Literatura académica sobre el tema "Équations différentielles partielles"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Équations différentielles partielles".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Équations différentielles partielles"

1

Zella, L., A. Kettab y G. Chasseriaux. "Modélisation des réseaux de microirrigation". Revue des sciences de l'eau 17, n.º 1 (12 de abril de 2005): 49–68. http://dx.doi.org/10.7202/705522ar.

Texto completo
Resumen
La microirrigation est une technique dont l'uniformité de distribution d'eau par les goutteurs est très sensible aux faibles variations de pression. Pour maîtriser ces variations, avec davantage de précision, le présent travail est basé sur une analyse hydraulique approfondie de l'écoulement aboutissant à des équations différentielles aux dérivées partielles dont la pression et la vitesse de l'eau sont des inconnues. Ces équations non linéaires sont résolues en utilisant la méthode d'intégration Runge-Kutta d'ordre quatre. Les modèles développés dans la présente étude permettent de simuler la dynamique de l'eau dans la rampe et dans le réseau et sont utilisés pour déterminer le dimensionnement optimal du réseau. Les résultats obtenus corroborent ceux publiés par d'autres auteurs ayant utilisé la méthode des volumes de contrôle ou la méthode des éléments finis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Appell, Jürgen y Espedito de Pascale. "Theoremes de Bornage Pour L'Operateur de Nemyckii Dans Les Espaces Ideaux". Canadian Journal of Mathematics 38, n.º 6 (1 de diciembre de 1986): 1338–55. http://dx.doi.org/10.4153/cjm-1986-068-3.

Texto completo
Resumen
Soit Ω un domaine borné de RN, et soit f:Ω × R → R une fonction satisfaisant à la condition de Carathéodory (i.e., f(s, ·) est continue pour presque tout s ∊ Ω, et f (·, u) est mesurable pour tout u ∊ R). Considérons l'opérateur de la superposition(1.1)(encore appelé opérateur de Nemyckii), engendré par la fonction f. Cet opérateur joue un grand rôle dans la théorie des équations intégrales, différentielles (ordinaires et aux dérivées partielles), et fonctionnelles-différentielles, où il est important de connaître les propriétés analytiques et topologiques de F dans certains espaces de fonctions mesurables, intégrables, continues, différentiables, analytiques etc., les propriétés les plus importantes étant : théorèmes de transfert, de continuité, de bornage, et de compacité. Par exemple, on connaît de nombreux résultats sur l'opérateur (1) dans les espaces de Lebesgue L (voir [10] pour une présentation assez complète); en effet, si l'opérateur (1) envoie une partie de L , d'intérieur non vide, dans L, alors, il est automatiquement continu et borné sur chaque boule.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Buckdahn, Rainer, Marc Quincampoix y Aurel Rascanu. "Propriété de viabilité pour des équations différentielles stochastiques rétrogrades et applications à des équations aux dérivées partielles". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, n.º 11 (diciembre de 1997): 1159–62. http://dx.doi.org/10.1016/s0764-4442(97)83546-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Van den Berg, Imme y Elsa Amaro. "Nearly recombining processes and the calculation of expectations". Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 9, 2007 Conference in... (5 de septiembre de 2008). http://dx.doi.org/10.46298/arima.1907.

Texto completo
Resumen
International audience In the context of Nonstandard Analysis, we study stochastic difference equations with infinitesimal time-steps. In particular we give a necessary and sufficient condition for a solution to be nearly-equivalent to a recombining stochastic process. The characterization is based upon a partial differential equation involving the trend and the conditional variance of the original process. An analogy with Ito’s Lemma is pointed out. As an application we obtain a method for approximation of expectations, in terms of two ordinary differential equations, also involving the trend and the conditional variance of the original process, and of Gaussian integrals. Dans le contexte de l’Analyse Nonstandard, nous étudions des équations différentielles stochastiques avec des pas infiniment petits. En particulier, nous formulons une condition nécessaire et suffisante pourqu’une solution soit presque-équivalente à un processus stochastique recombinant. La caractérisation est donnée par une équation aux dérivées partielles de la tendance et de la variance conditionnelle du processus de départ. Nous indiquons une analogie avec le Lemme d’Ito. Nous appliquons cette caractérisation au problème de la détermination d’espérances pour le processus de départ. En fait, on obtient une approximation infinitésimale en resolvant deux équations différentielles ordinaires, également de la tendance et de la variance conditionnelle de ce processus, et en calculant une intégrale de Gauss.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Équations différentielles partielles"

1

Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales". Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.

Texto completo
Resumen
Cette thèse est composée de trois parties. Dans la première nous montrons l'existence et l'unicité de la solution continue et à croissance polynomiale, au sensviscosité, du système non linéaire de m équations variationnelles de type intégro-différentiel à obstacles unilatéraux interconnectés. Ce système est lié au problème du switching optimal stochastique lorsque le bruit est dirigé par un processus de Lévy. Un cas particulier du système correspond en effet à l’équation d’Hamilton-Jacobi-Bellman associé au problème du switching et la solution de ce système n’est rien d’autre que la fonction valeur du problème. Ensuite, nous étudions un système d’équations intégro-différentielles à obstacles bilatéraux interconnectés. Nous montrons l’existence et l’unicité des solutions continus à croissance polynomiale, au sens viscosité, des systèmes min-max et max-min. La démarche conjugue les systèmes d’EDSR réfléchies ainsi que la méthode de Perron. Dans la dernière partie nous montrons l’égalité des solutions des systèmes max-min et min-max d’EDP lorsque le bruit est uniquement de type diffusion. Nous montrons que si les coûts de switching sont assez réguliers alors ces solutions coïncident. De plus elles sont caractérisées comme fonction valeur du jeu de switching de somme nulle
There are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Perez, Sylvie. "Identification et homogénéisation de paramètres dans des équations aux dérivées partielles". Pau, 1999. http://www.theses.fr/1999PAUU3016.

Texto completo
Resumen
Cette thèse est composée de deux parties. La première est consacrée à l'identification de paramètres à partir de mesures bruitées. On propose une formulation originale du problème qui contraint l'écart quadratique de la solution à la mesure à demeurer inférieur à un niveau de bruit toléré. La minimisation porte alors, sous cette contrainte et sous celle d'équilibre, sur un terme régularisant dont on discute le choix. D'une part, on introduit une norme classique pour reconstruire des paramètres réguliers. On obtient alors un résultat d'existence et des conditions d'optimalité à partir de l'expression du Lagrangien. Une discrétisation de type éléments finis est proposée et des tests numériques ainsi qu'une étude de l'erreur sont présentés. D'autre part, on utilise la variation totale pour identifier des coefficients discontinus. Au cours de l'étude théorique de l'approximation numérique, on souligne l'importance de la décomposition du domaine lorsque l'on approche des fonctions à variation bornée par des fonctions constantes par morceaux. Des tests numériques montrent une bonne localisation des discontinuités par la solution estimée. Dans la seconde partie, on s'intéresse à la résolution d'équations elliptiques comprenant des coefficients hétérogènes, sur des maillages raisonnables, non gouvernés par les variations géométriques des paramètres. En 1D, les problèmes d'homogénéisation de ce type peuvent être considérés comme des problèmes d'identification. Malheureusement en 2D ou 3D les résultats dépendent des conditions expérimentales. On présente ici une nouvelle méthode basée sur une formulation mixte primale-duale et qui consiste à imposer la continuité des flux le long des lignes de discontinuité du paramètre.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sow, Ahmadou Bamba. "Approche probabiliste et homogénéisation d'équations aux dérivées partielles". Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11046.

Texto completo
Resumen
Les travaux exposés dans cette thèse entrent d'une manière générale dans l'étude des équations aux dérivées partielles aux moyens d'outils stochastiques. Dans une première partie, nous résolvons un système d'équations différentielles stochastiques progressives rétrogrades couplé avec un processus de Poisson puis nous en déduisons une résolution d'un système d'EDP parabolique quasilinéaires non dégénéré avec un opérateur du second ordre différent d'une ligne à l'autre du système. Ce travail utilise des estimations analytiques de la norme du gradient de solution d'EDP et nécessite l'uniforme ellipticité comme hypothèse principale. Dans une seconde partie, nous établissons des résultats d'homogénéisation d'EDP semilinéaires en milieu périodique. Nous montrons essentiellement que les résultats précédemment établis avec condition d'uniforme ellipticité de la diffusion demeurent si celle-ci est substituée par une condition plus faible dite de Doeblin. A cette fin nous utilisons les solutions de l'équation de Poisson en un sens généralisé, celles-ci nous permettant au moyen d'une régularisation adéquate d'user de la formule classique d'Ito pour identifier les coefficients de l'EDP limite. Nous exploitons essentiellement des techniques de convergence faible et de théorie ergodique
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Popier, Alexandre François Roland. "Equations différentielles stochastiques rétrogrades avec condition finale singulière". Aix-Marseille 1, 2004. http://www.theses.fr/2004AIX11037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Rivière, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation". Paris 5, 2005. http://www.theses.fr/2005PA05S028.

Texto completo
Resumen
Ce travail de thèse porte sur les équations différentielles stochastiques progressives rétrogrades, en particulier celles dont le coefficient de diffusion progressif dépend de toutes les inconnues. Nous proposons une manière originale d'aborder le problème, nous permettant de retrouver des résultats classiques d'existence et d'unicité de Pardoux-Tang ou Yong. Nous obtenons de surcroît, en adoptant l'approche Pardoux-Tang en solutions de viscosité, des représentations probabilistes de toute une nouvelle classe d'EDP paraboliques dont les coefficients de dérivation d'ordre 2 dépendent du gradient de la solution. Nous proposons également un schéma de discrétisation itératif dont nous prouvons la convergence et évaluons l'erreur sur un exemple bien particulier
This thesis deals with the forward backward stochastic differential equations, in particular those with a coefficient of progressive diffusion which depends on all unknowns of the problem. We propose an original way to get onto this subject, letting us to reobtain some classical results of existence and uniqueness in the spirit of Pardoux-Tang and Yong's results, and to find a probabilistic representation of a new class of parabolic PDE, in which derivation coefficient of order 2 depends on the gradient of the solution. We also propose an iterative discretization scheme. We prove its convergence and give an evaluation of the error on a particular example
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Riviere, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation". Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00011231.

Texto completo
Resumen
Ce travail de thèse porte sur les équations différentielles stochastiques progressives rétrogrades, en particulier celles dont le coefficient de diffusion progressif dépend de toutes les inconnues. Nous proposons une manière originale d'aborder le problème, nous permettant de retrouver des résultats classiques d'existence et d'unicité de Pardoux-Tang ou Yong. Nous obtenons de surcroît, en adoptant l'approche Pardoux-Tang en solutions de viscosité, des représentations probabilistes de toute une nouvelle classe d'EDP paraboliques dont les coefficients de dérivation d'ordre 2 dépendent du gradient de la solution. Nous proposons également un schéma de discrétisation itératif dont nous prouvons la convergence et évaluons l'erreur sur un exemple bien particulier.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Xu, Mingyu. "Contributions à l'étude des équations différentielles stochastiques rétrogrades fléchies et applications aux équations et dérivées partielles". Le Mans, 2005. http://cyberdoc.univ-lemans.fr/theses/2005/2005LEMA1004.pdf.

Texto completo
Resumen
Dans un premier chapitre, nous avons considéré les équation différentielles stochastiques rétrogrades (EDSRs) réfléchies avec une ou deux barrières continues à droite et limitées à gauche (càdlàg). En utilisant une méthode d'itération de Picard nous avons obtenu l'existence et l'unicité de lasolution de l'EDSR à deux barrières. Nous avons ensuite utilisé une méthode de pénalisation dans le cas d'une barrière. En considérant les solutions (Y n,Zn,Kn) des équations pénalisées comme solutions d'EDSRs réfléchies, on montre que la limite (Y,Z,K) est la solution du problème, parles propriétés de l'enveloppe de Snell et le théorème ”limit monotonic” de Peng (Peng, S. , 1999). Dans le cas de l'équation avec deux barrières càdlàgs, de manière analogue, une généralisation du”limit monotonic” théorème permet de passer à la limite dans les équations pénalisées. Ensuite, la représentation des solutions via les Jeux de Dynkin nous permet d'obtenir que la limite (Y,Z,K)est alors la solution du problème. Dans un second travail, nous avons généralisé ce type de résultat au cas o`u les barrières sont seulement L2, en utilisant toujours une méthode de pénalisation avec la théorie des g-sur-solutions. Dans un second chapitre, nous considérons les EDSRs réfléchies avec une barrière continue,associées à (_, f,L), lorsque _ 2 L2(FT ), f(t, !, y, z) est continue, satisfait des conditions de mono-tonie, de croissance générale en y, et la condition lipschitzienne en z, et lorsque la barrière (Lt)0_t_Test un processus continu progressivement mesurable, qui vérifie certaines conditions d'intégrabilité. Nous avons notamment montré l'existence et l'unicité de la solution dans L2, pour cette équation réfléchie avec temps terminal déterministe. La preuve de l'existence s'effectue en quatre étapes. La première étape consiste à montrer le résultat sous des hypothèses de bornitude pour _, f(t, 0) etL+. La seconde étape (la plus délicate) consiste à relaxer l'hypothèse de bornitude sur L+ ; enfin les deux dernières étapes nous permettent d'obtenir le résultat général, en relaxant les hypothèses de bornitude sur _ et f(t, 0). Les théorèmes de comparaison jouent un rôle important, en nous permettant de passer à la limite dans les équations. Nous avons ensuite étudié le cas o`u le temps terminal est aléatoire. L'existence et l'unicité de la solution sont montrées. Dans un troisième chapitre, nous étudions les EDSRs réfléchies à une barrière dont le générateur satisfait des conditions de monotonie, de croissance générale en y, et une condition de croissance quadratique ou linéaire en z, et lorsque la barrière L est uniformément bornée. Nous montrons l'existence d'une solution par approximation, sous ces conditions. Nous trouvons également une condition nécessaire et suffisante pour le cas f(t, !, y, z) = |z|2 , et construisons sa solution expli-citement. Pour le cas f(t, !, y, z) = |z|p, p 2 (1, 2), nous montrons une condition suffisante. Dans un quatrième chapitre, nous traitons des EDSRs réfléchies avec deux barrières, lorsque satisfait des conditions de monotonie, continuité, croissance générale en y, et de Lipschiz en z,comme dans le second chapitre. Pour les barrières, nous exigeons que L et U soient continues, L < Usur [0, T], et l'hypothèse de Mokobodski. Nous montrons l'existence et l'unicité de la solution pour cette équation. Dans un cinquième chapitre, nous étudions les applications des ESDRs. Une application importante des EDSRs consiste à donner une interprétation probabiliste (Formule de Feynman-Kacnonlinéaire) pour les solutions des équations aux dérivées partielles (EDPs) semi linéaires parabo-liques. Nous appliquons la méthode d'approximation et les résultats de l'EDSR dans (Pardoux,1999), pour l'EDP semi linéaire, dans le sens Sobolev, par la solution de l'EDSR correspondante. Ensuite, nous utilisons la notion de l'EDP avec obstacle (Bally et al. , 2004). Par la même approximation que dans le second chapitre, nous montrons l'interprétation probabiliste de la solution(u, _) de l'EDP par la solution (Y,Z,K) de l'EDSR réfléchie. Ici, nous supposons que l'obstacle hest à croissance polynômiale. Nous prouvons un théorème qui permet de remplacer la fonction test régulière par la fonction test aléatoire sous les conditions de monotonie et de croissance générale,et par ce théorème nous obtenons l'unicité de la solution de l'EDP via l'unicité de la solution del'EDSR ou l'EDSR réfléchie. Enfin dans un dernier chapitre, nous étudions les solutions numériques des EDSRs et présentons des résultats de simulation, et nous appliquons notamment cette technique au calcul des options américaines
In the first chapter, we consider the reflected backward stochastic differential equation (BSDEsin short) with one or two right continuous and left limited (RCLL in short) barriers. Using the Picarditeration method, we obtained the existence and uniqueness of the solution of the reflected BSDEwith two RCLL barriers. Then we use the penalization method to the case of one RCLL barrier. Considering the solutions (Y n,Zn,Kn) of penalized equations as solutions of reflected BSDEs,we prove that the limit (Y,Z,K) is the solution of equation, by properties of Snell envelope andmonotonic limit theorem (Peng S. , 1999). In the case of equation with two RCLL barriers, by theanalogue method, we prove the limit (Y,Z,K) of penalized equation is the solution of problem,by the representation of solutions via Dynkin game. Here we need a generalized monotonic limittheorem, which permit us to pass the limit for penalized equations. In a second work, we have generalized this type of result to the case where barriers are just inL2, by the method of penalization and the theory of g-supersolution. In the second chapter, we consider the reflected BSDEs with one continuous barrier, associatedto (_, f,L), when _ 2 L2(FT ), f(t, !, y, z) is continuous, satisfies monotonic and general increasingconditions on y, and Lipschitz condition on z, and when the barrier (Lt)0_t_T is a progressivelymeasurable continuous process, which verifies certain integrability condition. We have also notable prove the existence and uniqueness of solution in L2, for this reflectedequation with determinist terminal time. The proof of existence is effected by four steps. The firststep consists to prove the result under the boundness condition of _, f(t, 0) et L+. The second step(the most delicate) consists to relax the boundness condition of L+ ; the following two step permitus to obtain the general result, relaxing the boundness condition on _ and f(t, 0). The comparisontheorems play important roles, which help us to pass the limit in the equations. Then we study thecase when the terminal time is a stopping time. The existence and uniqueness of the solution arealso proved. In the third chapter, we have studied the reflected BSDEs with one barrier, whose generator fsatisfies the monotonic and general increasing condition on y, and quadratic and linear condition onz, when the barrier L is uniformly bounded. We prove the existence of a solution by approximation,under these conditions. We also find a necessary and sufficient condition for the case f(t, !, y, z) =|z|2, and construct its solution explicitly. For the case f(t, !, y, z) = |z|p, p 2 (1, 2), we prove asufficient condition. In the forth chapter, we treat the reflected BSDE with two barrier, when f satisfies the mono-tonic, continuous and general increasing conditions on y, and Lipschitz condition on z, like in thesecond chapter. For the barriers, we suppose that L and U are continuous, L < U on [0, T], andMokoboski condition. We prove the existence and uniqueness of the solution for this equation. In the fifth chapter, we study the applications of BSDE. A important application of BSDEconsists to give a probabilistic interpretation (nonlinear Feynman-Kac formula) pour solutions ofsemilinear parabolic partial differential equations. We apply the approximation method and resultsof BSDE in (Pardoux, 1999) for semiliear PDE in Sobolev sense, by the solution of correspondingBSDEs. In following, we use the notion of PDE with obstacle (Bally et al. , 2004). By the sameapproximation in second chapter, we prove the probabilistic interpretation of the solution (u, _) ofPDE by the solution (Y,Z,K) of reflected BSDE. Here, we suppose that the obstacle h is polynomialincreasing. We prove a theorem which permits us to replace the regular test function by the randomtest function under monotonic and general increasing conditions, and by this theorem we obtainthe uniqueness of the solution of PDE from the solution of BSDE or reflected BSDE. Finally, in the last chapter, we study the numerical solutions of BSDEs and present somesimulation results, and we apply this technique to the calculation of American option
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Royer, Manuela. "Équations différentielles stochastiques rétrogrades et martingales non linéaires". Rennes 1, 2003. http://www.theses.fr/2003REN1A018.

