Literatura académica sobre el tema "Formulation of Nanocomposite Materials"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Formulation of Nanocomposite Materials".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Formulation of Nanocomposite Materials"
Vafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Pakkiraiah y Chandra Mohan. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach". E3S Web of Conferences 511 (2024): 01008. http://dx.doi.org/10.1051/e3sconf/202451101008.
Texto completoVafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Sankara Babu y Binitendra Naath Mongal. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach". E3S Web of Conferences 537 (2024): 08001. http://dx.doi.org/10.1051/e3sconf/202453708001.
Texto completoCarrascosa, Ana, Jaime S. Sánchez, María Guadalupe Morán-Aguilar, Gemma Gabriel y Fabiola Vilaseca. "Advanced Flexible Wearable Electronics from Hybrid Nanocomposites Based on Cellulose Nanofibers, PEDOT:PSS and Reduced Graphene Oxide". Polymers 16, n.º 21 (29 de octubre de 2024): 3035. http://dx.doi.org/10.3390/polym16213035.
Texto completoMarin, Maria Minodora, Ioana Catalina Gifu, Gratiela Gradisteanu Pircalabioru, Madalina Albu Kaya, Rodica Roxana Constantinescu, Rebeca Leu Alexa, Bogdan Trica et al. "Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing". Gels 9, n.º 5 (19 de mayo de 2023): 425. http://dx.doi.org/10.3390/gels9050425.
Texto completoHAFEZ, INAS H., MOHAMED R. BERBER, KEIJI MINAGAWA, TAKESHI MORI y MASAMI TANAKA. "FORMULATION OF POLYACRYLIC ACID-LAYERED DOUBLE HYDROXIDE COMPOSITE SYSTEM AS A SOIL CONDITIONER FOR WATER MANAGEMENT". International Journal of Modern Physics: Conference Series 06 (enero de 2012): 138–43. http://dx.doi.org/10.1142/s2010194512003078.
Texto completoGatos, K. G., A. A. Apostolov y J. Karger-Kocsis. "Compatibilizer Effect of Grafted Glycidyl Methacrylate on EPDM/Organoclay Nanocomposites". Materials Science Forum 482 (abril de 2005): 347–50. http://dx.doi.org/10.4028/www.scientific.net/msf.482.347.
Texto completoPinto, Susana C., Paula A. A. P. Marques, Romeu Vicente, Luís Godinho y Isabel Duarte. "Hybrid Structures Made of Polyurethane/Graphene Nanocomposite Foams Embedded within Aluminum Open-Cell Foam". Metals 10, n.º 6 (9 de junio de 2020): 768. http://dx.doi.org/10.3390/met10060768.
Texto completoGuz, Alexander N. y Jeremiah J. Rushchitsky. "Some Fundamental Aspects of Mechanics of Nanocomposite Materials and Structural Members". Journal of Nanotechnology 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/641581.
Texto completoReddy, J. N., Vinu U. Unnikrishnan y Ginu U. Unnikrishnan. "Recent advances in the analysis of nanotube-reinforced polymeric biomaterials". Journal of the Mechanical Behavior of Materials 22, n.º 5-6 (1 de diciembre de 2013): 137–48. http://dx.doi.org/10.1515/jmbm-2013-0021.
Texto completoNajem Abed, Nisreen Abdul Rahman, Suha Mujahed Abudoleh, Iyad Daoud Alshawabkeh, Abdul Rahman Najem Abed, Rasha Khaled Ali Abuthawabeh y Samer Hasan Hussein-Al-Ali. "Aspirin Drug Intercalated into Zinc-Layered Hydroxides as Nanolayers: Structure and In Vitro Release". Nano Hybrids and Composites 18 (noviembre de 2017): 42–52. http://dx.doi.org/10.4028/www.scientific.net/nhc.18.42.
Texto completoTesis sobre el tema "Formulation of Nanocomposite Materials"
Acquadro, Julien. "Étude des propriétés tribologiques et électriques de revêtements sol-gel comme alternative anticorrosion au cadmium et au chrome hexavalent pour la connectique en environnements sévères". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST150.
