Literatura académica sobre el tema "Fluid-structure interaction Turbulence"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Fluid-structure interaction Turbulence".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Fluid-structure interaction Turbulence"

1

Naveen, Janjanam, A. Eswara Kumar y M. Nagaraju. "Analysis of Fluid Structure Interaction in High Pressure Elbow Pipe Connections". Applied Mechanics and Materials 813-814 (noviembre de 2015): 1075–79. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.1075.

Texto completo
Resumen
Pipes in power plants generally subjected to high pressures and temperatures. These are connected by elbow, T-joints to get the continuity between different stages. Due to excessive joints the outlet velocity and pressure will drops by considerable amount. Stresses will be produced due to high pressure and temperature of fluid flow, which in turn creates the failure of the pipes. The turbulence of the fluid passing through the pipes will also plays a vital role to decide the outlet pressure and velocity. In this present study pipes are connected by the elbow joint are considered and observed the effect of pipe thickness, turbulence intensity and length of elbow on outlet pressure, velocity, von mises stress and turbulence kinetic energy. It results that with increase in pipe thickness and length of elbow, the velocity, von mises stress and turbulence kinetic energy are decreases but with increase in turbulence intensity, the velocity and turbulence kinetic energy are increases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Tian, Yifeng, Farhad A. Jaberi y Daniel Livescu. "Density effects on post-shock turbulence structure and dynamics". Journal of Fluid Mechanics 880 (18 de octubre de 2019): 935–68. http://dx.doi.org/10.1017/jfm.2019.707.

Texto completo
Resumen
Turbulence structure resulting from multi-fluid or multi-species, variable-density isotropic turbulence interaction with a Mach 2 shock is studied using turbulence-resolving shock-capturing simulations and Eulerian (grid) and Lagrangian (particle) methods. The complex roles that density plays in the modification of turbulence by the shock wave are identified. Statistical analyses of the velocity gradient tensor (VGT) show that density variations significantly change the turbulence structure and flow topology. Specifically, a stronger symmetrization of the joint probability density function (PDF) of second and third invariants of the anisotropic VGT, PDF$(Q^{\ast },R^{\ast })$, as well as the PDF of the vortex stretching contribution to the enstrophy equation, are observed in the multi-species case. Furthermore, subsequent to the interaction with the shock, turbulent statistics also acquire a differential distribution in regions having different densities. This results in a nearly symmetric PDF$(Q^{\ast },R^{\ast })$ in heavy-fluid regions, while the light-fluid regions retain the characteristic tear-drop shape. To understand this behaviour and the return to ‘standard’ turbulence structure as the flow evolves away from the shock, Lagrangian dynamics of the VGT and its invariants is studied by considering particle residence times and conditional particle variables in different flow regions. The pressure Hessian contributions to the VGT invariants transport equations are shown to be not only affected by the shock wave, but also by the density in the multi-fluid case, making them critically important to the flow dynamics and turbulence structure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

TAKIZAWA, KENJI y TAYFUN E. TEZDUYAR. "SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS". Mathematical Models and Methods in Applied Sciences 22, supp02 (25 de julio de 2012): 1230001. http://dx.doi.org/10.1142/s0218202512300013.

Texto completo
Resumen
Since its introduction in 1991 for computation of flow problems with moving boundaries and interfaces, the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation has been applied to a diverse set of challenging problems. The classes of problems computed include free-surface and two-fluid flows, fluid–object, fluid–particle and fluid–structure interaction (FSI), and flows with mechanical components in fast, linear or rotational relative motion. The DSD/SST formulation, as a core technology, is being used for some of the most challenging FSI problems, including parachute modeling and arterial FSI. Versions of the DSD/SST formulation introduced in recent years serve as lower-cost alternatives. More recent variational multiscale (VMS) version, which is called DSD/SST-VMST (and also ST-VMS), has brought better computational accuracy and serves as a reliable turbulence model. Special space–time FSI techniques introduced for specific classes of problems, such as parachute modeling and arterial FSI, have increased the scope and accuracy of the FSI modeling in those classes of computations. This paper provides an overview of the core space–time FSI technique, its recent versions, and the special space–time FSI techniques. The paper includes test computations with the DSD/SST-VMST technique.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Perera, M. J. A. M., H. J. S. Fernando y D. L. Boyer. "Turbulent mixing at an inversion layer". Journal of Fluid Mechanics 267 (25 de mayo de 1994): 275–98. http://dx.doi.org/10.1017/s0022112094001187.

Texto completo
Resumen
A series of laboratory experiments was carried out to examine the interaction between stratification and turbulence at an inversion layer, with the objective of gaining insight into certain wave–turbulence encounters in the atmosphere. A three-layer stratified fluid system, consisting of a (thick) strongly stratified inversion layer, sandwiched between an upper turbulent layer and a lower non-turbulent weakly stratified layer, was employed. Oscillating-grid-induced shear-free turbulence was used in the upper layer. During the experiments, a fourth (interfacial) layer developed in the region between the inversion and the turbulent layer, and most of the wave–turbulence interactions were confined to this layer. Detailed measurements of the vertical velocity structure, internal-wave parameters and mixing characteristics were made in the stratified layers and, whenever possible, the results were compared to available theoretical predictions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tian, Yifeng, Farhad A. Jaberi, Zhaorui Li y Daniel Livescu. "Numerical study of variable density turbulence interaction with a normal shock wave". Journal of Fluid Mechanics 829 (22 de septiembre de 2017): 551–88. http://dx.doi.org/10.1017/jfm.2017.542.