Texto completo
Resumen
Introduites par E. Pardoux et S. Peng, les Equations Différentielles Stochastiques Rétrogrades ont fait l'objet de nombreux travaux. On peut les étudier suivant plusieurs points de vue. Dans une première partie, on améliore des résultats d'existence et d'unicité pour les solutions d'EDSR à horizon aléatoire lorsque le générateur est strictement monotone, puis monotone. Le fort lien qui existe entre les EDSR et les Equations aux Dérivées Partielles permet de donner une approche probabiliste pour des EDP elliptiques. Dans une seconde partie, on s'intéresse à la notion d'espérance non linéaire, qui est une généralisation de l'espérance classique dans la mesure où elle en vérifie les propriétés essentielles, hormis la linéarité. On se place dans le cadre où les trajectoires ne sont pas continues en considérant une filtration engendrée par un mouvement brownien et un processus de Poisson. On établit un théorème de décomposition de Doob-Meyer pour les surmartingales non linéaires.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Sellami-Omrani, Sonia. "Equations aux dérivées partielles non-linéaires et ondes progressives". Paris 6, 1993. http://www.theses.fr/1993PA066641.

Texto completo
Resumen
Nous nous intéressons dans cette thèse à divers problèmes d'équations aux dérivées partielles elliptiques non-linéaires dans la première partie, nous construisons un contre-exemple pour montrer un résultat de non-existence de solutions d'ondes progressives pour un modèle intervenant en combustion dans un domaine cylindrique infini en dimension trois. L'objet de la deuxième partie est l'existence de solutions d'une équation semi-linéaire dans un cylindre fini, faisant intervenir le gradient dans le terme non-linéaire. Les conditions aux bords sont mixtes de type Dirichlet et Newmann. Nous utilisons la méthode de sous- et sur-solutions. La difficulté ici est le fait que le domaine possède des coins. Dans la troisième partie, nous étudions comme dans la première partie l'existence d'ondes progressives dans un domaine cylindrique infini dans le cas où le terme source change plusieurs fois de signe. Nous établissons une condition nécessaire et suffisante pour l'existence d'une onde. Enfin la quatrième partie a pour objet l'étude de la symétrie de solutions positives d'une équation aux dérivées partielles elliptique semi-linéaire dans des domaines sectoriels avec des conditions aux bords mixtes de Dirichlet et Newmann et utilise des développements récents sur la méthode de déplacement d'hyperplans
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Garnier, Jimmy. "Analyse mathématique de modèles de dynamique des populations : équations aux dérivées partielles paraboliques et équations intégro-différentielles". Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00755296.