Texto completoConnector technology involves the components that create electrical connections between different systems. In critical sectors such as aerospace and military, these connections must be highly reliable and able to perform under harsh conditions. Therefore, the electrical contacts within connectors are protected by housings made from aluminium alloys, like AA6061, which must meet three essential criteria: electrical conductivity, mechanical strength, and corrosion resistance. Currently, these properties are achieved through surface protection coatings based on cadmium passivated with hexavalent chromium (VI). However, since 2017, this solution has been deemed unacceptable in Europe due to evolving RoHS and REACH directives and regulations, given the severe toxicity of cadmium and hexavalent chromium to both the environment and human health.This thesis is part of a significant industrial collaboration involving seven partners focused on developing and producing coatings to replace cadmium passivated with chromium (VI). Among the various approaches explored, the most innovative and promising involves using sol-gel coatings made conductive through the incorporation of appropriate conductive fillers. The strategy entails implementing these coatings at the laboratory scale and subjecting them to rigorous industrial qualification tests on connector housings.This thesis aims to enhance understanding of how various stages in the development of coatings affect their properties related to electrical conduction, wear resistance, and anti-corrosion capabilities. Deposits applied to laboratory model specimens were studied at both macroscopic and microscopic scales to determine the optimal synthesis parameters. These parameters include sol-gel precursors, amount of water, maturation conditions, and deposition techniques, all of which are adjusted based on the physicochemical and structural properties of the resulting films. The influence of the type and quantity of conductive fillers, whether carbon-based or metallic, on properties such as electrical conduction, wear resistance, mechanical strength, and corrosion protection, was rigorously evaluated.Periodic comparisons were made between these study results and the outcomes of qualification tests conducted on industrially complex connector housings coated with the same formulations. This allowed the identification of challenges to overcome in achieving the necessary properties of electrical conduction, mechanical strength, and corrosion resistance. These efforts also provide development prospects for the future of this technology in the connector industry
Oyharçabal, Mathieu. "Synthèse, formulation, et mise en oeuvre de nanomatériaux conducteurs base poly(aniline) / nanotubes de carbone pour des applications micro-ondes". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14633.
Texto completoThis thesis deals with the formulation of electrically conductive nanocomposites for microwave applications. The main purpose is to process radar-absorbent materials, more particularly at the X band. (8-12 GHz). Polyaniline and carbon nanotubes, dispersed in an epoxyde matrix, have been selected. Different morphologies of polyaniline have been synthesized to study its impact on the absorption properties of composites. Using flake-like polyaniline showing high anisotropy and aspect ratio increases conductivity and dielectric losses of composites. Moreover, its association with carbon nanotubes significantly improves the absorption properties at microwaves frequencies. Efficient radar absorbing screens, showing reflection losses lower than -20 dB, have been calculated and processed confirming the potential of these materials for stealth applications
PAMMI, SRI LAXMI. "CARBON NANOCOMPOSITE MATERIALS". University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069881274.
Texto completoThomas, Michael David Ross. "Electrical phenomena in nanocomposite materials". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621926.
Texto completoBobrinetskiy, I. I., A. Y. Gerasimenko, L. Ichkitidze, O. R. Khrolova, R. V. Morozov, V. M. Podgaetsky y S. V. Selishchev. "Nanocomposite Materials for Cell Growth". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35452.
Texto completoLee, Ji Hoon. "Tensegrity-inspired nanocomposite structures". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44839.
Texto completoBera, Chandan. "Thermo electric properties of nanocomposite materials". Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00576360.
Texto completoYani, Yin. "Molecular dynamics simulation of nanocomposite materials". [Ames, Iowa : Iowa State University], 2009.
Buscar texto completoDi, Carlo Lidia. "Nanocomposite cathodic materials for secondary cells". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17765.
Texto completoHexagonal tungsten bronze (HTB)-FeF3∙0.33H2O xerogel and HTB-FeF3∙0.33H2O/GO nanocomposite were firstly obtained by a room temperature fluorolytic sol-gel approach in MeOH, and their electrochemical properties evaluated. Operando Mössbauer spectroscopy and X-Ray diffraction were employed to investigate the reaction mechanism during reaction with lithium. The fluoride evidenced a complex behavior, with structural collapse of the HTB phase and gradual transformation into FeF2-rutile-like nanodomains, becoming the predominant component all along the reaction. XRD confirmed the amorphization of the electroactive material. Structural optimization of HTB-FeF3·0.33H2O was then achieved by a microwave-assisted fluorolytic sol-gel in benzyl alcohol. The procedure allowed the synthesis of phase pure nanoparticles of ~30 nm in diameter, along with the production of a reduced graphene oxide (RGO)-based nanocomposite and the reduction of reaction times. Deposition onto conductive RGO resulted beneficial for the electrochemical performance of the fluoride, which was able to sustain repeated cycling at different C-rates and recovered full capacity after more than 50 cycles with respect to the unsupported HTB-FeF3·0.33H2O. Aiming at the production of active ions-holding materials to solve safety issues related to the use of metallic anodes, necessary with structures such as HTB-FeF3·0.33H2O, Na-containing hexafluoroferrate nanocomposites were produced using RGO and partially oxidized carbon black (ox-CB) as conductive carbons. Carbon type greatly affected the electrochemical performance, whose best improvement was obtained using RGO as support
Ye, Yueping. "Microstructure and properties of epoxy/halloysite nanocomposite /". View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20YE.
Texto completoLibros sobre el tema "Formulation of Nanocomposite Materials"
Sun, Rong, Ruxu Du y Yu Shuhui. Functional nanocomposite materials. Durnten-Zurich: Trans Tech Publishing, 2012.
Buscar texto completoGulati, Shikha, ed. Chitosan-Based Nanocomposite Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5338-5.
Texto completoMittal, Vikas. Advances in polymer nanocomposite technology. Hauppauge, NY: Nova Science Publishers, 2009.
Buscar texto completoMahler, Erne y Detlev Seiler. Carbon nanotube and nanocomposite research. Hauppauge, N.Y: Nova Science Publishers, 2011.
Buscar texto completoKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials III. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68364-1.
Texto completoKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials II. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52359-6.
Texto completoKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials I. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43009-2.
Texto completoAvalos Belmontes, Felipe, Francisco J. González y Miguel Ángel López-Manchado, eds. Green-Based Nanocomposite Materials and Applications. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18428-4.
Texto completoKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials IV. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23701-0.
Texto completoPogrebnjak, Alexander D., Yang Bing y Martin Sahul, eds. Nanocomposite and Nanocrystalline Materials and Coatings. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2667-7.
Texto completoCapítulos de libros sobre el tema "Formulation of Nanocomposite Materials"
Salam, Haipan y Yu Dong. "Properties of Optimal Material Formulation of Bioepoxy/Clay Nanocomposites". En Bioepoxy/Clay Nanocomposites, 171–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_6.
Texto completoSalam, Haipan y Yu Dong. "Morphological Structures of Bioepoxy/Clay Nanocomposites with Optimum Material Formulation". En Bioepoxy/Clay Nanocomposites, 145–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_5.
Texto completoParameswaranpillai, Jyotishkumar, Nishar Hameed, Thomas Kurian y Yingfeng Yu. "Introduction to Nanomaterials and Nanocomposites". En Nanocomposite Materials, 1–4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-2.
Texto completoGatos, K. G. y Y. W. Leong. "Classification of Nanomaterials and Nanocomposites". En Nanocomposite Materials, 5–36. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-3.
Texto completoRamazani S.A., A., Y. Tamsilian y M. Shaban. "Synthesis of Nanomaterials". En Nanocomposite Materials, 37–80. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-4.
Texto completoRodriguez, Veronica Marchante y Hrushikesh A. Abhyankar. "Optical Properties of Nanomaterials". En Nanocomposite Materials, 81–103. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-5.
Texto completoGashti, Mazeyar Parvinzadeh, Farbod Alimohammadi, Amir Kiumarsi, Wojciech Nogala, Zhun Xu, William J. Eldridge y Adam Wax. "Microscopy of Nanomaterials". En Nanocomposite Materials, 105–28. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-6.
Texto completoShokoohi, Shirin, Ghasem Naderi y Aliasghar Davoodi. "Mechanical Properties of Nanomaterials". En Nanocomposite Materials, 129–45. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-7.
Texto completoNasirpouri, Farzad. "Electrodeposited Nanocomposite Films". En Electrodeposition of Nanostructured Materials, 289–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_7.
Texto completoSalam, Haipan y Yu Dong. "The Effects of Material Formulation and Manufacturing Process on Mechanical and Thermal Properties of Conventional Epoxy/Clay Nanocomposites". En Bioepoxy/Clay Nanocomposites, 97–112. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_3.
Texto completoActas de conferencias sobre el tema "Formulation of Nanocomposite Materials"
Advincula, Rigoberto C. "Superhydrophobic and Nanostructured HPHT Stable Polybenzoxazine Nanocomposite Coatings for Oil and Gas". En CORROSION 2019, 1–7. NACE International, 2019. https://doi.org/10.5006/c2019-13524.
Texto completoLEPADATU, Daniel, Loredana JUDELE, Ioana ENTUC, Eduard PROASPAT y Gabriel SANDULACHE. "NANOPARTICLES AND RECYCLABLE WASTE IN CONSTRUCTION MATERIALS. FROM PRACTICAL NECESSITY TO ADVANCED SOLUTIONS". En SGEM International Multidisciplinary Scientific GeoConference, 231–38. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024v/6.2/s25.29.
Texto completoTian, Zhiting, Sang Kim, Ying Sun y Bruce White. "A Molecular Dynamics Study of Thermal Conductivity in Nanocomposites via the Phonon Wave Packet Method". En ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89272.
Texto completoTallman, T. N. "Strain Estimation From Conductivity Changes in Piezoresistive Nanocomposites". En ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9012.
Texto completoTalamadupula, Krishna Kiran y Gary D. Seidel. "Multiscale Modeling of Effective Piezoresistivity and Implementation of Non-Local Damage Formulation in Nanocomposite Bonded Explosives". En 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0903.
Texto completoZhao, Dongfang, Jacob Meves, Anirban Mondal, Mrinal C. Saha y Yingtao Liu. "Additive Manufacturing of Embedded Strain Sensors in Structural Composites". En ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94366.
Texto completoLuo, Wenyuan, Yingtao Liu, Mrinal Saha, Steven Patterson y Thomas Robison. "Fabrication, Optimization, and Characterization of PDMS/CNF Nanocomposite Sensor Arrays". En ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86269.
Texto completoUttley, Katherine, Anika Galvan, Matthew Nakatsuka y Marco Basile. "High Temperature Compatible, Field-Deployable Heat Exchanger Nanocomposite Treatments". En Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35384-ms.
Texto completoBayar, Selen, Feridun Delale, Benjamin Liaw, Jackie Ji Li, Jerry Chung, Matthew Dabrowski y Ramki Iyer. "An In-Depth Study on the Mechanical and Thermal Properties of Nanoclay Reinforced Polymers at Various Temperatures". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37341.
Texto completoHernandez, J. A., H. Zhu, F. Semperlotti y T. N. Tallman. "The Transient Response of Piezoresistive CNF-Modified Epoxy Rods to One-Dimensional Wave Packet Excitation". En ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67801.
Texto completoInformes sobre el tema "Formulation of Nanocomposite Materials"
Roy, R. y S. Komarneni. Multifunctional nanocomposite materials. Office of Scientific and Technical Information (OSTI), noviembre de 1991. http://dx.doi.org/10.2172/6977177.
Texto completoHunt, A. J., M. Ayers y W. Cao. Aerogel nanocomposite materials. Office of Scientific and Technical Information (OSTI), mayo de 1995. http://dx.doi.org/10.2172/105119.
Texto completoRoy, R. y S. Komarneni. Multifunctional nanocomposite materials. Progress report. Office of Scientific and Technical Information (OSTI), noviembre de 1991. http://dx.doi.org/10.2172/10187528.
Texto completoStormont, John. Wellbore Seal Repair Using Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), agosto de 2016. http://dx.doi.org/10.2172/1337552.
Texto completoCollins, Eric, Michelle Pantoya, Andreas A. Neuber, Michael Daniels y Daniel Prentice. Piezoelectric Ignition of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, enero de 2013. http://dx.doi.org/10.21236/ada597296.
Texto completoPotter, Jr y Barrett G. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics. Fort Belvoir, VA: Defense Technical Information Center, junio de 2012. http://dx.doi.org/10.21236/ada562250.
Texto completoKrishnan, Sitaraman, John McLaughlin y Dipankar Roy. Novel Nanocomposite Materials for Solar Cell Fabrication. Fort Belvoir, VA: Defense Technical Information Center, enero de 2012. http://dx.doi.org/10.21236/ada570684.
Texto completoPantoya, Michelle L. Combustion and Ignition Studies of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2010. http://dx.doi.org/10.21236/ada545482.
Texto completoHash, M. C., V. N. Zyryanov, J. K. Basco y D. B. Chamberlain. Fissile Materials Disposition Formulation Report. Office of Scientific and Technical Information (OSTI), junio de 1999. http://dx.doi.org/10.2172/802089.
Texto completoHaglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), noviembre de 2018. http://dx.doi.org/10.2172/1481179.
Texto completo