Literatura académica sobre el tema "Gas channels"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gas channels".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Gas channels"
Gruznov, Vladimir M. y Alexander B. Vorozhtsov. "Gas-Dynamic Kinetics of Vapour Sampling in the Detection of Explosives". Molecules 24, n.º 23 (3 de diciembre de 2019): 4409. http://dx.doi.org/10.3390/molecules24234409.
Texto completoWalewska, Agnieszka, Adam Szewczyk y Piotr Koprowski. "Gas Signaling Molecules and Mitochondrial Potassium Channels". International Journal of Molecular Sciences 19, n.º 10 (18 de octubre de 2018): 3227. http://dx.doi.org/10.3390/ijms19103227.
Texto completoПохабов, Д. А., А. Г. Погосов, Е. Ю. Жданов, А. К. Бакаров y А. А. Шкляев. "Двухканальный электронный транспорт в подвешенных квантовых точечных контактах с боковыми затворами". Физика и техника полупроводников 54, n.º 12 (2020): 1344. http://dx.doi.org/10.21883/ftp.2020.12.50235.9512.
Texto completoOffermans, Peter, Roman Vitushinsky, Mercedes Crego-Calama y Sywert H. Brongersma. "Gas Sensing with AlGaN/GaN 2DEG Channels". Procedia Engineering 25 (2011): 1417–20. http://dx.doi.org/10.1016/j.proeng.2011.12.350.
Texto completoSchneider, I. A., D. Kramer, A. Wokaun y G. G. Scherer. "Oscillations in Gas Channels". Journal of The Electrochemical Society 154, n.º 8 (2007): B770. http://dx.doi.org/10.1149/1.2742291.
Texto completoSchneider, I. A., S. A. Freunberger, D. Kramer, A. Wokaun y G. G. Scherer. "Oscillations in Gas Channels". Journal of The Electrochemical Society 154, n.º 4 (2007): B383. http://dx.doi.org/10.1149/1.2435706.
Texto completoHerrera, Marcela y Jeffrey L. Garvin. "Aquaporins as gas channels". Pflügers Archiv - European Journal of Physiology 462, n.º 4 (2 de agosto de 2011): 623–30. http://dx.doi.org/10.1007/s00424-011-1002-x.
Texto completoSzwast, Maciej y Zbigniew Szwast. "A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel". Chemical and Process Engineering 36, n.º 2 (1 de junio de 2015): 151–69. http://dx.doi.org/10.1515/cpe-2015-0012.
Texto completoAlexiadis, A., M. P. Dudukovic, P. Ramachandran, A. Cornell, J. Wanngård y A. Bokkers. "The Flow Pattern in Single and Multiple Submerged Channels with Gas Evolution at the Electrodes". International Journal of Chemical Engineering 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/392613.
Texto completoBantel, Carsten, Mervyn Maze y Stefan Trapp. "Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener". Anesthesiology 112, n.º 3 (1 de marzo de 2010): 623–30. http://dx.doi.org/10.1097/aln.0b013e3181cf894a.
Texto completoTesis sobre el tema "Gas channels"
Tribbe, Christian. "Gas/liquid flow in cylindrical and corrugated channels". Thesis, University of Surrey, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244760.
Texto completoWu, Xuemei. "Monte-Carlo modeling of turbulent dispersion of small particles in channels". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/17389.
Texto completoGoodwin, William A. "The characteristics of reduced-density channels in NH3-N2 gas mixtures". Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/22941.
Texto completoDounia, Omar. "Numerical investigation of gas explosion phenomena in confined and obstructed channels". Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/20584/1/DOUNIA_Omar.pdf.
Texto completoSundberg, Jenny. "Heat Transfer Correlations for Gas Turbine Cooling". Thesis, Linköping University, Department of Mechanical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5446.
Texto completoA first part of a ”Heat Transfer Handbook” about correlations for internal cooling of gas turbine vanes and blades has been created. The work is based on the cooling of vanes and blades 1 and 2 on different Siemens Gas Turbines. The cooling methods increase the heat transfer in the cooling channels by increasing the heat transfer coefficient and/or increasing the heat transfer surface area. The penalty paid for the increased heat transfer is higher pressure losses.
Three cooling methods, called rib turbulated cooling, matrix cooling and impingement cooling were investigated. Rib turbulated cooling and impingement cooling are typically used in the leading edge or mid region of the airfoil and matrix cooling is mostly applied in the trailing edge region.
Literature studies for each cooling method, covering both open literature and internal reports, were carried out in order to find correlations developed from tests. The correlations were compared and analyzed with focus on suitability for use in turbine conditions. The analysis resulted in recommendations about what correlations to use for each cooling method.
For rib turbulated cooling in square or rectangular ducts, four correlations developed by Han and his co-workers [3.5], [3.8], [3.9] and [3.6] are recommended, each valid for different channel and rib geometries. For U-shaped channels, correlations of Nagoga [3.4] are recommended.
Matrix cooling is relatively unknown in west, but has been used for many years in the former Soviet Union. Therefore available information in open literature is limited. Only one source of correlations was found. The correlations were developed by Nagoga [4.2] and are valid for closed matrixes. Siemens Gas Turbines are cooled with open matrixes, why further work with developing correlations is needed.
For impingement cooling on a flat target plate, a correlation of Florschuetz et al. [5.7] is recommended for inline impingement arrays. For staggered arrays, both the correlations of Florschuetz et al. [5.7] and Höglund [5.8] are suitable. The correlations for impingement on curved target plate gave very different results. The correlation of Nagoga is recommended, but it is also advised to consult the other correlations when calculating heat transfer for a specific case.
Another part of the work has been to investigate the codes of two heat transfer programs named Q3D and Multipass, used in the Siemens offices in Finspång and Lincoln, respectively. Certain changes in the code are recommended.
Penache, Dan Lucius. "Heavy ion beam transport in laser initiated high current gas discharge channels". Phd thesis, [S.l.] : [s.n.], 2002. http://elib.tu-darmstadt.de/diss/000245.
Texto completoKhamaj, J. A. J. "An experimental study of heat transfer in the cooling channels of gas turbine rotor blades". Thesis, Swansea University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637783.
Texto completoSiow, Erh Chang. "Numerical solution of a two-phase model for laminar film condensation of vapour-gas mixtures in channels". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ62848.pdf.
Texto completoGöhring, Michael [Verfasser]. "Numerical Investigation of Internal Two-Pass Gas Turbine Cooling Channels Under the Influence of Rotation / Michael Göhring". München : Verlag Dr. Hut, 2020. http://d-nb.info/1219470112/34.
Texto completoLiu, Yao-Hsien. "Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers". [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3196.
Texto completoLibros sobre el tema "Gas channels"
Vilemas, Jurgis. Heat transfer in gas-cooled annular channels. Editado por Chesna B, Survila V, Zhukauskas A. A. 1923- y Karni J. Washington [D.C.]: Hemisphere Pub. Corp., 1987.
Buscar texto completoV, Simonis y Adomaitis J. E, eds. Heat transfer augmentation in gas-cooled channels. Boca Raton: CRC Press, 1994.
Buscar texto completo1923-, Zhukauskas A. A., ed. Radiation and combined heat transfer in channels. Washington: Hemisphere Pub., 1987.
Buscar texto completoGoodwin, William A. The characteristics of reduced-density channels in NH3-N2 gas mixtures. Monterey, California: Naval Postgraduate School, 1988.
Buscar texto completoWayman, James L. A variance detector for signal-gap discrimination in noisy speech channels. Monterey, California: Naval Postgraduate School, 1985.
Buscar texto completoRodrigue, D. MR-06, Channel Armor gap crevasse: Summary data and graphics. Baton Rouge, La: Louisiana Department of Natural Resources, Coastal Restoration Division, Biological Monitoring Section, 2003.
Buscar texto completoJunjie, Wang y Peng Leiqing, eds. Ying xiao qu dao jue ce yu guan li: Marking channels : decision and management. 3a ed. Beijing: Zhongguo ren min da xue chu ban she, 2015.
Buscar texto completoChang, Tony H. D. Effects of interfacial level gradient and channel slope on interfacial shear stress in near-horizontal stratified gas-liquid flows. Ottawa: National Library of Canada, 1993.
Buscar texto completoNi, Pengfei. Chengdu cheng shi guo ji ying xiao zhan lue: Chuang zao tian yuan cheng shi de shi jie biao gan = Strategies of Chengdu's international city marketing. Beijing Shi: She hui ke xue wen xian chu ban she, 2010.
Buscar texto completoCapsuto, Steven. Alternate channels: The uncensored story of gay and lesbian images on radio and television. New York: Ballantine Books, 2000.
Buscar texto completoCapítulos de libros sobre el tema "Gas channels"
Apollonov, Victor. "Interaction of an OPD with a Gas". En High-Conductivity Channels in Space, 39–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02952-4_4.
Texto completoZhdanov, V. M. "Kinetic Phenomena in the Rarefied Gas Mixtures Flowing Through Channels". En Rarefied Gas Dynamics, 1255–67. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2467-6_57.
Texto completoJarinov, V. G. "Vacuum Ejectors with Appreciably Uneven Flows in Channels at Low Reynolds Numbers". En Rarefied Gas Dynamics, 1405–12. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2467-6_72.
Texto completoAlducin, Maite, Ricardo Díez Muiño y J. Iñaki Juaristi. "Energy Dissipation Channels in Reactive and Non-reactive Scattering at Surfaces". En Dynamics of Gas-Surface Interactions, 371–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32955-5_15.
Texto completoHorioka, K., H. Tamura, H. Kanazawa y K. Kasuya. "Initiation Processes and Development of Laser-Induced Low-Pressure Spark Channels". En Gas Flow and Chemical Lasers, 402–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71859-5_60.
Texto completoDreyer, T. "Sand Body Dimensions and Infill Sequences of Stable, Humid-Climate Delta Plain Channels". En North Sea Oil and Gas Reservoirs—II, 337–51. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0791-1_29.
Texto completoChan, Tien Yin, Shun Tian Lin, Hua Jun Chang y Chia Liang Chen. "Fabrication of Gas-Permeable Die Materials Having Orthogonally Arrayed Pore Channels". En Progress in Powder Metallurgy, 961–64. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.961.
Texto completoAbdullah Auzer, Khazal. "Transmission Channels of the ‘Resource Curse’ Reappraised". En Institutional Design and Capacity to Enhance Effective Governance of Oil and Gas Wealth: The Case of Kurdistan Region, 33–66. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4518-9_3.
Texto completoLyamin, G. A., V. V. Mitrofanov, A. V. Pinaev y V. A. Subbotin. "Propagation of Gas Explosion in Channels with Uneven Walls and in Porous Media". En Dynamic Structure of Detonation in Gaseous and Dispersed Media, 51–75. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3548-1_3.
Texto completoBandman, Olga. "A Lattice-Gas Model of Fluid Flow through Tortuous Channels of Hydrophilous and Hydrophobic Porous Materials". En Lecture Notes in Computer Science, 168–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03275-2_18.
Texto completoActas de conferencias sobre el tema "Gas channels"
Ramireddy, Sivasankara Reddy, Siddappa Pallavagere Gurusiddappa, V. Kesavan y S. Kishore Kumar. "Computational Study of Flow and Heat Transfer in Matrix Cooling Channels". En ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8252.
Texto completoPrajapati, Anjana N. y Andallib Tariq. "Detailed Heat Transfer Characteristics of Matrix Cooling Channels With Rib Angle 35° Using Liquid Crystal Thermography". En ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2551.
Texto completoMetzger, D. E. y M. K. Sahm. "Heat Transfer Around Sharp 180 Degree Turns in Smooth Rectangular Channels". En ASME 1985 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-gt-122.
Texto completoXiong, Renqiang y J. N. Chung. "Adiabatic Gas-Liquid Two-Phase Flow Patterns in Microchannels". En ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98476.
Texto completoXie, Chong. "Rarefied Gas Flows in Micro-Channels". En RAREFIED GAS DYNAMICS: 23rd International Symposium. AIP, 2003. http://dx.doi.org/10.1063/1.1581624.
Texto completoHan, J. C., P. R. Chandra y S. C. Lau. "Local Heat/Mass Transfer Distribution Around Sharp 180 Degree Turn in MultiPass Rib-Roughened Channels". En ASME 1986 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-gt-114.
Texto completoAksenova, O. A. "Application of Nonlinear Dynamics Methods to Rarefied Gas Flows in Channels". En RAREFIED GAS DYNAMICS: 24th International Symposium on Rarefied Gas Dynamics. AIP, 2005. http://dx.doi.org/10.1063/1.1941542.
Texto completoMayle, R. E. "Pressure Loss and Heat Transfer in Channels Roughened on Two Opposed Walls". En ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-86.
Texto completoParsons, J. A., J. C. Han y C. P. Lee. "Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Four Heated Walls and Radially Outward Cross Flow". En ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-387.
Texto completoRensink, Dirk, Jo¨rg Roth y Stephan Fell. "Liquid Water Transport and Distribution in Fibrous Porous Media and Gas Channels". En ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62087.
Texto completoInformes sobre el tema "Gas channels"
Gamezo, Vadim N. y Elaine S. Oran. Unidirectional Propagation of Gas Detonations in Channels with Sawtooth Walls. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2010. http://dx.doi.org/10.21236/ada521201.
Texto completoProsperetti, A. y W. N. Sharpe. A Fundamental Study of Gas and Vapor Bubble Dynamics in Micro-Channels. Fort Belvoir, VA: Defense Technical Information Center, julio de 1999. http://dx.doi.org/10.21236/ada387423.
Texto completoOlson, Douglas A. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.3959.
Texto completoMicheal Frenkel, Kenneth Kroenlein, V Diky, R.D. Chirico, A. Kazakow, C.D. Muzny y M. Frenkel. Gas Hydrate Research Database and Web Dissemination Channel. Office of Scientific and Technical Information (OSTI), septiembre de 2009. http://dx.doi.org/10.2172/1006283.
Texto completoSmith, James A., Casey J. Jesse, Clark L. Scott y David L. Cottle. Channel Gap Probe EMPIrE Report. Office of Scientific and Technical Information (OSTI), septiembre de 2018. http://dx.doi.org/10.2172/1492033.
Texto completoPowell, Michael, Phillip Gauglitz, Kayte Denslow, Christopher Fischer, David Heldebrant, Matthew Prowant, Susan Sande, James Davis y Monty Telander. Evaluation of Gas Retention in Waste Simulants: Intermediate-Scale Column and Open-Channel-Depth Tests. Office of Scientific and Technical Information (OSTI), febrero de 2014. http://dx.doi.org/10.2172/1149671.
Texto completoCooper, Christopher, Jacob McDonald y Eric Starkey. Wadeable stream habitat monitoring at Congaree National Park: 2018 baseline report. National Park Service, junio de 2021. http://dx.doi.org/10.36967/nrr-2286621.
Texto completoEmery, S. Kerberos Version 5 Generic Security Service Application Program Interface (GSS-API) Channel Binding Hash Agility. RFC Editor, marzo de 2012. http://dx.doi.org/10.17487/rfc6542.
Texto completoIla, Daryush, E. K. Williams, R. L. Zimmerman, P. R. Ashley y D. B. Poker. Fabrication of Optical Channel Waveguides in the GaAs/AlGaAs System by MeV Ion Beam Bombardment. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2000. http://dx.doi.org/10.21236/ada379168.
Texto completoZhou, Q. y Y. Morton. Precise GPS Signal Tracking in Interference and Multipath Environment Using a Multi-Channel Software Receiver. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2010. http://dx.doi.org/10.21236/ada559186.
Texto completo