Texto completo
Resumen
Cette thèse porte sur l'analyse mathématique de modèles de réaction-dispersion. L'objectif est de comprendre l'influence du terme de réaction, de l'opérateur de dispersion, et de la donnée initiale sur la propagation des solutions de ces équations. Nous nous sommes intéressés principalement à deux types d'équations de réaction-dispersion : les équations de réaction-diffusion où l'opérateur de dispersion différentielle est le laplacien et les équations intégro-différentielles pour lesquelles l'opérateur de dispersion est de type convolution. Dans le cadre des équations de réaction-diffusion en milieu homogène, nous proposons une nouvelle approche plus intuitive concernant les notions de fronts progressifs tirés et poussés. Cette nouvelle caractérisation nous a permis de mieux comprendre d'une part les mécanismes de propagation des fronts et d'autre part l'influence de l'effet Allee, correspondant à une diminution de la fertilité à faible densité, lors d'une colonisation. Ces résultats ont des conséquences importantes en génétique des populations. Dans le cadre des équations de réaction-diffusion en milieu hétérogène, nous avons montré sur un exemple précis comment la fragmentation du milieu modifie la vitesse de propagation des solutions. Enfin, dans le cadre des équations intégro-différentielles, nous avons montré que la nature sur- ou sous-exponentielle du noyau de dispersion $J$ modifie totalement la vitesse de propagation. Plus précisément, la présence de noyaux de dispersion à queue lourde ou à décroissance sous-exponentielle entraîne l'accélération des lignes de niveaux de la solution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Équations différentielles partielles"

1

Kowgier, Henryk. Równania różniczkowe zwyczajne i cząstkowe w ekonomii. Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

E, Schiesser W., ed. Ordinary and partial differential equation routines in C, C++, Fortran, Java, Maple, and MATLAB. Boca Raton: Chapman & Hall/CRC, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

1961-, Dalang Robert C., Khoshnevisan Davar y Rassoul-Agha Firas, eds. A minicourse on stochastic partial differential equations. Berlin: Springer, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

1961-, Dalang Robert C., Khoshnevisan Davar y Rassoul-Agha Firas, eds. A minicourse on stochastic partial differential equations. Berlin: Springer, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

1961-, Dalang Robert C., Khoshnevisan Davar y Rassoul-Agha Firas, eds. A minicourse on stochastic partial differential equations. Berlin: Springer, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Molk, Jules. Encyclopédie des sciences mathématiques pures et appliquées... Sceaux: J. Gabay, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Bert-Wolfgang, Schulze y Sternin B. I͡U︡, eds. Quantization methods in differential equations. London: Taylor & Francis, 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

A, Gavosto Estela y Peloso Marco M, eds. Partial differential equations and complex analysis. Boca Raton, FL: CRC Press, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Berlin: Springer-Verlag, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Linares, Felipe. Introduction to nonlinear dispersive equations. New York: Springer, 2015.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Équations différentielles partielles"

1

"Équations Aux Dérivées Partielles". En Équations différentielles, 275–343. Les Presses de l’Université de Montréal, 2016. http://dx.doi.org/10.1515/9782760636194-009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

"Équations Aux Dérivées Partielles". En Exercices Corrigés D’Équations Différentielles, 198–243. Les Presses de l’Université de Montréal, 2012. http://dx.doi.org/10.1515/9782760627697-008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

"VII Équations aux dérivées partielles". En Analyse complexe et équations différentielles, 163–96. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6-008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

"VIII Équations aux dérivées partielles". En Analyse complexe et équations différentielles, 207–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3-009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

"VII Équations aux dérivées partielles". En Analyse complexe et équations différentielles, 163–96. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6.c008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

"VIII Équations aux dérivées partielles". En Analyse complexe et équations différentielles, 207–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3.c009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

"9. Opérateurs pseudo-différentiels". En Analyse et équations aux dérivées partielles, 209–22. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3140-1.c010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía