Literatura académica sobre el tema "DC Voltage Control)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "DC Voltage Control)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "DC Voltage Control)"
Gadhethariya, Fenil V. y Melvin Z. Thomas. "Analysis of Voltage Droop Control of Dc Micro-Grid". Indian Journal of Applied Research 4, n.º 5 (1 de octubre de 2011): 235–38. http://dx.doi.org/10.15373/2249555x/may2014/69.
Texto completoHameed, Waleed Ishaq, Baha Aldeen Sawadi y Ali Muayed. "Voltage Tracking Control of DC- DC Boost Converter Using Fuzzy Neural Network". International Journal of Power Electronics and Drive Systems (IJPEDS) 9, n.º 4 (1 de diciembre de 2018): 1657. http://dx.doi.org/10.11591/ijpeds.v9.i4.pp1657-1665.
Texto completoMa, Ming, Gang Peng, Jun Wei Hao, Jing Jing Lu, Chang Yuan y Xiang Ning Xiao. "The Control Strategy of Establishing the Voltage of DC Side in MMC". Advanced Materials Research 756-759 (septiembre de 2013): 292–97. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.292.
Texto completoJiao, Junsheng. "Sliding Mode Control for Stabilizing of Boost Converter in a Solid Oxide Fuel Cell". Cybernetics and Information Technologies 13, n.º 4 (1 de diciembre de 2013): 139–47. http://dx.doi.org/10.2478/cait-2013-0060.
Texto completoYang, Xi Yun, Li Xia Li y Ya Min Zhang. "Control for Dc-Bus Voltage Using Grid Voltage Feed-Forward and Crowbar Circuit". Applied Mechanics and Materials 448-453 (octubre de 2013): 1727–31. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.1727.
Texto completoZhang, Yun Wu, Jing Zhu y Wei Feng Sun. "A Novel UVLO Circuit with Current-Mode Control Technique for DC-DC Converters". Advanced Materials Research 765-767 (septiembre de 2013): 2534–37. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2534.
Texto completoMidhat, Bashar F. "Discontinuous Control and Stability Analysis of Step-Down DC-DC Voltage Converters". Engineering and Technology Journal 38, n.º 3A (30 de marzo de 2020): 446–56. http://dx.doi.org/10.30684/etj.v38i3a.567.
Texto completoBarros, J. Dionísio, Luis Rocha y J. Fernando Silva. "Backstepping Predictive Control of Hybrid Microgrids Interconnected by Neutral Point Clamped Converters". Electronics 10, n.º 10 (19 de mayo de 2021): 1210. http://dx.doi.org/10.3390/electronics10101210.
Texto completoChouya, Ahmed y Kada Boureguig. "Linear Observer Based Linearizing Control of DC-DC Buck Converter". WSEAS TRANSACTIONS ON POWER SYSTEMS 16 (17 de marzo de 2021): 52–60. http://dx.doi.org/10.37394/232016.2021.16.5.
Texto completoCao, Xudong, Shaozhe Zhou, Jingze Li y Shaohua Zhang. "A DC Voltage Control Strategy for Active Power Filter". Open Electrical & Electronic Engineering Journal 10, n.º 1 (30 de diciembre de 2016): 166–80. http://dx.doi.org/10.2174/1874129001610010166.
Texto completoTesis sobre el tema "DC Voltage Control)"
Mai, Yuan Yen. "Current-mode DC-DC buck converter with current-voltage feedforward control /". View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?ECED%202006%20MAI.
Texto completoAlsseid, Aleisawee M. "Dynamics and control of high voltage DC grids". Thesis, University of Aberdeen, 2012. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=189675.
Texto completoMao, Hong. "Topology and control investigation for low-voltage high-current isolated DC-DC converters". Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/RTD/id/4405.
Texto completoHigh conversion efficiency and fast transient response at high switching frequency are the two main challenges for low-voltage high-current DC-DC converters, which are the motivations of the dissertation work. To reduce the switching power loss, soft switching is a desirable technique to keep power loss under control at high switching frequencies. A Duty-Cycle-Shift (DCS) concept is proposed for half-bridge DC-DC converters to reduce switching loss. The concept of this new control scheme is shifting one of the two symmetric PWM driving signals close to the other, such that ZVS can be achieved for the lagging switch due to the shortened resonant interval.
Ph.D.
Doctorate;
Department of Electrical and Computer Engineering
Engineering and Computer Science
Electrical and Computer Engineering
216 p.
xviii, 216 leaves, bound : ill. ; 28 cm.
Salomonsson, Daniel. "Modeling, Control and Protection of Low-Voltage DC Microgrids". Doctoral thesis, Stockholm : Elektriska energisystem, Electric Power Systems, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4666.
Texto completoJimenez, Carrizosa Miguel. "Hierarchical control scheme for multi-terminal high voltage direct current power networks". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112039/document.
Texto completoThis thesis focuses on the hierarchical control for a multi-terminal high voltage direct current (MT-HVDC) grid suitable for the integration of large scale renewable energy sources. The proposed control scheme is composed of 4 layers, from the low local control at the power converters in the time scale of units of ms; through distributed droop control (primary control) applied in several terminals in the scale of unit of seconds; and then to communication based Model Predictive Control (MPC) that assures the load flow and the steady state voltage/power plan for the whole system, manage large scale storage and include weather forecast (secondary control); finally reaching the higher level controller that is mostly based on optimization techniques, where economic aspects are considered in the same time as longer timespan weather forecast (tertiary control).Concerning the converters' level, special emphasis is placed on DC/DC bidirectional converters. In this thesis, three different topologies are studied in depth: two phases dual active bridge (DAB), the three phases DAB, and the use of the Modular Multilevel Converter (MMC) technology as DC/DC converter. For each topology a specific non-linear control is presented and discussed. In addition, the DC/DC converter can provide other important services as its use as a direct current circuit breaker (DC-CB). Several operation strategies are studied for these topologies used as DC-CB.With respect to primary control, which is the responsible to maintain the DC voltage control of the grid, we have studied several control philosophies: master/slave, voltage margin control and droop control. Finally we have chosen to use droop control, among other reasons, because the communication between nodes is not required. Relative to the secondary control, its main goal is to schedule power transfer between the network nodes providing voltage and power references to local and primary controllers, providing steady state response to disturbances and managing power reserves. In this part we have proposed a new approach to solve the power flow problem (non-linear equations) based on the contraction mapping theorem, which gives the possibility to use more than one bus for the power balance (slack bus) instead of the classic approach based on the Newton-Raphson method. Secondary control plays a very important role in practical applications, in particular when including time varying power sources, as renewable ones. In such cases, it is interesting to consider storage devices in order to improve the stability and the efficiency of the whole system. Due to the sample time of secondary control is on the order of minutes, it is also possible to consider different kinds of forecast (weather, load,..) and to achieve additional control objectives, based on managing storage reserves. All these characteristics encourage the use of a model predictive control (MPC) approach to design this task. In this context, several possibilities of optimization objective were considered, like to minimize transmission losses or to avoid power network congestions.The main task of tertiary control is to manage the load flow of the whole HVDC grid in order to achieve economical optimization. This control level provides power references to the secondary controller. In this thesis we were able to maximize the economic profit of the system by acting on the spot market, and by optimizing the use of storage devices. In this level it is again used the MPC approach.With the aim of implementing the hierarchical control philosophy explained in this thesis, we have built an experimental test bench. This platform has 4 terminals interconnected via a DC grid, and connected to the main AC grid through VSC power converters. This DC grid can work at a maximum of 400 V, and with a maximum allowed current of 15 A
Mwaniki, Fredrick Mukundi. "High voltage boost DC-Dc converter suitable for variable voltage sources and high power photovoltaic application". Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/37320.
Texto completoDissertation (MEng)--University of Pretoria, 2013.
gm2014
Electrical, Electronic and Computer Engineering
Unrestricted
Luo, Feng. "Integrated Switching DC-DC Converters with Hybrid Control Schemes". Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/193904.
Texto completoDeng, Na. "DC-DC converters for current flow control, voltage conversion and integration of energy storage systems in DC grids". Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6326/.
Texto completoZheng, Chen Pei. "Capacitive-coupling grid-connected inverter with adaptive dc-link voltage control". Thesis, University of Macau, 2015. http://umaclib3.umac.mo/record=b3335728.
Texto completoNazari, Mohammad. "Control of DC voltage in Multi-Terminal HVDC Transmission (MTDC) Systems". Licentiate thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-147551.
Texto completoQC 20140911
Libros sobre el tema "DC Voltage Control)"
Stergiopoulos, Fotis. Analysis and control design of the three-phase voltage-sourced AC/DC PWM converter. Birmingham: University of Birmingham, 1999.
Buscar texto completoAl-Naamany, Ahmed M. K. Application and development of direct voltage vector control theory and a brushless DC motor. Manchester: UMISt, 1995.
Buscar texto completoSpecification, measurement, and control of electrical switching transients. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.
Buscar texto completoVaez-Zadeh, Sadegh. Vector Control. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0003.
Texto completoWu, Rusong. Analysis and control of pulse-width modulated AC to DC voltage source converters. 1989.
Buscar texto completoCapítulos de libros sobre el tema "DC Voltage Control)"
Buxbaum, Arne, Klaus Schierau, Alan Straughen y R. Bonert. "Voltage Control of Converter Drives". En Design of Control Systems for DC Drives, 179–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84006-7_25.
Texto completoChen, Cheng-Yi, Jung-Yi Shiau, Chien-Yuan Liu, Kuo-Jui Wu y Marvin H. Cheng. "Sliding Mode Voltage Control of the DC to DC Buck Converters". En Lecture Notes in Electrical Engineering, 205–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04573-3_26.
Texto completoÖlçer, Ercan, Bülent Karagöz, Hasan Dinçer, Engin Özdemir y Ercüment Karakaş. "Fuzzy logic control of high voltage DC transmission system". En Computational Intelligence Theory and Applications, 492–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-62868-1_142.
Texto completoSha, Deshang y Guo Xu. "Unified Boundary Trapezoidal Modulation Control for Dual Active Bridge DC–DC Converter". En High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain, 25–46. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0259-6_2.
Texto completoSha, Deshang y Guo Xu. "A Current-Fed Dual Active Bridge DC–DC Converter Using Dual PWM Plus Double Phase Shifted Control". En High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain, 149–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0259-6_7.
Texto completoHamouda, Noureddine y Badreddine Babes. "A DC/DC Buck Converter Voltage Regulation Using an Adaptive Fuzzy Fast Terminal Synergetic Control". En Lecture Notes in Electrical Engineering, 711–21. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6403-1_48.
Texto completoBarara, Mohamed, M. R. Barakat, Nabil Elhaj y Ghania Belkacem. "Robust Voltage Control for Four-Phase Interleaved DC-DC Boost Converter for Electric Vehicle Application". En Digital Technologies and Applications, 1409–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73882-2_128.
Texto completoSha, Deshang y Guo Xu. "A ZVS Bidirectional Three-Level DC–DC Converter with Direct Current Slew Rate Control of Leakage Inductance Current". En High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain, 199–222. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0259-6_9.
Texto completoJia, Ke, Jinfeng Chen y Bin Yang. "DC Micro-grid Voltage Control Strategy Based on Discrete Consensus Algorithm". En Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Protection and Control, 601–11. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9779-0_49.
Texto completoYuan, Zhichang, Licheng Li, Yongjun Liu y Shukai Xu. "Research on HVDC Model in Transient Voltage Stability Analysis of AC/DC Transmission Systems". En Informatics in Control, Automation and Robotics, 485–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25992-0_67.
Texto completoActas de conferencias sobre el tema "DC Voltage Control)"
Moreira, Carlos y Marcelino Santos. "Implicit current DC-DC Digital Voltage-Mode Control". En 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE). IEEE, 2014. http://dx.doi.org/10.1109/isie.2014.6864815.
Texto completoSamsudin, Nor Azura, Shahid Iqbal y Soib Taib. "LLC resonant high-voltage DC-DC converter with voltage multiplier rectifier". En 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, 2015. http://dx.doi.org/10.1109/iccsce.2015.7482238.
Texto completoAnto, Anu y Anu Sunny. "High voltage gain DC-DC converter for DC microgrid". En 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE, 2017. http://dx.doi.org/10.1109/icicict1.2017.8342570.
Texto completoDudrik, Jaroslav y Vladimir Ruscin. "Voltage fed zero-voltage zero-current switching PWM DC-DC converter". En 2008 13th International Power Electronics and Motion Control Conference (EPE/PEMC 2008). IEEE, 2008. http://dx.doi.org/10.1109/epepemc.2008.4635281.
Texto completoXue, Danhong, Jinjun Liu y Zeng Liu. "DC Terminal Impedance Model of Voltage Source Converter With DC Voltage Control". En 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). IEEE, 2018. http://dx.doi.org/10.1109/peac.2018.8590458.
Texto completoIlman, Sofyan M., Andriazis Dahono, Muhammad Aji K. Prihambodo, Bintang Antares Y. Putra, Arwindra Rizqiawan y Pekik A. Dahono. "Analysis and Control of Modified DC-DC Cuk Converter". En 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS). IEEE, 2019. http://dx.doi.org/10.1109/ichveps47643.2019.9011054.
Texto completoAlghamdi, Baheej, Katharina Wieninger y Claudio A. Canizares. "Distributed Voltage Control of DC Microgrids". En 2020 AEIT International Annual Conference (AEIT). IEEE, 2020. http://dx.doi.org/10.23919/aeit50178.2020.9241184.
Texto completoPastor, Marek, Jaroslava Zilkova y Peter Girovsky. "Output Voltage Control of Soft-Switching DC-DC Converter". En 2019 International Conference on Electrical Drives & Power Electronics (EDPE). IEEE, 2019. http://dx.doi.org/10.1109/edpe.2019.8883883.
Texto completoXiaotian Liu, Guohua Zhou, Mingrui Leng y Shuhan Zhou. "Digital average voltage control for switching DC-DC converters". En 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC 2016 - ECCE Asia). IEEE, 2016. http://dx.doi.org/10.1109/ipemc.2016.7512451.
Texto completoPashaei, Afshin, M. T. Haque y Sara Alizadeh. "Control of Output Voltage of Simple DC-DC Converters". En 2006 IEEE Vehicle Power and Propulsion Conference. IEEE, 2006. http://dx.doi.org/10.1109/vppc.2006.364314.
Texto completoInformes sobre el tema "DC Voltage Control)"
Drive modelling and performance estimation of IPM motor using SVPWM and Six-step Control Strategy. SAE International, abril de 2021. http://dx.doi.org/10.4271/2021-01-0775.
Texto completo