra Silva, Maria Regina de Oliveira Cassundé et al. "TOBACCO MIXTURE IN THE FIGHT AGAINST COWPEA APHID DURING THE GROWTH AND DEVELOPMENT OF V. unguiculata". En Ciências Biológicas: Campo Promissor em Pesquisa 4, 67–73. Atena Editora, 2020. http://dx.doi.org/10.22533/at.ed.4042024066.
Texto completoKloeppel, Brian D. y Barton D. Clinton. "Drought Impacts on Tree Growth and Mortality of Southern Appalachian Forests". En Climate Variability and Ecosystem Response in Long-Term Ecological Research Sites. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195150599.003.0009.
Texto completoJuo, Anthony S. R. y Kathrin Franzluebbers. "Soils and Sustainable Agriculture : Ecological Considerations". En Tropical Soils. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195115987.003.0018.
Texto completoYehia, Lamis, Joanne Ngeow y Charis Eng. "PTEN-Related Overgrowth Syndromes". En Overgrowth Syndromes, 163–86. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780190944896.003.0009.
Texto completoActas de conferencias sobre el tema "Cowpea – Growth"
"Genetic mechanisms associated with determinate growth habit in cowpea (Vigna unguiculata (L.) Walp.)". En SYSTEMS BIOLOGY AND BIOINFORMATICS. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/sbb-2019-19.
Texto completoNtatsi, Georgia, Christina Vrontani, Maria Vlachou, Eleni Rizopoulou, Christos Fotiadis, Andreas Ropokis, Anastasia Tampakaki y Dimitrios Savvas. "Impact of different rhizobial strains and reduced N supply on growth and biological N2-fixation in cowpea grown hydroponically". En VII South-Eastern Europe Syposium on Vegetables & Potatoes. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-045-5.41.
Texto completo"Differential Response of Cowpea Genotypes to Sowing Depth in Relation to Growth Parameters (Vigna unquiculata L. Walp)". En International Conference on Advances in Agricultural, Biological & Environmental Sciences. International Institute of Chemical, Biological & Environmental Engineering, 2015. http://dx.doi.org/10.15242/iicbe.c0715042.
Texto completoSILVA, P. C. C., R. M. ARAGÃO, E. A. GUILHERME, R. T. SOUSA y J. A. G. SILVEIRA. "GROWTH REDUCTION INDUCED BY SALT INHIBIT NITRATE INFLUX IN COWPEA ROOTS BY LOW N-DEMAND (SIGNAL FEEDBACK REGULATION)". En IV Inovagri International Meeting. Fortaleza, Ceará, Brasil: INOVAGRI/ESALQ-USP/ABID/UFRB/INCT-EI/INCTSal/INSTITUTO FUTURE, 2017. http://dx.doi.org/10.7127/iv-inovagri-meeting-2017-res3210531.
Texto completoC, AGBALA C., ITELIMA J U, NWADIARO P O, NYAM M A, OGBONNA A I y ONYIMBA I A. "Growth and yield response of cowpea Vigna unguiculata to bio fertilizers produced from Aspergillus niger and animal waste materials". En Third International Conference on Advances in Bio-Informatics, Bio-Technology and Environmental Engineering- ABBE 2015. Institute of Research Engineers and Doctors, 2015. http://dx.doi.org/10.15224/978-1-63248-060-6-51.
Texto completoPrabel, B., S. Marie y A. Combescure. "Dynamic Crack Propagation and Arrest in PWR Pressure Vessel Steel: Interpretation of Experiment With the X-FEM Method". En ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26315.
Texto completo