Literatura académica sobre el tema "Cross lingual text classification"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cross lingual text classification".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cross lingual text classification"
Zhang, Mozhi, Yoshinari Fujinuma y Jordan Boyd-Graber. "Exploiting Cross-Lingual Subword Similarities in Low-Resource Document Classification". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 05 (3 de abril de 2020): 9547–54. http://dx.doi.org/10.1609/aaai.v34i05.6500.
Texto completoMoreo Fernández, Alejandro, Andrea Esuli y Fabrizio Sebastiani. "Distributional Correspondence Indexing for Cross-Lingual and Cross-Domain Sentiment Classification." Journal of Artificial Intelligence Research 55 (20 de enero de 2016): 131–63. http://dx.doi.org/10.1613/jair.4762.
Texto completoSteinberger, Ralf y Bruno Pouliquen. "Cross-lingual Named Entity Recognition". Lingvisticæ Investigationes. International Journal of Linguistics and Language Resources 30, n.º 1 (10 de agosto de 2007): 135–62. http://dx.doi.org/10.1075/li.30.1.09ste.
Texto completoPelicon, Andraž, Marko Pranjić, Dragana Miljković, Blaž Škrlj y Senja Pollak. "Zero-Shot Learning for Cross-Lingual News Sentiment Classification". Applied Sciences 10, n.º 17 (29 de agosto de 2020): 5993. http://dx.doi.org/10.3390/app10175993.
Texto completoWan, Xiaojun. "Bilingual Co-Training for Sentiment Classification of Chinese Product Reviews". Computational Linguistics 37, n.º 3 (septiembre de 2011): 587–616. http://dx.doi.org/10.1162/coli_a_00061.
Texto completoLiu, Ling y Sang-Bing Tsai. "Intelligent Recognition and Teaching of English Fuzzy Texts Based on Fuzzy Computing and Big Data". Wireless Communications and Mobile Computing 2021 (10 de julio de 2021): 1–10. http://dx.doi.org/10.1155/2021/1170622.
Texto completoSantini, Marina y Min-Chun Shih. "Exploring the Potential of an Extensible Domain-Specific Web Corpus for “Layfication”". International Journal of Cyber-Physical Systems 2, n.º 1 (enero de 2020): 20–32. http://dx.doi.org/10.4018/ijcps.2020010102.
Texto completoMoreo Fernández, Alejandro, Andrea Esuli y Fabrizio Sebastiani. "Lightweight Random Indexing for Polylingual Text Classification". Journal of Artificial Intelligence Research 57 (13 de octubre de 2016): 151–85. http://dx.doi.org/10.1613/jair.5194.
Texto completoArtetxe, Mikel y Holger Schwenk. "Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond". Transactions of the Association for Computational Linguistics 7 (noviembre de 2019): 597–610. http://dx.doi.org/10.1162/tacl_a_00288.
Texto completoLi, Gen, Nan Duan, Yuejian Fang, Ming Gong y Daxin Jiang. "Unicoder-VL: A Universal Encoder for Vision and Language by Cross-Modal Pre-Training". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 11336–44. http://dx.doi.org/10.1609/aaai.v34i07.6795.
Texto completoTesis sobre el tema "Cross lingual text classification"
Petrenz, Philipp. "Cross-lingual genre classification". Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9658.
Texto completoShih, Min-Chun. "Exploring Cross-lingual Sublanguage Classification with Multi-lingual Word Embeddings". Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166148.
Texto completoTafreshi, Shabnam. "Cross-Genre, Cross-Lingual, and Low-Resource Emotion Classification". Thesis, The George Washington University, 2021. http://pqdtopen.proquest.com/#viewpdf?dispub=28088437.
Texto completoWeijand, Sasha. "AUTOMATED GENDER CLASSIFICATION IN WIKIPEDIA BIOGRAPHIESa cross-lingual comparison". Thesis, Umeå universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-163371.
Texto completoKrithivasan, Bhavani. "Cross-Language tweet classification using Bing Translator". Kansas State University, 2017. http://hdl.handle.net/2097/38556.
Texto completoDepartment of Computing and Information Sciences
Doina Caragea
Social media affects our daily lives. It is one of the first sources for finding breaking news. In particular, Twitter is one of the popular social media platforms, with around 330 million monthly users. From local events such as Fake Patty's Day to across the world happenings - Twitter gets there first. During a disaster, tweets can be used to post warnings, status of available medical and food supply, emergency personnel, and updates. Users were practically tweeting about the Hurricane Sandy, despite lack of network during the storm. Analysis of these tweets can help monitor the disaster, plan and manage the crisis, and aid in research. In this research, we use the publicly available tweets posted during several disasters and identify the relevant tweets. As the languages in the datasets are different, Bing translation API has been used to detect and translate the tweets. The translations are then, used as training datasets for supervised machine learning algorithms. Supervised learning is the process of learning from a labeled training dataset. This learned classifier can then be used to predict the correct output for any valid input. When trained to more observations, the algorithm improves its predictive performance.
Varga, Andrea. "Exploiting domain knowledge for cross-domain text classification in heterogeneous data sources". Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7538/.
Texto completoAsian, Jelita y jelitayang@gmail com. "Effective Techniques for Indonesian Text Retrieval". RMIT University. Computer Science and Information Technology, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080110.084651.
Texto completoMozafari, Marzieh. "Hate speech and offensive language detection using transfer learning approaches". Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAS007.
Texto completoThe great promise of social media platforms (e.g., Twitter and Facebook) is to provide a safe place for users to communicate their opinions and share information. However, concerns are growing that they enable abusive behaviors, e.g., threatening or harassing other users, cyberbullying, hate speech, racial and sexual discrimination, as well. In this thesis, we focus on hate speech as one of the most concerning phenomenon in online social media.Given the high progression of online hate speech and its severe negative effects, institutions, social media platforms, and researchers have been trying to react as quickly as possible. The recent advancements in Natural Language Processing (NLP) and Machine Learning (ML) algorithms can be adapted to develop automatic methods for hate speech detection in this area.The aim of this thesis is to investigate the problem of hate speech and offensive language detection in social media, where we define hate speech as any communication criticizing a person or a group based on some characteristics, e.g., gender, sexual orientation, nationality, religion, race. We propose different approaches in which we adapt advanced Transfer Learning (TL) models and NLP techniques to detect hate speech and offensive content automatically, in a monolingual and multilingual fashion.In the first contribution, we only focus on English language. Firstly, we analyze user-generated textual content to gain a brief insight into the type of content by introducing a new framework being able to categorize contents in terms of topical similarity based on different features. Furthermore, using the Perspective API from Google, we measure and analyze the toxicity of the content. Secondly, we propose a TL approach for identification of hate speech by employing a combination of the unsupervised pre-trained model BERT (Bidirectional Encoder Representations from Transformers) and new supervised fine-tuning strategies. Finally, we investigate the effect of unintended bias in our pre-trained BERT based model and propose a new generalization mechanism in training data by reweighting samples and then changing the fine-tuning strategies in terms of the loss function to mitigate the racial bias propagated through the model. To evaluate the proposed models, we use two publicly available datasets from Twitter.In the second contribution, we consider a multilingual setting where we focus on low-resource languages in which there is no or few labeled data available. First, we present the first corpus of Persian offensive language consisting of 6k micro blog posts from Twitter to deal with offensive language detection in Persian as a low-resource language in this domain. After annotating the corpus, we perform extensive experiments to investigate the performance of transformer-based monolingual and multilingual pre-trained language models (e.g., ParsBERT, mBERT, XLM-R) in the downstream task. Furthermore, we propose an ensemble model to boost the performance of our model. Then, we expand our study into a cross-lingual few-shot learning problem, where we have a few labeled data in target language, and adapt a meta-learning based approach to address identification of hate speech and offensive language in low-resource languages
Franco, Salvador Marc. "A Cross-domain and Cross-language Knowledge-based Representation of Text and its Meaning". Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/84285.
Texto completoEl Procesamiento del Lenguaje Natural (PLN) es un campo de la informática, la inteligencia artificial y la lingüística computacional centrado en las interacciones entre las máquinas y el lenguaje de los humanos. Uno de sus mayores desafíos implica capacitar a las máquinas para inferir el significado del lenguaje natural humano. Con este propósito, diversas representaciones del significado y el contexto han sido propuestas obteniendo un rendimiento competitivo. Sin embargo, estas representaciones todavía tienen un margen de mejora en escenarios transdominios y translingües. En esta tesis estudiamos el uso de grafos de conocimiento como una representación transdominio y translingüe del texto y su significado. Un grafo de conocimiento es un grafo que expande y relaciona los conceptos originales pertenecientes a un conjunto de palabras. Sus propiedades se consiguen gracias al uso como base de conocimiento de una red semántica multilingüe de amplia cobertura. Esto permite tener una cobertura de cientos de lenguajes y millones de conceptos generales y específicos del ser humano. Como punto de partida de nuestra investigación empleamos características basadas en grafos de conocimiento - junto con otras tradicionales y meta-aprendizaje - para la tarea de PLN de clasificación de la polaridad mono- y transdominio. El análisis y conclusiones de ese trabajo muestra evidencias de que los grafos de conocimiento capturan el significado de una forma independiente del dominio. La siguiente parte de nuestra investigación aprovecha la capacidad de la red semántica multilingüe y se centra en tareas de Recuperación de Información (RI). Primero proponemos un modelo de análisis de similitud completamente basado en grafos de conocimiento para detección de plagio translingüe. A continuación, mejoramos ese modelo para cubrir palabras fuera de vocabulario y tiempos verbales, y lo aplicamos a las tareas translingües de recuperación de documentos, clasificación, y detección de plagio. Por último, estudiamos el uso de grafos de conocimiento para las tareas de PLN de respuesta de preguntas en comunidades, identificación del lenguaje nativo, y identificación de la variedad del lenguaje. Las contribuciones de esta tesis ponen de manifiesto el potencial de los grafos de conocimiento como representación transdominio y translingüe del texto y su significado en tareas de PLN y RI. Estas contribuciones han sido publicadas en diversas revistas y conferencias internacionales.
El Processament del Llenguatge Natural (PLN) és un camp de la informàtica, la intel·ligència artificial i la lingüística computacional centrat en les interaccions entre les màquines i el llenguatge dels humans. Un dels seus majors reptes implica capacitar les màquines per inferir el significat del llenguatge natural humà. Amb aquest propòsit, diverses representacions del significat i el context han estat proposades obtenint un rendiment competitiu. No obstant això, aquestes representacions encara tenen un marge de millora en escenaris trans-dominis i trans-llenguatges. En aquesta tesi estudiem l'ús de grafs de coneixement com una representació trans-domini i trans-llenguatge del text i el seu significat. Un graf de coneixement és un graf que expandeix i relaciona els conceptes originals pertanyents a un conjunt de paraules. Les seves propietats s'aconsegueixen gràcies a l'ús com a base de coneixement d'una xarxa semàntica multilingüe d'àmplia cobertura. Això permet tenir una cobertura de centenars de llenguatges i milions de conceptes generals i específics de l'ésser humà. Com a punt de partida de la nostra investigació emprem característiques basades en grafs de coneixement - juntament amb altres tradicionals i meta-aprenentatge - per a la tasca de PLN de classificació de la polaritat mono- i trans-domini. L'anàlisi i conclusions d'aquest treball mostra evidències que els grafs de coneixement capturen el significat d'una forma independent del domini. La següent part de la nostra investigació aprofita la capacitat\hyphenation{ca-pa-ci-tat} de la xarxa semàntica multilingüe i se centra en tasques de recuperació d'informació (RI). Primer proposem un model d'anàlisi de similitud completament basat en grafs de coneixement per a detecció de plagi trans-llenguatge. A continuació, vam millorar aquest model per cobrir paraules fora de vocabulari i temps verbals, i ho apliquem a les tasques trans-llenguatges de recuperació de documents, classificació, i detecció de plagi. Finalment, estudiem l'ús de grafs de coneixement per a les tasques de PLN de resposta de preguntes en comunitats, identificació del llenguatge natiu, i identificació de la varietat del llenguatge. Les contribucions d'aquesta tesi posen de manifest el potencial dels grafs de coneixement com a representació trans-domini i trans-llenguatge del text i el seu significat en tasques de PLN i RI. Aquestes contribucions han estat publicades en diverses revistes i conferències internacionals.
Franco Salvador, M. (2017). A Cross-domain and Cross-language Knowledge-based Representation of Text and its Meaning [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84285
TESIS
van, Luenen Anne Fleur. "Recognising Moral Foundations in Online Extremist Discourse : A Cross-Domain Classification Study". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-426921.
Texto completoLibros sobre el tema "Cross lingual text classification"
(Editor), Carol Peters, Fredric Gey (Editor), Julio Gonzalo (Editor), Henning Mueller (Editor), Gareh Jones (Editor), Michael Kluck (Editor), Bernardo Magnini (Editor) y Maarten de Rijke (Editor), eds. Accessing Multilingual Information Repositories: 6th Workshop of the Cross-Language Evaluation Forum, CLEF 2005, Vienna, Austria, 21-23 September, 2005, ... Papers (Lecture Notes in Computer Science). Springer, 2006.
Buscar texto completoWidiger, Thomas A., ed. The Oxford Handbook of Personality Disorders. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199735013.001.0001.
Texto completoCapítulos de libros sobre el tema "Cross lingual text classification"
Chen, Guan-Yuan y Von-Wun Soo. "Deep Domain Adaptation for Low-Resource Cross-Lingual Text Classification Tasks". En Communications in Computer and Information Science, 155–68. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6168-9_14.
Texto completoLi, Xiuhong, Zhe Li, Jiabao Sheng y Wushour Slamu. "Low-Resource Text Classification via Cross-Lingual Language Model Fine-Tuning". En Lecture Notes in Computer Science, 231–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63031-7_17.
Texto completoCancedda, Nicola y Jean-Michel Renders. "Cross-Lingual Text Mining". En Encyclopedia of Machine Learning and Data Mining, 299–306. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_189.
Texto completoBel, Nuria, Cornelis H. A. Koster y Marta Villegas. "Cross-Lingual Text Categorization". En Research and Advanced Technology for Digital Libraries, 126–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45175-4_13.
Texto completoShultz, Thomas R., Scott E. Fahlman, Susan Craw, Periklis Andritsos, Panayiotis Tsaparas, Ricardo Silva, Chris Drummond et al. "Cross-Lingual Text Mining". En Encyclopedia of Machine Learning, 243–49. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_189.
Texto completoTorres-Moreno, Juan-Manuel. "Multi and Cross-Lingual Summarization". En Automatic Text Summarization, 151–77. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119004752.ch5.
Texto completoLinhares Pontes, Elvys, Carlos-Emiliano González-Gallardo, Juan-Manuel Torres-Moreno y Stéphane Huet. "Cross-Lingual Speech-to-Text Summarization". En Cryptology and Network Security, 385–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98678-4_39.
Texto completoKhare, Prashant, Grégoire Burel, Diana Maynard y Harith Alani. "Cross-Lingual Classification of Crisis Data". En Lecture Notes in Computer Science, 617–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00671-6_36.
Texto completoPikuliak, Matúš y Marián Šimko. "Combining Cross-lingual and Cross-task Supervision for Zero-Shot Learning". En Text, Speech, and Dialogue, 162–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58323-1_17.
Texto completoDahiya, Anirudh, Manish Shrivastava y Dipti Misra Sharma. "Cross-Lingual Transfer for Hindi Discourse Relation Identification". En Text, Speech, and Dialogue, 240–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58323-1_26.
Texto completoActas de conferencias sobre el tema "Cross lingual text classification"
Xu, Ruochen y Yiming Yang. "Cross-lingual Distillation for Text Classification". En Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/p17-1130.
Texto completoGuo, Yuhong y Min Xiao. "Transductive Representation Learning for Cross-Lingual Text Classification". En 2012 IEEE 12th International Conference on Data Mining (ICDM). IEEE, 2012. http://dx.doi.org/10.1109/icdm.2012.29.
Texto completoMoreo, Alejandro, Andrea Pedrotti y Fabrizio Sebastiani. "Heterogeneous document embeddings for cross-lingual text classification". En SAC '21: The 36th ACM/SIGAPP Symposium on Applied Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3412841.3442093.
Texto completoFaqeeh, Mosab, Nawaf Abdulla, Mahmoud Al-Ayyoub, Yaser Jararweh y Muhannad Quwaider. "Cross-Lingual Short-Text Document Classification for Facebook Comments". En 2014 2nd International Conference on Future Internet of Things and Cloud (FiCloud). IEEE, 2014. http://dx.doi.org/10.1109/ficloud.2014.99.
Texto completoAndrade, Daniel, Kunihiko Sadamasa, Akihiro Tamura y Masaaki Tsuchida. "Cross-lingual Text Classification Using Topic-Dependent Word Probabilities". En Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.3115/v1/n15-1170.
Texto completoWang, Ziyun, Xuan Liu, Peiji Yang, Shixing Liu y Zhisheng Wang. "Cross-lingual Text Classification with Heterogeneous Graph Neural Network". En Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.acl-short.78.
Texto completoXu, Ruochen, Yiming Yang, Hanxiao Liu y Andrew Hsi. "Cross-lingual Text Classification via Model Translation with Limited Dictionaries". En CIKM'16: ACM Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2983323.2983732.
Texto completoNi, Xiaochuan, Jian-Tao Sun, Jian Hu y Zheng Chen. "Cross lingual text classification by mining multilingual topics from wikipedia". En the fourth ACM international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1935826.1935887.
Texto completoMoh, Teng-Sheng y Zhang Zhang. "Cross-lingual text classification with model translation and document translation". En the 50th Annual Southeast Regional Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2184512.2184530.
Texto completoDong, Xin y Gerard de Melo. "A Robust Self-Learning Framework for Cross-Lingual Text Classification". En Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-1658.
Texto completo