Literatura académica sobre el tema "Functional nanoparticles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Functional nanoparticles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Functional nanoparticles"
Cruz-Acuña, Melissa, Justin R. Halman, Kirill A. Afonin, Jon Dobson y Carlos Rinaldi. "Magnetic nanoparticles loaded with functional RNA nanoparticles". Nanoscale 10, n.º 37 (2018): 17761–70. http://dx.doi.org/10.1039/c8nr04254c.
Texto completoCatala, Laure, Florence Volatron, Daniela Brinzei y Talal Mallah. "Functional Coordination Nanoparticles". Inorganic Chemistry 48, n.º 8 (20 de abril de 2009): 3360–70. http://dx.doi.org/10.1021/ic8012574.
Texto completoBai, Ying, Chia-Chih Chang, Umesh Choudhary, Irem Bolukbasi, Alfred J. Crosby y Todd Emrick. "Functional droplets that recognize, collect, and transport debris on surfaces". Science Advances 2, n.º 10 (octubre de 2016): e1601462. http://dx.doi.org/10.1126/sciadv.1601462.
Texto completoXia, Dong, Peng Huang, Heng Li y Noelia Rubio Carrero. "Fast and efficient electrical–thermal responses of functional nanoparticle decorated nanocarbon aerogels". Chemical Communications 56, n.º 92 (2020): 14393–96. http://dx.doi.org/10.1039/d0cc03784b.
Texto completoJain, N. K. "Functional polymeric nanoparticles in nanomedicine". Nanomedicine: Nanotechnology, Biology and Medicine 2, n.º 4 (diciembre de 2006): 311–12. http://dx.doi.org/10.1016/j.nano.2006.10.133.
Texto completoMyakonkaya, Olesya, Zhiyong Hu, Muhammad Faizan Nazar y Julian Eastoe. "Recycling Functional Colloids and Nanoparticles". Chemistry – A European Journal 16, n.º 39 (8 de septiembre de 2010): 11784–90. http://dx.doi.org/10.1002/chem.201000942.
Texto completoThanh, Nguyễn Thi Kim. "Functional nanoparticles for biomedical applications". Nanoscale 5, n.º 23 (2013): 11338. http://dx.doi.org/10.1039/c3nr90095a.
Texto completoXie, M. X., L. Jiang, Z. P. Xu y D. Y. Chen. "Monofunctional polymer nanoparticles prepared through intramolecularly cross-linking the polymer chains sparsely grafted on the surface of sacrificial silica spheres". Chemical Communications 51, n.º 10 (2015): 1842–45. http://dx.doi.org/10.1039/c4cc07885c.
Texto completoZhang, Ping, Gedeng Ruan, Amy T. Kan y Mason B. Tomson. "Functional scale inhibitor nanoparticle capsule delivery vehicles for oilfield mineral scale control". RSC Advances 6, n.º 49 (2016): 43016–27. http://dx.doi.org/10.1039/c6ra05427g.
Texto completoZaichenko, Alexander, Natalya Mitina, Oleh Shevchuk, Katerina Rayevska, Volodymyr Lobaz, Taras Skorokhoda y Rostyslav Stoika. "Development of novel linear, block, and branched oligoelectrolytes and functionally targeting nanoparticles". Pure and Applied Chemistry 80, n.º 11 (1 de enero de 2008): 2309–26. http://dx.doi.org/10.1351/pac200880112309.
Texto completoTesis sobre el tema "Functional nanoparticles"
Campioli, Elisa. "Functional fluorescent organic nanoparticles". Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00954407.
Texto completoGass, James. "Functional Magnetic Nanoparticles". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4047.
Texto completoBeyazit, Selim. "Functional nanoparticles for biomedical applications". Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2163.
Texto completoThis thesis describes the development of novel methods to obtain versatile, functional nanoparticles that can potentially be used for biomedical applications such as drug delivery, bioassays and bioimaging. Nanomaterials are versatile tools that have found applications as drug carriers, bioimaging or biosensing. In particular, core-shell type nanoparticles have attracted much attention due to their small size, high surface to volume ratio and biocompatibility. In this regard, we propose in the first part of the thesis (Chapter 2), a novel method to obtain core-shell nanoparticles via combined radical emulsion and living polymerizations. Polystyrene core seeds of 30-40 nm, with a narrow size distribution and surface-bound iniferter moieties were used to further initiate polymerization of a polymer shell. Core-shell nanoparticles were prepared in this way. Different types of shells : anionic, zwitterionic, thermoresponsive or molecularly imprinted shells, were thus grafted. Our method is a versatile platform with the ability to add multi-functionalities in either the core for optical sensing or/and the shell for cell interaction and toxicity studies, as well as receptor materials for cell imaging. In the second part of the thesis (Chapter 3), we describe a novel and versatile method for surface modification of upconverting nanoparticles (UCPs). UCPs are lanthanide-doped fluorescent nanocrystals that have recently attracted much attention. Their fluorescence is excitated in the near infrared, which makes them ideal as labels in biomedical applications such as bioimaging and bioassays, since the autofluorescence background is minimized compared to organic dyes and quantum dots. However, UCPs are hydrophobic and non-compatible with aqueous media, therefore prior surface modification is essential. The strategy that we propose makes use oft he UV or Vis emission light of near-infrared photoexcited upconverting nanoparticles, as secondary light source for the localized photopolymerization of thin hydrophilic shells around the UCPs. Our method offers great advantages like ease of application and rapid surface functionalization for attaching various ligands and therefore can provide a platform to prepare polymeric-encapsulated UCPs for applications in bioassays, optical imaging and drug delivery. Stimuli responsive hydrogels are materials that can change their physico-chemical properties in response to external stimuli such as temperature, pH or light. These smart materials play critical roles in biomedical applications such as drug delivery or tissue engineering. The third part of the thesis (Chapter 4) proposes a novel method for obtaining photo and pH-responsive supramolecularly crosslinked hydrogels. Two building blocks, one containing photoresponsive 4-[(4-methacryloyloxy)phenylazo] benzoic acid and the other, consisting of cationic 2-(diethylamino)ethyl methacrylate units, were first synthesized. Combining the two building blocks yielded photo and pH responsive monodisperse 100-nm particles. These nanoparticles can be eventually utilized for drug delivery, especially delivery of biomolecules such as siRNAs or proteins. In conclusion, we have designed several new efficient, versatile, generic and easily applicable methods to obtain functionalized polymer nanoparticles and nanocomposites that can be applied in various biomedical domains like drug delivery, biosensing, bioassays and bioimaging
Wan, Congshan. "Functional nanoparticles: synthesis and simulation". Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53074.
Texto completoKhanal, Manakamana. "Functional nanoparticles for biological applications". Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10100/document.
Texto completoFunctionalized nanoparticles continue to attract interest in biomedical applications and bioassays and have become a key focus in nanobiotechnology research. One of the primal focuses of the research work was the development of versatile surface functionalization strategies for different nanoparticles ranging from diamond nanostructures to iron oxide nanoparticles, silica particles and lipid nanocapsules. One particular aim was the introduction of various functionalities onto the same nanoparticles using either dopamine-derived ligands or Cu(I) catalyzed “click” chemistry strategies. This resulted in well-dispersed nanostructures with different ligands present on the surface of the nanostructures. The possibilities to use such nanostructures for the inhibition of viral infections and for gene delivery were investigated. Indeed, inhibiting the entry of HCV has been identified as a potential therapeutic strategy. It could be demonstrated that various nanoparticles can be efficiently engineered to display “lectin-like” properties and indeed behave as effective viral entry inhibitors, in vitro. The pseudo-lectins investigated here include iron-, silica-, diamond-, (lipid nanocapsule)-derived nanoparticles all featuring surface-attached boronic acid moieties. In parallel to work on HCV entry inhibition, the potential of diamond nanoparticles as gene delivery system was investigated. Water dispersible and biocompatible polypegylated diamond particles were prepared using different dopamine ligands and their effect on gene delivery has been studied
Pawluk, Tiffany. "Iridium nanoparticles : a density functional theory study /". Available to subscribers only, 2005. http://proquest.umi.com/pqdweb?did=1075692711&sid=20&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Texto completoAarons, Jolyon. "Density functional theory applied to metallic nanoparticles". Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/418013/.
Texto completoWaltz, Florian [Verfasser]. "Inorganic nanoparticles for functional coating applications / Florian Waltz". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1030087733/34.
Texto completoAlayo, Bueno Nerea. "Fabrication methods for functional nanoparticles and interdigitated nanoelectrodes". Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/129122.
Texto completoThis thesis presents the development of novel nanofabrication methods for the preparation of functional nanoparticles and interdigitated nanoelectrodes. The work includes the design, fabrication and characterization of different approaches that overcome some of the current challenges in nanotechnology. These approaches take advantage of the enhanced properties that arise from the nanometer scale dimensions. First, a novel method to study the electrical conductivity of single nanoparticles has been developed. This method is based on the preparation of a platform where a thin film of a new nanocomposite is placed. The nanocomposite is composed of nanocrystals embedded in a highly isolating resist. It facilitated the connection of the particles by AFM tip while keeping them electrically isolated from their surroundings. The design and optimization of the method, as well as the preliminary electrical results have been exposed. Moreover, metallic nanoparticles arrays have been fabricated by nanoimprint lithography. This technique is a step forward in the nanoimprint lithography’s state of the art, since allows the fabrication of high aspect ratio nanostructures, facilitates the lift-off, provide alternative to obtain nanoparticles of different size, shapes and materials, and even combination of them. Plasmonic resonance behavior of the particles has also been evaluated for their application as localized surface plasmon resonance (LSPR) sensors. In addition, fabrication and characterization of interdigitated nanoelectrodes to be used as (bio)sensors have been developed, including the adaptation of nanolithography methods and packaging strategies. The functional characterization of the interdigitated nanoelectrodes showed an improvement on the selective detection of dopamine in presence of ascorbic acid resulted from the miniaturization of the devices. The experimental results are correlated to finite element simulations. In this thesis, it is demonstrated that the new developed methods allow fabricating nanostructures and nanodevices with novel and enhanced functionalities. Moreover, the presented methods can be further applied to different areas, such as biosensors, nano/microelectronics, medicine or energy.
Myakonkaya, Olesya. "Separation and Recovery of Functional Colloids and Nanoparticles". Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526011.
Texto completoLibros sobre el tema "Functional nanoparticles"
Hepel, Maria y Chuan-Jian Zhong, eds. Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices Volume 1. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1112.
Texto completoHepel, Maria y Chuan-Jian Zhong, eds. Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices Volume 2. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1113.
Texto completoBarchanski, Annette. Laser-Generated Functional Nanoparticle Bioconjugates. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13515-7.
Texto completoShinkinō biryūshi zairyō no kaihatsu to purosesu gijutsu: Development and processing technology of new function corpuscle materials. Tōkyō-to Chiyoda-ku: Shīemushī Shuppan, 2012.
Buscar texto completoPrasad, Ram, Jeyabalan Sangeetha y Devarajan Thangadurai. Functional Bionanomaterials: From Biomolecules to Nanoparticles. Springer, 2020.
Buscar texto completoOhio) Functional Fillers and Nanoscale Minerals Symposium (2003 : Cincinnati. Functional Fillers and Nanoscale Minerals. Society for Mining Metallurgy & Exploration, 2003.
Buscar texto completoBerger, Thomas y Oliver Diwald. Metal Oxide Nanoparticles: Formation, Functional Properties and Interfaces. Wiley & Sons, Incorporated, John, 2020.
Buscar texto completoBerger, Thomas y Oliver Diwald. Metal Oxide Nanoparticles: Formation, Functional Properties and Interfaces. Wiley & Sons, Limited, John, 2021.
Buscar texto completoBerger, Thomas y Oliver Diwald. Metal Oxide Nanoparticles: Formation, Functional Properties and Interfaces. Wiley & Sons, Incorporated, John, 2020.
Buscar texto completoChemistry, Royal Society of. Nanoparticles with Morphological and Functional Anisotropy: Faraday Discussion 191. Royal Society of Chemistry, The, 2016.
Buscar texto completoCapítulos de libros sobre el tema "Functional nanoparticles"
Teo, Anges, Kelvin K. T. Goh y Sung Je Lee. "Nanoparticles and Nanoemulsions". En Functional Foods and Dietary Supplements, 405–35. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118227800.ch15.
Texto completoCosta-Almeida, Raquel, Raquel Soares y Raquel Costa. "Polyphenol-Based Nanoparticles as Multifaceted Diabetes Modulators". En Functional Bionanomaterials, 251–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41464-1_11.
Texto completoEchegoyen, Luis, Amit Palkar y Frederic Melin. "Electrochemistry of Carbon Nanoparticles". En Electrochemistry of Functional Supramolecular Systems, 201–28. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470583463.ch8.
Texto completoZywietz, Urs, Tim Fischer, Andrey Evlyukhin, Carsten Reinhardt y Boris Chichkov. "Laser Printing of Nanoparticles". En Laser Printing of Functional Materials, 251–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527805105.ch11.
Texto completoHussein, Hanaa Ali y Mohd Azmuddin Abdullah. "Biosynthesis, Mechanisms, and Biomedical Applications of Silver Nanoparticles". En Functional Bionanomaterials, 313–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41464-1_14.
Texto completoMartin-Gonzalez, Maria Fernanda San. "Solid lipid nanoparticles and applications". En Nanotechnology and Functional Foods, 214–23. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118462157.ch13.
Texto completoSabliov, Cristina M. y Carlos E. Astete. "Polymeric nanoparticles for food applications". En Nanotechnology and Functional Foods, 272–96. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118462157.ch17.
Texto completoJana, Nikhil R. "Common Issues Faced in Preparation of Functional Nanoparticles and Guidelines to Solve Them". En Colloidal Nanoparticles, 111–22. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429165603-7.
Texto completoDong, Hongying, Yingchai Shuang, Qinghong Sun, Qi Ren y Wen Ma. "Preparation of LaPO4 Nanoparticles by Coprecipitation Method". En Advanced Functional Materials, 643–49. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0110-0_71.
Texto completoSanpo, Noppakun, Cuie Wen, Christopher C. Berndt y James Wang. "Multifunctional Spinel Ferrite Nanoparticles for Biomedical Application". En Advanced Functional Materials, 183–217. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118998977.ch4.
Texto completoActas de conferencias sobre el tema "Functional nanoparticles"
Molli, Muralikrishna, Girish D. Salian, Sai Kiran Aditha, V. Sai Muthukumar, Tanu Mimani Rattan, S. Amrithapandian, B. K. Panigrahi y Venkataramaniah Kamisetti. "Vanadium pentoxide nanoparticles based saturable absorbers". En FUNCTIONAL MATERIALS: Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736894.
Texto completoRamesh, S., S. N. R. Rao, B. Parvatheeswara Rao y P. S. V. Subba Rao. "Low temperature chemical synthesis of ferrite nanoparticles". En FUNCTIONAL MATERIALS: Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736895.
Texto completoBartczak, Dorota, Otto L. Muskens, Simone Nitti, Tilman Sanchez-Elsner, Timothy M. Millar y Antonios G. Kanaras. "Functional nanoparticles in cells". En SPIE BiOS, editado por Wolfgang J. Parak, Kenji Yamamoto y Marek Osinski. SPIE, 2012. http://dx.doi.org/10.1117/12.905082.
Texto completoAlexaki, Konstantina, Maria-Eleni Kyriazi, Afaf H. El-Sagheer, Tom Brown y Antonios G. Kanaras. "Engineering functional nanoparticles for delivery in cells". En Colloidal Nanoparticles for Biomedical Applications XV, editado por Marek Osiński y Antonios G. Kanaras. SPIE, 2020. http://dx.doi.org/10.1117/12.2538470.
Texto completoParmar, R. J., V. R. Solanki, R. J. Pathak y M. D. Parmar. "Synthesis and characterization of tin sulfide nanoparticles". En FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982107.
Texto completoShrimali, V. G., Keval Gadani, K. N. Rathod, Hetal Boricha, Pooja Prajapati, M. J. Keshvani, B. R. Kataria et al. "Investigations of magnetoelectric behavior in BiFe0.95Co0.05O3 nanoparticles". En FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982136.
Texto completoSingh, V. P., R. K. Singh, D. Das y Chandana Rath. "Detection of defects in ZnO nanoparticles by spectroscopic measurements". En FUNCTIONAL MATERIALS: Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736887.
Texto completoSagapariya, Khushal, K. N. Rathod, Keval Gadani, Hetal Boricha, V. G. Shrimali, Bhargav Rajyaguru, Amiras Donga et al. "Investigations on structural, optical and electrical properties of V2O5 nanoparticles". En FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982084.
Texto completoMallick, P., C. S. Sahoo y N. C. Mishra. "Structural and optical characterization of NiO nanoparticles synthesized by sol-gel route". En FUNCTIONAL MATERIALS: Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736893.
Texto completoMahata, S., S. S. Mahato, M. M. Nandi y B. Mondal. "Synthesis of TiO[sub 2] nanoparticles by hydrolysis and peptization of titanium isopropoxide solution". En FUNCTIONAL MATERIALS: Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736892.
Texto completoInformes sobre el tema "Functional nanoparticles"
Leech, Anna y Jeremy Walker. Development of Enzyme-Containing Functional Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2012. http://dx.doi.org/10.21236/ada564802.
Texto completoLowry, Gregory V. Transport, Targeting and Applications of Functional Nanoparticles for Degradation of Chlorinated Organic Solvents. Office of Scientific and Technical Information (OSTI), junio de 2005. http://dx.doi.org/10.2172/885168.
Texto completoLowry, Gregory V. Transport, Targeting and Applications of Functional Nanoparticles for Degradation of Chlorinated Organic Solvents. Office of Scientific and Technical Information (OSTI), junio de 2003. http://dx.doi.org/10.2172/838374.
Texto completoLowry, Gregory V. Transport, Targeting and Applications of Functional Nanoparticles for Degradation of Chlorinated Organic Solvents. Office of Scientific and Technical Information (OSTI), junio de 2005. http://dx.doi.org/10.2172/885040.
Texto completoGregory V. Lowry, Sara Majetich, Krzysztof Matyjaszewski, David Sholl y Robert Tilton. Transport, Targeting, and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents. Office of Scientific and Technical Information (OSTI), diciembre de 2006. http://dx.doi.org/10.2172/902659.
Texto completoRedden, George y Gregory V. Lowry. Transport, Targeting, and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic solvents. Office of Scientific and Technical Information (OSTI), junio de 2003. http://dx.doi.org/10.2172/838375.
Texto completoLowry, Gregory, Sara Majetich, Krzysztof Matyjaszewski, David Sholl y Robert Tilton. Transport, Targeting, and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic solvents. Office of Scientific and Technical Information (OSTI), junio de 2004. http://dx.doi.org/10.2172/838690.
Texto completoRedden, George D., Dan Ginosar, Paul Meakin y Harry Rollins. Transport, Targeting, and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic solvents. Office of Scientific and Technical Information (OSTI), junio de 2004. http://dx.doi.org/10.2172/838695.
Texto completoWang, Lijun. Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles. Office of Scientific and Technical Information (OSTI), enero de 2011. http://dx.doi.org/10.2172/1029600.
Texto completo