Literatura académica sobre el tema "Équations différentielles partielles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Équations différentielles partielles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Équations différentielles partielles"
Zella, L., A. Kettab y G. Chasseriaux. "Modélisation des réseaux de microirrigation". Revue des sciences de l'eau 17, n.º 1 (12 de abril de 2005): 49–68. http://dx.doi.org/10.7202/705522ar.
Texto completoAppell, Jürgen y Espedito de Pascale. "Theoremes de Bornage Pour L'Operateur de Nemyckii Dans Les Espaces Ideaux". Canadian Journal of Mathematics 38, n.º 6 (1 de diciembre de 1986): 1338–55. http://dx.doi.org/10.4153/cjm-1986-068-3.
Texto completoBuckdahn, Rainer, Marc Quincampoix y Aurel Rascanu. "Propriété de viabilité pour des équations différentielles stochastiques rétrogrades et applications à des équations aux dérivées partielles". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, n.º 11 (diciembre de 1997): 1159–62. http://dx.doi.org/10.1016/s0764-4442(97)83546-x.
Texto completoVan den Berg, Imme y Elsa Amaro. "Nearly recombining processes and the calculation of expectations". Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 9, 2007 Conference in... (5 de septiembre de 2008). http://dx.doi.org/10.46298/arima.1907.
Texto completoTesis sobre el tema "Équations différentielles partielles"
Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales". Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.
Texto completoThere are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
Perez, Sylvie. "Identification et homogénéisation de paramètres dans des équations aux dérivées partielles". Pau, 1999. http://www.theses.fr/1999PAUU3016.
Texto completoSow, Ahmadou Bamba. "Approche probabiliste et homogénéisation d'équations aux dérivées partielles". Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11046.
Texto completoPopier, Alexandre François Roland. "Equations différentielles stochastiques rétrogrades avec condition finale singulière". Aix-Marseille 1, 2004. http://www.theses.fr/2004AIX11037.
Texto completoRivière, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation". Paris 5, 2005. http://www.theses.fr/2005PA05S028.
Texto completoThis thesis deals with the forward backward stochastic differential equations, in particular those with a coefficient of progressive diffusion which depends on all unknowns of the problem. We propose an original way to get onto this subject, letting us to reobtain some classical results of existence and uniqueness in the spirit of Pardoux-Tang and Yong's results, and to find a probabilistic representation of a new class of parabolic PDE, in which derivation coefficient of order 2 depends on the gradient of the solution. We also propose an iterative discretization scheme. We prove its convergence and give an evaluation of the error on a particular example
Riviere, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation". Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00011231.
Texto completoXu, Mingyu. "Contributions à l'étude des équations différentielles stochastiques rétrogrades fléchies et applications aux équations et dérivées partielles". Le Mans, 2005. http://cyberdoc.univ-lemans.fr/theses/2005/2005LEMA1004.pdf.
Texto completoIn the first chapter, we consider the reflected backward stochastic differential equation (BSDEsin short) with one or two right continuous and left limited (RCLL in short) barriers. Using the Picarditeration method, we obtained the existence and uniqueness of the solution of the reflected BSDEwith two RCLL barriers. Then we use the penalization method to the case of one RCLL barrier. Considering the solutions (Y n,Zn,Kn) of penalized equations as solutions of reflected BSDEs,we prove that the limit (Y,Z,K) is the solution of equation, by properties of Snell envelope andmonotonic limit theorem (Peng S. , 1999). In the case of equation with two RCLL barriers, by theanalogue method, we prove the limit (Y,Z,K) of penalized equation is the solution of problem,by the representation of solutions via Dynkin game. Here we need a generalized monotonic limittheorem, which permit us to pass the limit for penalized equations. In a second work, we have generalized this type of result to the case where barriers are just inL2, by the method of penalization and the theory of g-supersolution. In the second chapter, we consider the reflected BSDEs with one continuous barrier, associatedto (_, f,L), when _ 2 L2(FT ), f(t, !, y, z) is continuous, satisfies monotonic and general increasingconditions on y, and Lipschitz condition on z, and when the barrier (Lt)0_t_T is a progressivelymeasurable continuous process, which verifies certain integrability condition. We have also notable prove the existence and uniqueness of solution in L2, for this reflectedequation with determinist terminal time. The proof of existence is effected by four steps. The firststep consists to prove the result under the boundness condition of _, f(t, 0) et L+. The second step(the most delicate) consists to relax the boundness condition of L+ ; the following two step permitus to obtain the general result, relaxing the boundness condition on _ and f(t, 0). The comparisontheorems play important roles, which help us to pass the limit in the equations. Then we study thecase when the terminal time is a stopping time. The existence and uniqueness of the solution arealso proved. In the third chapter, we have studied the reflected BSDEs with one barrier, whose generator fsatisfies the monotonic and general increasing condition on y, and quadratic and linear condition onz, when the barrier L is uniformly bounded. We prove the existence of a solution by approximation,under these conditions. We also find a necessary and sufficient condition for the case f(t, !, y, z) =|z|2, and construct its solution explicitly. For the case f(t, !, y, z) = |z|p, p 2 (1, 2), we prove asufficient condition. In the forth chapter, we treat the reflected BSDE with two barrier, when f satisfies the mono-tonic, continuous and general increasing conditions on y, and Lipschitz condition on z, like in thesecond chapter. For the barriers, we suppose that L and U are continuous, L < U on [0, T], andMokoboski condition. We prove the existence and uniqueness of the solution for this equation. In the fifth chapter, we study the applications of BSDE. A important application of BSDEconsists to give a probabilistic interpretation (nonlinear Feynman-Kac formula) pour solutions ofsemilinear parabolic partial differential equations. We apply the approximation method and resultsof BSDE in (Pardoux, 1999) for semiliear PDE in Sobolev sense, by the solution of correspondingBSDEs. In following, we use the notion of PDE with obstacle (Bally et al. , 2004). By the sameapproximation in second chapter, we prove the probabilistic interpretation of the solution (u, _) ofPDE by the solution (Y,Z,K) of reflected BSDE. Here, we suppose that the obstacle h is polynomialincreasing. We prove a theorem which permits us to replace the regular test function by the randomtest function under monotonic and general increasing conditions, and by this theorem we obtainthe uniqueness of the solution of PDE from the solution of BSDE or reflected BSDE. Finally, in the last chapter, we study the numerical solutions of BSDEs and present somesimulation results, and we apply this technique to the calculation of American option
Royer, Manuela. "Équations différentielles stochastiques rétrogrades et martingales non linéaires". Rennes 1, 2003. http://www.theses.fr/2003REN1A018.
Texto completoSellami-Omrani, Sonia. "Equations aux dérivées partielles non-linéaires et ondes progressives". Paris 6, 1993. http://www.theses.fr/1993PA066641.
Texto completoGarnier, Jimmy. "Analyse mathématique de modèles de dynamique des populations : équations aux dérivées partielles paraboliques et équations intégro-différentielles". Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00755296.
Texto completoLibros sobre el tema "Équations différentielles partielles"
Kowgier, Henryk. Równania różniczkowe zwyczajne i cząstkowe w ekonomii. Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, 2020.
Buscar texto completoE, Schiesser W., ed. Ordinary and partial differential equation routines in C, C++, Fortran, Java, Maple, and MATLAB. Boca Raton: Chapman & Hall/CRC, 2004.
Buscar texto completo1961-, Dalang Robert C., Khoshnevisan Davar y Rassoul-Agha Firas, eds. A minicourse on stochastic partial differential equations. Berlin: Springer, 2009.
Buscar texto completo1961-, Dalang Robert C., Khoshnevisan Davar y Rassoul-Agha Firas, eds. A minicourse on stochastic partial differential equations. Berlin: Springer, 2009.
Buscar texto completo1961-, Dalang Robert C., Khoshnevisan Davar y Rassoul-Agha Firas, eds. A minicourse on stochastic partial differential equations. Berlin: Springer, 2009.
Buscar texto completoMolk, Jules. Encyclopédie des sciences mathématiques pures et appliquées... Sceaux: J. Gabay, 1991.
Buscar texto completoBert-Wolfgang, Schulze y Sternin B. I͡U︡, eds. Quantization methods in differential equations. London: Taylor & Francis, 2002.
Buscar texto completoA, Gavosto Estela y Peloso Marco M, eds. Partial differential equations and complex analysis. Boca Raton, FL: CRC Press, 1992.
Buscar texto completoFiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Berlin: Springer-Verlag, 1988.
Buscar texto completoLinares, Felipe. Introduction to nonlinear dispersive equations. New York: Springer, 2015.
Buscar texto completoCapítulos de libros sobre el tema "Équations différentielles partielles"
"Équations Aux Dérivées Partielles". En Équations différentielles, 275–343. Les Presses de l’Université de Montréal, 2016. http://dx.doi.org/10.1515/9782760636194-009.
Texto completo"Équations Aux Dérivées Partielles". En Exercices Corrigés D’Équations Différentielles, 198–243. Les Presses de l’Université de Montréal, 2012. http://dx.doi.org/10.1515/9782760627697-008.
Texto completo"VII Équations aux dérivées partielles". En Analyse complexe et équations différentielles, 163–96. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6-008.
Texto completo"VIII Équations aux dérivées partielles". En Analyse complexe et équations différentielles, 207–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3-009.
Texto completo"VII Équations aux dérivées partielles". En Analyse complexe et équations différentielles, 163–96. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6.c008.
Texto completo"VIII Équations aux dérivées partielles". En Analyse complexe et équations différentielles, 207–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3.c009.
Texto completo"9. Opérateurs pseudo-différentiels". En Analyse et équations aux dérivées partielles, 209–22. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3140-1.c010.
Texto completo