Texto completo
Resumen
Accurate numerical simulations of shock–turbulence interaction (STI) are conducted with a hybrid monotonicity-preserving–compact-finite-difference scheme for a detailed study of STI in variable density flows. Theoretical and numerical assessments of data confirm that all turbulence scales as well as the STI are well captured by the computational method. Linear interaction approximation (LIA) convergence tests conducted with the shock-capturing simulations exhibit a similar trend of converging to LIA predictions to shock-resolving direct numerical simulations (DNS). The effects of density variations on STI are studied by comparing the results corresponding to an upstream multi-fluid mixture with the single-fluid case. The results show that for the current parameter ranges, the turbulence amplification by the normal shock wave is much higher and the reduction in turbulence length scales is more significant when strong density variations exist. Turbulent mixing enhancement by the shock is also increased and stronger mixing asymmetry in the postshock region is observed when there is significant density variation. The turbulence structure is strongly modified by the shock wave, with a differential distribution of turbulent statistics in regions having different densities. The dominant mechanisms behind the variable density STI are identified by analysing the transport equations for the Reynolds stresses, vorticity, normalized mass flux and density specific volume covariance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Carbone, M., A. D. Bragg y M. Iovieno. "Multiscale fluid–particle thermal interaction in isotropic turbulence". Journal of Fluid Mechanics 881 (25 de octubre de 2019): 679–721. http://dx.doi.org/10.1017/jfm.2019.773.

Texto completo
Resumen
We use direct numerical simulations to investigate the interaction between the temperature field of a fluid and the temperature of small particles suspended in the flow, employing both one- and two-way thermal coupling, in a statistically stationary, isotropic turbulent flow. Using statistical analysis, we investigate this variegated interaction at the different scales of the flow. We find that the variance of the carrier flow temperature gradients decreases as the thermal response time of the suspended particles is increased. The probability density function (PDF) of the carrier flow temperature gradients scales with its variance, while the PDF of the rate of change of the particle temperature, whose variance is associated with the thermal dissipation due to the particles, does not scale in such a self-similar way. The modification of the fluid temperature field due to the particles is examined by computing the particle concentration and particle heat fluxes conditioned on the magnitude of the local fluid temperature gradient. These statistics highlight that the particles cluster on the fluid temperature fronts, and the important role played by the alignments of the particle velocity and the local fluid temperature gradient. The temperature structure functions, which characterize the temperature fluctuations across the scales of the flow, clearly show that the fluctuations of the carrier flow temperature increments are monotonically suppressed in the two-way coupled regime as the particle thermal response time is increased. Thermal caustics dominate the particle temperature increments at small scales, that is, particles that come into contact are likely to have very large differences in their temperatures. This is caused by the non-local thermal dynamics of the particles: the scaling exponents of the inertial particle temperature structure functions in the dissipation range reveal very strong multifractal behaviour. Further insight is provided by the flux of temperature increments across the scales. Altogether, these results reveal a number of non-trivial effects, with a number of important practical consequences.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Sharma, A. S. y B. J. McKeon. "On coherent structure in wall turbulence". Journal of Fluid Mechanics 728 (8 de julio de 2013): 196–238. http://dx.doi.org/10.1017/jfm.2013.286.

Texto completo
Resumen
AbstractA new theory of coherent structure in wall turbulence is presented. The theory is the first to predict packets of hairpin vortices and other structure in turbulence, and their dynamics, based on an analysis of the Navier–Stokes equations, under an assumption of a turbulent mean profile. The assumption of the turbulent mean acts as a restriction on the class of possible structures. It is shown that the coherent structure is a manifestation of essentially low-dimensional flow dynamics, arising from a critical-layer mechanism. Using the decomposition presented in McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), complex coherent structure is recreated from minimal superpositions of response modes predicted by the analysis, which take the form of radially varying travelling waves. The leading modes effectively constitute a low-dimensional description of the turbulent flow, which is optimal in the sense of describing the resonant effects around the critical layer and which minimally predicts all types of structure. The approach is general for the full range of scales. By way of example, simple combinations of these modes are offered that predict hairpins and modulated hairpin packets. The example combinations are chosen to represent observed structure, consistent with the nonlinear triadic interaction for wavenumbers that is required for self-interaction of structures. The combination of the three leading response modes at streamwise wavenumbers $6, ~1, ~7$ and spanwise wavenumbers $\pm 6, ~\pm 6, ~\pm 12$, respectively, with phase velocity $2/ 3$, is understood to represent a turbulence ‘kernel’, which, it is proposed, constitutes a self-exciting process analogous to the near-wall cycle. Together, these interactions explain how the mode combinations may self-organize and self-sustain to produce experimentally observed structure. The phase interaction also leads to insight into skewness and correlation results known in the literature. It is also shown that the very large-scale motions act to organize hairpin-like structures such that they co-locate with areas of low streamwise momentum, by a mechanism of locally altering the shear profile. These energetic streamwise structures arise naturally from the resolvent analysis, rather than by a summation of hairpin packets. In addition, these packets are modulated through a ‘beat’ effect. The relationship between Taylor’s hypothesis and coherence is discussed, and both are shown to be the consequence of the localization of the response modes around the critical layer. A pleasing link is made to the classical laminar inviscid theory, whereby the essential mechanism underlying the hairpin vortex is captured by two obliquely interacting Kelvin–Stuart (cat’s eye) vortices. Evidence for the theory is presented based on comparison with observations of structure in turbulent flow reported in the experimental and numerical simulation literature and with exact solutions reported in the transitional literature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Miyanawala, T. P. y R. K. Jaiman. "Decomposition of wake dynamics in fluid–structure interaction via low-dimensional models". Journal of Fluid Mechanics 867 (28 de marzo de 2019): 723–64. http://dx.doi.org/10.1017/jfm.2019.140.

Texto completo
Resumen
We present a dynamic decomposition analysis of the wake flow in fluid–structure interaction (FSI) systems under both laminar and turbulent flow conditions. Of particular interest is to provide the significance of low-dimensional wake flow features and their interaction dynamics to sustain the free vibration of a square cylinder at a relatively low mass ratio. To obtain the high-dimensional data, we employ a body-conforming variational FSI solver based on the recently developed partitioned iterative scheme and the dynamic subgrid-scale turbulence model for a moderate Reynolds number ($Re$). The snapshot data from high-dimensional FSI simulations are projected to a low-dimensional subspace using the proper orthogonal decomposition (POD). We utilize each corresponding POD mode to detect features of the organized motions, namely, the vortex street, the shear layer and the near-wake bubble. We find that the vortex shedding modes contribute solely to the lift force, while the near-wake and shear layer modes play a dominant role in the drag force. We further examine the fundamental mechanism of this dynamical behaviour and propose a force decomposition technique via low-dimensional approximation. To elucidate the frequency lock-in, we systematically analyse the decomposed modes and their dynamical contributions to the force fluctuations for a range of reduced velocity at low Reynolds number laminar flow. These quantitative mode energy contributions demonstrate that the shear layer feeds the vorticity flux to the wake vortices and the near-wake bubble during the wake–body synchronization. Based on the decomposition of wake dynamics, we suggest an interaction cycle for the frequency lock-in during the wake–body interaction, which provides the interrelationship between the high-amplitude motion and the dominating wake features. Through our investigation of wake–body synchronization below critical $Re$ range, we discover that the bluff body can undergo a synchronized high-amplitude vibration due to flexibility-induced unsteadiness. Owing to the wake turbulence at a moderate Reynolds number of $Re=22\,000$, a distorted set of POD modes and the broadband energy distribution are observed, while the interaction cycle for the wake synchronization is found to be valid for the turbulent wake flow.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

TAN, F. P. P., R. TORII, A. BORGHI, R. H. MOHIADDIN, N. B. WOOD y X. Y. XU. "FLUID-STRUCTURE INTERACTION ANALYSIS OF WALL STRESS AND FLOW PATTERNS IN A THORACIC AORTIC ANEURYSM". International Journal of Applied Mechanics 01, n.º 01 (marzo de 2009): 179–99. http://dx.doi.org/10.1142/s1758825109000095.

Texto completo
Resumen
In this study, fluid-structure interaction (FSI) simulation was carried out to predict wall shear stress (WSS) and blood flow patterns in a thoracic aortic aneurysm (TAA) where haemodynamic stresses on the diseased aortic wall are thought to lead to the growth, progression and rupture of the aneurysm. Based on MR images, a patient-specific TAA model was reconstructed. A newly developed two-equation laminar-turbulent transitional model was employed and realistic velocity and pressure waveforms were used as boundary conditions. Analysis of results include turbulence intensity, wall displacement, WSS, wall tensile stress and comparison of velocity profiles between MRI data, rigid and FSI simulations. Velocity profiles demonstrated that the FSI simulation gave better agreement with the MRI data while results for the time-averaged WSS (TAWSS) and oscillatory shear index (OSI) distributions showed no qualitative differences between the simulations. With the FSI model, the maximum TAWSS value was 13% lower, whereas the turbulence intensity was significantly higher than the rigid model. The FSI simulation also provided results for wall mechanical stress in terms of von Mises stress, allowing regions of high wall stress to be identified.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Liaojun, Shuo Wang, Guojiang Yin y Chaonian Guan. "Fluid–structure interaction analysis of fluid pressure pulsation and structural vibration features in a vertical axial pump". Advances in Mechanical Engineering 11, n.º 3 (marzo de 2019): 168781401982858. http://dx.doi.org/10.1177/1687814019828585.

Texto completo
Resumen
Current studies on the operation of the axial pump mainly focus on hydraulic performances, while the coupled interaction between the fluid and structure attracts little attention. This study aims to provide numerical investigation into the vibration features in a vertical axial pump based on two-way iterative fluid–structure interaction method. Three-dimensional coupling model was established with high-quality structured grids of ADINA software. Turbulent flow features were studied under design condition, using shear–stress transport k-ω turbulence model and sliding mesh approach. Typical measure points along and perpendicular to flow direction in fluid domain were selected to analyze pressure pulsation features of the impeller and fixed guide vane. By contrast, vibration features of equivalent stress in corresponding structural positions were investigated and compared based on fluid–structure interaction method. In order to explore fluid–structure interaction vibration mechanism, distribution of main frequencies and amplitudes of the measure points was presented based on the Fast Fourier Transformation method. The results reveal the time and frequency law of fluid pressure pulsation and structural vibration at the same position in the vertical axial pump while additionally provide important theoretical guidance for optimization design and safe operation of the vertical axial pump.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Fluid-structure interaction Turbulence"

1

Pittard, Matthew T. "Large eddy simulation based turbulent flow-induced vibration of fully developed pipe flow /". Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd295.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Türk, Sebastian [Verfasser]. "Investigation of hybrid turbulence modeling techniques in the context of Fluid-Structure Interaction / Sebastian Türk". München : Verlag Dr. Hut, 2015. http://d-nb.info/1067708278/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ramirez, Villalba Leidy catherine. "Towards an efficient modeling of Fluid-Structure Interaction". Thesis, Ecole centrale de Nantes, 2020. http://www.theses.fr/2020ECDN0029.

Texto completo
Resumen
Les applications industrielles FSI se caractérisent par des géométries et des matériaux complexes. Afin de prédire avec précision leur comportement, des coûts de calcul élevés sont associés, à la fois en temps et en ressources informatiques. Pour améliorer la qualité de la prédiction sans pénaliser le temps de calcul, et pour réduire le temps de calcul sans impacter la précision disponible aujourd'hui, deux axes principaux sont explorés dans ce travail. Le premier est l'étude d'un algorithme asynchrone qui pourrait permettre l'utilisation de modèles structurels complexes. Le second consiste à étudier la méthode des tranches en combinant l'utilisation d'un modèle RANS et d'un modèle FEM non linéaire. D'une part, l'étude de l'asynchronicité dans le domaine FSI a révélé différents aspect d'intérêt qui doivent être approfondis avant que l'approche puisse être utilisée industriellement. Cependant, un premier traitement des points mentionnés ci-dessus a montré des signe d'amélioration qui pourraient conduire à un algorithme prometteur, qui se situe naturellement entre l'algorithme explicite et l'algorithme implicite. D'autre part, il a été montré que la méthode des tranches développée dans ce travail conduit à une réduction significative du temps de calcul sans dégradation de la précision
FSI industrial applications are often described by complex geometries and materials. In order to accurately predict their behavior, high computational costs are associated, both in time and in computational resources. To improve the quality of the prediction without penalizing the computational time, and to reduce the computational time without impacting the accuracy that is available today, two main axes are explored in this work. The first one is the study of an asynchronous algorithm that could allow the use of complex structural models. The second axis consists of the study of the strip method while combining the use of a RANS model and a non-linear FEM model. On the one hand, the study of asynchronicity in the FSI domain revealed different aspects of interest that must be addressed before the approach can be used industrially. However, a first treatment of the limitations found showed signs of an improvement that could lead to a promising algorithm, one that naturally lies between the implicit external algorithm and the implicit internal algorithm. On the other hand, it was shown that the strip method developed in this work achieves a significant reduction in calculation time while maintaining excellent accuracy
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Marcel, Thibaud. "Simulation numérique et modélisation de la turbulence statistique et hybride dans un écoulement de faisceau de tubes à nombre de Reynolds élevé dans le contexte de l'interaction fluide-structure". Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0109/document.

Texto completo
Resumen
La prédiction des instabilités fluide-élastique qui se développent dans un faisceau de tubes est importante pour la conception des générateurs de vapeur dans les centrales nucléaires, afin de prévenir les accidents liés à ces instabilités. En effet, ces instabilités fluide-élastique, ou flottements, conduisent à une fatigue vibratoire des matériaux, voire à des chocs entre les tubes, et par la suite, à des dégâts importants. Ces aspects sont d'une grande complexité pour les applications scientifiques impliquant l'industrie nucléaire. Le présent travail est issu d'une collaboration entre l'EDF, le CEA et l'IMFT. Elle vise à améliorer la simulation numérique de cette interaction fluide- structure dans le faisceau de tubes, en particulier dans la gamme de paramètres critiques favorisant l'apparition d'un amortissement négatif du système et de l'instabilité fluide-élastique
The prediction of fluid-elastic instabilities that develop in a tube bundle is of major importance for the design of modern heat exchangers in nuclear reactors, to prevent accidents associated with such instabilities. The fluid-elastic instabilities, or flutter, cause material fatigue, shocks between beams and damage to the solid walls. These issues are very complex for scientific applications involving the nuclear industry. This work is a collaboration between EDF, CEA and IMFT. It aims to improve the numerical simulation of the fluid-structure interaction in the tube bundle, in particular in the range of critical parameters contribute to the onset of damping negative system and the fluid-elastic instability
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Engels, Thomas. "Numerical modeling of fluid-structure interaction in bio-inspired propulsion". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4773/document.

Texto completo
Resumen
Les animaux volants et flottants ont développé des façons efficaces de produire l'écoulement de fluide qui génère les forces désirées pour leur locomotion. Cette thèse est placée dans ce contexte interdisciplinaire et utilise des simulations numériques pour étudier ces problèmes d'interaction fluides-structure, et les applique au vol des insectes et à la nage des poissons. Basée sur les travaux existants sur les obstacles mobiles rigides, une méthode numérique a été développée, permettant également la simulation des obstacles déformables et fournissant une polyvalence et précision accrues dans le cas des obstacles rigides. Nous appliquons cette méthode d'abord aux insectes avec des ailes rigides, où le corps et d'autres détails, tels que les pattes et les antennes, peuvent être inclus. Après la présentation de tests de validation détaillée, nous procédons à l'étude d'un modèle de bourdon dans un écoulement turbulent pleinement développé. Nos simulations montrent que les perturbations turbulentes affectent les insectes volants d'une manière différente de celle des avions aux ailes fixées et conçues par l'humain. Dans le cas de ces derniers, des perturbations en amont peuvent déclencher des transitions dans la couche limite, tandis que les premiers ne présentent pas de changements systématiques dans les forces aérodynamiques. Nous concluons que les insectes se trouvent plutôt confrontés à des problèmes de contrôle dans un environnement turbulent qu'à une détérioration de la production de force. Lors de l‘étape suivante, nous concevons un modèle solide, basé sur une équation de barre monodimensionnelle, et nous passons à la simulation des systèmes couplés fluide–structure
Flying and swimming animals have developed efficient ways to produce the fluid flow that generates the desired forces for their locomotion. These bio-inspired problems couple fluid dynamics and solid mechanics with complex geometries and kinematics. The present thesis is placed in this interdisciplinary context and uses numerical simulations to study these fluid--structure interaction problems with applications in insect flight and swimming fish. Based on existing work on rigid moving obstacles, using an efficient Fourier discretization, a numerical method has been developed, which allows the simulation of flexible, deforming obstacles as well, and provides enhanced versatility and accuracy in the case of rigid obstacles. The method relies on the volume penalization method and the fluid discretization is still based on a Fourier discretization. We first apply this method to insects with rigid wings, where the body and other details, such as the legs and antennae, can be included. After presenting detailed validation tests, we proceed to studying a bumblebee model in fully developed turbulent flow. Our simulations show that turbulent perturbations affect flapping insects in a different way than human-designed fixed-wing aircrafts. While in the latter, upstream perturbations can cause transitions in the boundary layer, the former do not present systematical changes in aerodynamic forces. We conclude that insects rather face control problems in a turbulent environment than a deterioration in force production. In the next step, we design a solid model, based on a one--dimensional beam equation, and simulate coupled fluid--solid systems
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Simiriotis, Nikolaos. "Numerical study and physical analysis of electroactive morphing wings and hydrodynamic profiles at high Reynolds number turbulent flows". Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0041.

Texto completo
Resumen
La présente thèse étudie par simulation numérique et analyse physique les effets du morphing électroactif pour le design des ailes du futur permettant de réduire l’impact environnemental et d’accroître l’efficacité du transport aérien. La thèse examine les effets du morphing électroactif hybride. Ce concept consiste en une association de diverses classes d’actionneurs électroactifs opérant à des échelles de temps et de longueur multiples, en accord avec la dynamique du spectre turbulent et dans un contexte de bio-inspiration concernant l’actionnement des ailes, ailerons et plumes de grands oiseaux prédateurs. Le morphing électroactif hybride crée des modifications de la turbulence à de multiples échelles dans les zones cisaillées et le sillage proche et crée l’augmentation des performances aérodynamiques par l’action de mécanismes de rétroaction. La thèse effectue des simulations numériques à nombre de Reynolds élevé autour de configurations de profils d’aile et d’ailes d’avion supercritiques dans les régimes du bas subsonique correspondant aux phases du décollage et atterrissage, et transsonique correspondant au vol de croisière. Toutes les simulations sont effectuées par le code NSMB (Navier Stokes MultiBlock), en utilisant des approches de modélisation de la turbulence efficaces, permettant de prédire en accord avec les expériences physiques, le développement d’instabilités et de structures cohérentes gouvernant la dynamique des écoulements. Dans ce contexte, l’approche « Organized Eddy Simulation » (OES) a été employée et améliorée par des concepts de cascade inverse utilisant de la réinjection de la turbulence dans les zones fortement cisaillées. Cette méthode, basée sur un forçage stochastique des équations de transport turbulent a été étendue dans la présente thèse aux trois dimensions et ses bénéfices ont été quantifiés concernant l’évaluation des efforts aérodynamiques et le développement d’instabilités fluide. Les avantages de cette approche, qui a été introduite par ailleurs au sein de la « Detached Eddy Simulation », ont été étudiés concernant la prédiction du tremblement en régime transsonique et de l’interaction choc-couche limite. Les régimes du bas subsonique concernent les écoulements autour de profils et d’ailes de type A320 en configurations statiques et en morphing et sont étudiés en utilisant l’approche de modélisation OES également. Le morphing de la région proche du bord de fuite à l’aide de faibles déformations et de vibrations de fréquences dans le rang de 100-400 Hz a été étudié en synergie avec des résultats expérimentaux du projet Européen H2020 N° 723402 SMS : « Smart Moprhing and Sensing for Aeronautical configurations ». A l’aide d’une étude paramétrique détaillée, il a été mis en évidence que des combinaisons optimales de fréquence-amplitude de ces actionnements fournissent une augmentation drastique de la finesse aérodynamique. Ces effets ont été obtenus à l’aide de manipulation de la dynamique des interfaces « Turbulent - Non Turbulent » (TNT) et des interactions avec les interfaces « Turbulent- Turbulent » (TT). De plus, cette thèse a développé un modèle structural efficace permettant le contrôle de forme par des Alliages à Mémoire de Forme (AMF). Ces actionneurs permettent d’obtenir de grandes déformations à de basses fréquences en appliquant une grande cambrure de l’aile pour augmenter la portance et pour adapter la forme de l’aile aux différentes sollicitations aérodynamiques. La présente thèse propose un modèle efficace pour obtenir des formes-ciblées de configurations aérodynamiques utilisant des AMF embarqués. Un nouvel algorithme robuste a été développé et validé pour prédire la réponse non-linéaire de l’interaction AMF-structure. Cet algorithme a été couplé avec une méthode de prédiction de la structure et des paramètres opérationnels optimaux pour le design, fournissant ainsi des architectures de morphing plus performantes et réduisant l’impact environnemental
The present thesis investigates the effects of electroactive morphing for smart wing designs. Morphing concepts are adopted for future aircraft configurations, targeting increased aerodynamic performance, ``greener'' air vehicles and efficient air transport. Morphing airfoils and wings are investigated by means of numerical simulation and the physical mechanisms of morphing are analyzed. The hybrid, partly bio-inspired electroactive morphing is examined. The hybrid concept entails the combination of different classes of electroactive actuators that yield turbulence modifications at multiple scales when realized simultaneously. Shape Memory Alloys (SMA) providing large-amplitude low-frequency deformations and piezoactuators providing low strains at higher frequency are introduced. High Reynolds number calculations around supercritical wings in low-subsonic and transonic regimes are performed and experimental results are employed for a detailed physical analysis. The flow simulations are carried out using the NSMB (Navier Stokes MultiBlock) solver and efficient turbulence modelling approaches, allowing for a physically correct development of related instabilities and coherent structures. In this context, the Organized Eddy Simulation (OES) approach has been improved to account for upscale energy transfers in strongly sheared flow regions through re-injection of turbulence. This novel approach, based on stochastic forcing of the turbulence transport equations, is extended in the present thesis to threedimensional flows and applied to the study of the transonic flow. The approach is also examined in the context of Detached Eddy Simulations (DES). The stochastic forcing is proven to inhibit excessive turbulence diffusion effects. As a result, the transonic buffet and the Shock Wave Boundary Layer Interaction (SWBLI) are better captured with this approach. An increase of lift and a decrease of drag are obtained and the force predictions are improved as shown through comparisons with experimental results. The stochastic forcing effects can be practically realized with the introduction of higher-frequency vibrations and low-amplitude deformations in the near trailing edge region of wings via piezoactuators. The morphing effects are examined on an A320 wing at a Reynolds number of 1 Million in the low-subsonic regime, corresponding to takeoff/ landing flight phases. The simulations used the OES approach and the analysis employed a large experimental database, obtained in the context of the ``Smart Moprhing and Sensing for Aeronautical configurations'' (SMS) H2020 No 723402 European Research program. It is shown that electroactive morphing has the capacity to enhance the aerodynamic performance through lift increase and drag reduction. The aerodynamic enhancement is obtained as a result of the manipulation of turbulence interfacial dynamics interacting with the structure of the wing. Through an extensive parametric study, optimal frequency-amplitude combinations have been determined, able to increase the lift-to-drag ratio. Furthermore, the present thesis discusses shape control with the use of SMA, introduced to morphing structures inspired by the wings of large-span hunting birds. SMA-based actuators are employed to produce large continuous deformation at low frequencies (order of Hz), adapting the aerodynamic profiles to different flight conditions. The thesis proposes an efficient methodology that allows design smart deformable aeronautical structures, able to achieve pre-defined target shapes. A novel robust algorithm for predicting the nonlinear response of the SMA-structure interaction problem has been developed and validated. The solver is coupled with a method that predicts the optimal structural and operational design parameters to produces safe and ``green'' morphing structures
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ndombo, Jean-Marc. "Modélisation numérique d'un écoulement anisotherme dans un té de mélange par simulation des grandes échelles". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4370/document.

Texto completo
Resumen
Les fluctuations thermiques présentes dans les tés de mélange provoquent des contraintes thermiques qui peuvent mener à l'apparition de fissures qui se propagent plus ou moins rapidement dans la structure. Une possibilité pour réduire ces risques est d'installer des mélangeurs statiques (statics mixers) pour accroître le mélange. Une telle technologie a été utilisée par Utveckling AB depuis 1980 dans des installations nucléaires. Toutefois, ces technologies sont très coûteuses. C'est pour cette raison que plusieurs investigations numériques ont été faites pour prédire les fluctuations de température causées par le mélange turbulent dans cette configuration d'écoulement. On effectue la simulation numérique de l'écoulement sur deux types de té de mélange. L'un avec des bords droits et une paroi en Plexiglas, et l'autre avec des bords arrondis et une paroi en inox 304L. Dans le premier cas la condition de paroi est adiabatique et dans le second cas on effectue un couplage entre le code CFD (Computational Fluid Dynamic) Code_Saturne et le code SYRTHES pour l'analyse de la température dans le solide. L'apport principal de la thèse est la détermination des statistiques temporelles d'ordre élevé dans une configuration aussi complexe. En effet, les équations de transport de l'énergie cinétique turbulente, de la variance de la température et des flux thermiques turbulents sont déterminées dans les deux configurations (adiabatique et avec des parois en inox), ce qui montre l'influence de la paroi sur le transfert de chaleur en région proche paroi
Thermal fluctuations present in mixing tees cause thermal stresses that can lead to the appearation of cracks, which spread more or less quickly in the structure. One possibility to reduce these risks is to set static mixers (statics mixers) to increase the mixture. Such technology has been used by Utveckling AB since 1980 in nuclear installations. However, these technologies are very expensive. It is for this reason that many numerical investigations have been made to predict temperature fluctuations caused by turbulent mixing in this configuration flow. The resolution of the conservation equations is made with a finite volume approach using large eddy simulation or LES . The subgrid models used are Smagorinsky, WALE (Wall Adapted Local Eddy) and dynamic Smagorinsky. The SGDH model (Simple Gradient Di? Usion Hypothesis) is used for modeling greeting thermal subgrid and the turbulent Prandtl number is fixed one. Generation turbulence input field is made using the SEM method (Synthetic Eddy Method). The main contribution of this thesis is the determination of time turbulent statistic in a complex configuration. Indeed, the transport equations of turbulent kinetic energy, temperature variance and turbulent heat flux are determined in both configurations (adiabatic walls and stainless steel), which shows the influence of the wall on heat transfer in near-wall region
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Pittard, Matthew Thurlow. "Large Eddy Simulation Based Turbulent Flow-induced Vibration of Fully Developed Pipe Flow". Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd295.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bénéfice, Guillaume. "Développement d'une méthode de couplage partitionné fort en vue d'une application aux turbomachines". Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0050/document.

Texto completo
Resumen
Pour améliorer la conception des turbomachines, les industriels doivent appréhender des phénomènes aéroélastiques complexes présents dans les compresseurs comme les cycles limites d’interaction fluide-structure des fans. La compréhension et la modélisation de ces phénomènes impliquent de développer des modèles numériques complexes intégrant des phénomènes multi-physique et de valider ces modèles à l’aide de bancs d’essais. Le banc d’essai du compresseur CREATE est instrumenté pour étudier des instabilités aérodynamiques couplées à des vibrations, notamment sur le rotor du premier étage, et permet de valider des modèles numériques. La modélisation de l’écoulement en amont du premier étage du compresseur à l’aide du logiciel Turb’Flow, développé pour l’étude des écoulements dans les compresseurs aéronautiques, a permis de mettre en évidence l’importance des conditions limites d’entrée pour l’obtention de résultats précis. En particulier, il a été possible de modéliser correctement l’ingestion d’une alimentation non-homogène en entrée de la roue directrice d’entrée. Ce phénomène peut se produire en amont des fans et interagir avec un mode de la structure. Une stratégie de couplage partitionné fort explicite dans le domaine temporel a été introduite dans le logiciel Turb’Flow. Comme cette méthode présente un risque de décalage temporel à l’interface fluide-structure, une attention particulière a été portée à la modélisation de la conservation de l’énergie à cette interface. La conservation de l’énergie à l’interface est cruciale quand les déplacements sont importants et quand un comportement non-linéaire fort apparaît entre le fluide et la structure (onde de choc et amortissement structurel nonlinéaire). Parallèlement au développement du module aéroélastique, le schéma implicite de Runge- Kutta d’ordre 3 en temps (RKI-3) a été développé et évalué sur un cas de dynamique (vibration d’une aube de turbine transsonique) et sur un cas de propagation d’onde de choc. L’utilisation du schéma RKI-3 permet d’augmenter, à iso-précision, d’un ordre le pas de temps par rapport aux schémas de Gear et de Newmark. S’il apporte un gain en temps CPU pour l’étude de la dynamique des structures, il est pénalisant dans le cadre de simulation URANS. Cependant, le schéma RKI-3 est utilisable dans le cadre de simulations couplées fluide-structure
To increase turbomachinery design, manufacturers have to comprehend complex aeroelastic phenomena involving compressors like fluid-structure interaction limit cycles of fans. The understanding and the modeling of these phenomena involve developing complex solvers coupling techniques and validating these techniques with bench tests. The bench test of the CREATE compressor is instrumented to study the coupling between aerodynamic instabilities and structure vibration, in particular on the first stage rotor, and allows to validate numerical techniques. The flow modeling upstream to the first stage with the Turb’Flow flow solver (targeting turbomachinery applications) shows that, to have accurate results, inlet limit conditions must take into account. The ingestion of non-homogeneous flow upstream to the inlet guide vane is accurately modeled. This phenomenon can appear upstream to fans and interact with structure Eigen-modes. Explicit partitioned strong coupling considered in time domain was implemented in a Turb’Flow flow solver. As there is a risk of time shift at the fluid-structure interface, careful attention should be paid to energy conservation at the interface. This conservation is crucial when displacements are large and when strong non-linear behaviors occur in both fluid and structure domains, namely shock waves, flow separations and non-linear structural damping. In parallel with coupling technique development, the three-order implicit Runge-Kutta scheme (RKI-3) was implemented and validated on a structure dynamic case (transonic turbine blade vibration) and on a case of shock waves propagation. The RKI-3 scheme allows increasing the time step of one order of magnitude with the same accuracy. There is a CPU time gain for structure dynamics simulations, but no for URANS simulations. However, the RKI-3 scheme can be to use for fluid-structure coupling simulations. The coupling technique was validated on a test case involving tube in which the shock wave impinges on a cross flow flexible panel, initially at rest. This case allows modeling an interaction between sonic flow and a panel movement with a tip clearance. Some numerical simulations were carried out with different temporal schemes. The RKI-3 scheme has no influence on results (compared with Gear and/or Newmark scheme) on the energy conservation at the fluid-structure interface. Compared to experimental results, pressure is in fairly good ix Liste des publications agreement. The analysis of numerical results highlighted that a vertical shock tube with up and down waves creates pressure fluctuation. Frequency is under predicted and amplitude is not in fairly good agreement. The panel root modeling might be questionable
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

El, Maani Rabii. "Étude basée sur l’optimisation fiabiliste en aérodynamique". Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0017/document.

Texto completo
Resumen
Le domaine de l'interaction fluide-structure regroupe l'étude de tous les phénomènes présentant le couplage du mouvement d'une structure avec celui d'un fluide. La gamme des phénomènes étudiés est très étendue, allant de l'étude de cylindres vibrants dans des écoulements comme c'est le cas dans l'industrie nucléaire, à des structures vibrantes dans des écoulements turbulents, en passant par des phénomènes de surface libre dans des réservoirs. Cependant, la complexité des phénomènes étudiés se répercute par des coûts de calculs prohibitifs, ce qui nous amène à rechercher des modèles réduits dont le temps de calcul serait plus réaliste. Dans cette thèse, on va présenter les différents modèles d'interaction fluide-structure et on va mettre en avant le modèle adopté dans notre étude. La réduction du modèle ainsi que l'optimisation des structures vont être introduites dans un contexte de couplage. En introduisant les incertitudes, l'étude fiabiliste de même qu'une approche d'optimisation basée fiabilité vont être proposées. Les différentes méthodologies adoptées vont être validées numériquement et comparées expérimentalement
The domain of the fluid-structure interaction includes the study of all phenomena presenting the coupling of the motion of a structure with the one of a fluid. The range of the phenomena being studied is very extensive, going from the study of vibrating cylinders in the flow as is the case in the nuclear industry, to vibrating structures in turbulent flows, through the free surface phenomena in reservoirs. However, the complexity of the phenomena studied is reflected by the cost of the prohibitive calculations, which leads us to look for models with the computation time would be more realistic. In this thesis, we will present different models of fluid-structure interaction and we will put forward the model adopted in our study. Reducing the model as well as the optimization of the structures will be introduced into a coupling setting. By introducing uncertainties, the reliability study as well as an optimization based reliability approach will be proposed. The different methodologies adopted will be validated numerically and experimentally compared
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Fluid-structure interaction Turbulence"

1

Statistical approach in wall turbulence. London: ISTE, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

(Editor), M. Brocchini y F. Trivellato (Editor), eds. Vorticity And Turbulence Effects in Fluid Structure Interactions: An Application to Hydraulic Structure Design (Advances in Fluid Mechanics). WIT Press (UK), 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Direct and large-Eddy simulation II: Proceedings of the ERCOFTAC Workshop held in Grenoble, France, 16-19 September, 1996. Dordrecht: Kluwer Academic Publishers, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Trivellato, F. Vorticity and Turbulence Effects in Fluid Structure Interactions. Editado por M. Brocchini. WIT Press, 2006. http://dx.doi.org/10.2495/978-1-84564-052-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Fluid-structure interaction Turbulence"

1

Wong, C. W., Z. Y. Lu, X. Zhang y Y. Zhou. "Influence of Axial-Flow Turbulence Intensity on Fluid-Structure Interaction for a Flexible Cylinder". En Fluid-Structure-Sound Interactions and Control, 281–86. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7542-1_43.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nichols, A., K. Horoshenkov, S. Tait y S. Shepherd. "Making Use of Turbulence and its Interaction with Sound: A Non-Invasive Flow Monitor". En Fluid-Structure-Sound Interactions and Control, 283–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_42.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hoffman, Johan, Johan Jansson, Niclas Jansson, Claes Johnson y Rodrigo Vilela De Abreu. "Turbulent flow and fluid–structure interaction". En Automated Solution of Differential Equations by the Finite Element Method, 543–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23099-8_28.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lu, Z. Y., Y. Zhou y C. W. Wong. "Turbulence Intensity Effect on Axial-Flow-Induced Cylinder Vibration". En Fluid-Structure-Sound Interactions and Control, 293–98. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7542-1_45.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Moon, Chanhee y Kyung Chun Kim. "Structure Generated Turbulence: Laminar Flow Through Metal Foam Replica". En Fluid-Structure-Sound Interactions and Control, 275–81. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4960-5_43.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Noack, Bernd R. "Closed-Loop Turbulence Control-From Human to Machine Learning (and Retour)". En Fluid-Structure-Sound Interactions and Control, 23–32. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7542-1_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Chung, Yongmann M. y Edward Hurst. "Turbulent Drag Reduction at High Reynolds Numbers". En Fluid-Structure-Sound Interactions and Control, 95–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Fan, Dewei, Yu Zhou y Bernd R. Noack. "Artificial Intelligence Control of a Turbulent Jet". En Fluid-Structure-Sound Interactions and Control, 365–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4960-5_55.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bai, H. L., Y. Zhou y W. G. Zhang. "Streaky Structures in a Controlled Turbulent Boundary Layer". En Fluid-Structure-Sound Interactions and Control, 135–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_19.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mazellier, Nicolas, Francesco Stella y Azeddine Kourta. "Analysis of Turbulent Entrainment in Separating/Reattaching Flows". En Fluid-Structure-Sound Interactions and Control, 255–60. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4960-5_40.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Fluid-structure interaction Turbulence"

1

Brusiani, F., G. Cazzoli, S. de Miranda, F. Ubertini y P. Vaona. "Application of the k-ω turbulence model to assess the flutter derivatives of a long span bridge". En Fluid Structure Interaction 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/fsi110201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Azzam, T., T. Belmerabet, M. Mekadem, S. Djellal y S. Hanchi. "Numerical simulation of the flow around the helicopter blade in hover using the MRF method and turbulence models". En Fluid Structure Interaction 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/fsi110261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Yeh, J. T. "Deforming mesh with unsteady turbulence model for fluid-structure interaction". En ADVANCES IN FLUID MECHANICS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/afm06055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Estruch, O., O. Lehmkuhl, R. Borrell y C. D. Perez-Segarra. "Large-eddy simulation of turbulent dynamic fluid-structure interaction". En THMT-12. Proceedings of the Seventh International Symposium On Turbulence, Heat and Mass Transfer Palermo, Italy, 24-27 September, 2012. Connecticut: Begellhouse, 2012. http://dx.doi.org/10.1615/ichmt.2012.procsevintsympturbheattransfpal.1520.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lund, Erik, Henrik Møller y Lars Aaes Jakobsen. "Shape Optimization of Fluid-Structure Interaction Problems Using Two-Equation Turbulence Models". En 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1478.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Tian, Yifeng, Farhad A. Jaberi y Daniel Livescu. "Density Effects on the Flow Structure in Multi-fluid Shock-turbulence Interaction". En 2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0374.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Rosetti, Guilherme Feitosa, Guilherme Vaz y André Luís Condino Fujarra. "On the Effects of Turbulence Modeling on the Fluid-Structure Interaction of a Rigid Cylinder". En ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54989.

Texto completo
Resumen
The cylinder flow is a canonical problem for Computational Fluid Dynamics (CFD), as it can display several of the most relevant issues for a wide class of flows, such as boundary layer separation, vortex shedding, flow instabilities, laminar-turbulent transition and others. Several applications also display these features justifying the amount of energy invested in studying this problem in a wide range of Reynolds numbers. The Unsteady Reynolds Averaged Navier Stokes (URANS) equations combined with simplifying assumptions for turbulence have been shown inappropriate for the captive cylinder flow in an important range of Reynolds numbers. For that reason, recent improvements in turbulence modeling has been one of the most important lines of research within that issue, aiming at better prediction of flow and loads, mainly targeting the three-dimensional effects and laminar-turbulent transition, which are so important for blunt bodies. In contrast, a much smaller amount of work is observed concerning the investigation of turbulent effects when the cylinder moves with driven or free motions. Evidently, larger understanding of the contribution of turbulence in those situations can lead to more precise mathematical and numerical modeling of the flow around a moving cylinder. In this paper, we present CFD calculations in a range of moderate Reynolds numbers with different turbulence models and considering a cylinder in captive condition, in driven and in free motions. The results corroborate an intuitive notion that the inertial effects indeed play very important role in determining loads and motions. The flow also seems to adapt to the motions in such a way that vortices are more correlated and less influenced by turbulence effects. Due to good comparison of the numerical and experimental results for the moving-cylinder cases, it is observed that the choice of turbulence model for driven and free motions calculations is markedly less decisive than for the captive cylinder case.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Pratomo, Hariyo P. S. "Fluid Structure Interaction Simulation of a Benchmark Configuration With a Stress Blended-Eddy Simulation Model". En ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23101.

Texto completo
Resumen
Abstract In this work, the application of a shear stress transport based-RANS/LES turbulence modelling approach on a fluid-structure interaction (FSI) benchmark is considered after a transient computation of turbulent flow over the configuration on an LES quality mesh is to be performed. Within the unsteady decoupled simulation the scale resolving method successfully produces complex unsteady eddy sizes behind the reference test case. At a subcritical Reynolds number, a numerical Strouhal number of 0.184 which is close to a reference value of 0.18 is demonstrated by the RANS/LES turbulence model. In this scenario, a rubber added on the back part of a fixed circular cylinder is treated as a rigid thin plate during the pure flow simulation. On the LES grid resolution, the shielding function resided in the hybrid limiter of the scale resolving formulation is found to be strong to safeguard the activation of the RANS mode in the near wall region where the demarcation line between the RANS and LES modes uniquely resembles the geometry. Moreover, in the FSI simulation resolved turbulence scales interacting with moving and deforming rubber immersed in the subcritical Reynolds number-turbulent flow are successfully captured by the hybrid modelling technique coupled with a structural solver under the coupling procedure of an implicit partitioned approach. Similar with earlier studies with different scale-resolving proposals on the same FSI case, a periodic oscillating motion of the rubber that is produced from a phase-averaging method is also demonstrated in this present investigation. Nevertheless, a non-physical deformation of the rubber in the spanwise direction occurs. The new FSI result is evaluated with existing results from earlier works as a pivotal basis for further researches, such as implementations of new mesh stiffness model and filter width.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

MURAMATSU, TOSHIHARU. "NUMERICAL INVESTIGATIONS OF FLUID-STRUCTURE THERMAL INTERACTION PHENOMENA AT A T-JUNCTION OF LIQUID METAL FAST REACTOR PIPING SYSTEMS". En Proceedings of the 8th International Symposium on Flow Modeling and Turbulence Measurements. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777591_0078.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Brockmeyer, Landon, Jerome Solberg, Elia Merzari y Yassin Hassan. "Simulation of Fluid-Structure Interaction of Crossflow Through a Tube Bundle and Experimental Validation". En ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69360.

Texto completo
Resumen
Fluid-structure interactions are complex, multi-physics phenomena of consequence for many fluid-flow domains. Modern multi-physics codes are becoming capable of simulating with great accuracy the interaction between fluid and structure dynamics. While fluid-structure interactions can occur in many forms, flow-induced vibrations are of particular interest. Such vibrations can result in the fatigue and even failure of a vibrating geometry. The prediction and minimization of flow induced vibrations are of particular importance for heat exchangers, which commonly contain bundles of tubes experiencing high-velocity crossflow. The present study simulates the fluid-structure interaction for flexibly mounted tube bundles undergoing crossflow and compares the results with experiment. The simulation code consists of a spectral-element fluid solver directly coupled with a finite-element solid mechanics solver. The fluid solver locally adapts the fluid mesh to accommodate the moving solids. In order to minimize computational expense, low Reynolds number flows are considered, allowing for a thin, pseudo 2-D domain. The flow remains laminar for the majority of the domain, with local areas of turbulence. The pins are connected to springs that supply a restorative force equivalent to the flexible mounts of the corresponding experiment. Fluid-only simulations are performed for flow spanning low to moderate velocities and compared visually with experimental flow visualizations. Coupled fluid-structure interactions are simulated with low velocity and vibration amplitudes. The measured vibration amplitudes of the simulation agree well with those of the experiment.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía