Literatura académica sobre el tema "Géométrie – Histoire"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Géométrie – Histoire".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Géométrie – Histoire"
Yaméogo, Lassané. "Sidwayaet la Révolution burkinabè d’août 1983 : une histoire à géométrie variable". Le Temps des médias 26, n.º 1 (2016): 181. http://dx.doi.org/10.3917/tdm.026.0181.
Texto completoDelcourt, Jean. "Analyse et géométrie, histoire des courbes gauches De Clairaut à Darboux". Archive for History of Exact Sciences 65, n.º 3 (9 de abril de 2011): 229–93. http://dx.doi.org/10.1007/s00407-010-0078-6.
Texto completoTassy, Pascal. "Une histoire de géométrie et de finesse (ou : comment parler de phylogénétique ?)". Comptes Rendus Palevol 10, n.º 5-6 (julio de 2011): 341–46. http://dx.doi.org/10.1016/j.crpv.2011.05.003.
Texto completoPreveraud, Thomas. "Se déprendre d’Euclide pour enseigner la géométrie : une convergence de pratiques pédagogiques à l’heure des transformations de l’école américaine (1800-1840)". Histoire de l'éducation, n.º 148 (31 de diciembre de 2017): 167–94. http://dx.doi.org/10.4000/histoire-education.3709.
Texto completoBertho, A., M. Dos Santos, A. François y F. Milliat. "Histoire de la prise en charge des cancers bronchopulmonaires non à petites cellules de stade précoce : de la chirurgie à la radiothérapie stéréotaxique". Radioprotection 55, n.º 3 (20 de mayo de 2020): 165–72. http://dx.doi.org/10.1051/radiopro/2020050.
Texto completoLombard, Denys. "Les concepts d'espace et de temps dans l'archipel insulindien". Annales. Histoire, Sciences Sociales 41, n.º 6 (diciembre de 1986): 1385–96. http://dx.doi.org/10.3406/ahess.1986.283355.
Texto completoBoi, Luciano. "1830–1930: Un siècle de géométrie, de C. F. Gauss et B. Riemann à H. Poincaré et E. Cartan; épistémologie, histoire, et mathématiques". Historia Mathematica 16, n.º 3 (agosto de 1989): 269–70. http://dx.doi.org/10.1016/0315-0860(89)90021-9.
Texto completoLahalle, Agnès. "ENFERT (Renaud d’). – L’enseignement du dessin en France. Figure humaine et dessin géométrique (1750-1850)". Histoire de l'éducation, n.º 105 (1 de enero de 2005): 73–76. http://dx.doi.org/10.4000/histoire-education.1089.
Texto completoBello-Chavez, Jhon. "Transformación del método cartesiano en las ediciones de la geometría de Bernard Lamy". Revista Científica 38, n.º 2 (2 de mayo de 2020): 216–28. http://dx.doi.org/10.14483/23448350.14580.
Texto completoBellosta, Hélèna. "Burning Instruments: From Diocles to Ibn Sahl". Arabic Sciences and Philosophy 12, n.º 2 (21 de agosto de 2002): 285–303. http://dx.doi.org/10.1017/s095742390200214x.
Texto completoTesis sobre el tema "Géométrie – Histoire"
Gauthier, Sébastien. "La géométrie des nombres comme discipline (1890- 1945)". Paris 6, 2007. http://www.theses.fr/2007PA066436.
Texto completoModolo, Marie-Eve. "Histoire de la normalisation canonique d'une famille de courbes algébriques : aspects algorithmiques, combinatoires et géométriques". Poitiers, 2007. http://www.theses.fr/2007POIT2277.
Texto completoRomera-Lebret, Pauline. "La nouvelle géométrie du triangle : passage d'une mathématique d'amateurs à une mathématique d'enseignants (1873-1929)". Nantes, 2009. http://www.theses.fr/2009NANT2014.
Texto completoDuring the last third of the XIXe century, amateur mathematicians, lead by the French Émile Lemoine and Henri Brocard, introduce a renewal of interest for the study of new remarkable objects of triangle, the set of which takes the name of new triangle geometry. Between 1873 and 1881, articles consist of mathematical properties of these new remarkable objects of the triangle. In the 1880s, the authors, established in a real European community, try to connect between them the new remarkable objects. They are going to update particular point-point, point-line and line-line correspondences, the general study of which is then realized and trains the geometry of the correspondences. Then the new triangle geometry is constituted by remarkable objects but also by geometrical methods. From the end of 1880s, the remarkable objects of the new triangle geometry appear in textbooks as application of the analytical geometry. Since 1888, the new triangle geometry is integrated as theory into textbooks. We suggest clearing and analyzing the passage of the new triangle geometry since its primary state of amateurs' mathematic up to its final state of teachers' mathematic. The community of the authors of articles, that of the authors of textbooks, reviews and places of researches, the mobilized geometrical methods and the various forms of integration in textbooks are so many perspectives taken into account during this historic research
Boi, Luciano. "Les Géométries non euclidiennes et le problème mathématique et épistémologique de l'espace dans son développement historique : surfaces, variétés, modèles et espaces physiques". Paris, EHESS, 1994. http://www.theses.fr/1994EHES0024.
Texto completoThe object of this work is as ambitious as it is difficult. It sets out to examine the relationship of non-euclidean geometries and the mathematical problem of space. This work does not pretend to propose an exhaustive study. It is intended rather to seek a deepened undestanding, from an historical point of view, of a certain number of concepts and methods which, from this researcher's point of view, are at the origin of the extraordinary development of geometry in the 19th century. This research looks at the conceptual developments of non-euclidean geometries, examines the modes of formation of their fundamental notions and reflects on their key role in the constitution of new fields within mathematics. To this end, the approach adopted is genealogical and thematic. This work seeks to demonstrate the double nature of geometry. As pure mathematical theory, it is constituted from structures and ideal beings, and therefore can be qualified as "form of idealization". As theory which explains nature, it is an "abstract picture" (or a model) of physical phenomenons, in other words, a principle of intelligibility of reality. These two aspects however, and this is one of the principal thesis of this work, are essentially linked. When one takes into consideration the geometrical methods and theories as they have developed from the second half of the 19th century onwards, there is not reason to distinguish a priori between form and content nor between geometrical and physical properties of space. From an epistemological perspective, what is commonly understood to be mathematical geometry and physical geometry, is in fact two distinct yet complementary modes of existence of the same form of knowledge
Viculin, Marina. "Histoire de la nouvelle tendance". Thesis, Paris 4, 2010. http://www.theses.fr/2010PA040103.
Texto completoNew Tendancy movement (NT) is an international group of artists united in the sixties(1961 - 1973) around the exhibition programme at the Gallery of Contemporary Art (Galerijasuvremene umjetnosti) in Zagreb. During its existence, the movement gathered around twohundred artists and differents groups such as GRAV, T, N, Zero, Equipo 57, Dvizhenije, MID etc.The first phase of the movement that lasted until 1968 was characterized by the geometricabstraction and lumino-kinetic art. During the second phase, New Tendancy opened thechapter of numerical arts
Abgrall, Philippe. "Les développements de la géométrie au Xè siècle : la contribution d'al-Quhi". Paris 7, 2002. http://www.theses.fr/2002PA070065.
Texto completoThis Ph D Thesis presents the first synthesis about one of the biggest geometers' mathematical works in the l0th century, Abu Sahl al-Quhi. Heir of the hellenistic geometry, he takes a great place in the double tradition, archimedean and apollonean, being begun a centuty earlier by the Banu Musa and being fmished in the 11th century with Ibn al-Haytham, revealing by the professor Roshdi Rashed in its researches for the last ten years. Al-Quhi left works in almost all the fields of activity which the geometry knew during the l0th century. He took part as well in the extension of ancient chapters, as the geometrical constructions or the study and the application of the conic sections, as on examination of the geometrical transformations, or in the creation of new chapters as that of the projections. Ln sight of this study which presents the critical edition in Arabic, the translation in French and the comment of three of its treaties as well as a scientific correspondence that he had with al-Sabi', it appears that al-Quhi's activity was innovative and played a determining role in the developments of the geometry
Delcourt, Jean. "Analyse et géométrie : les courbes gauches de Clairaut à Serret et Frenet". Paris 6, 2007. http://www.theses.fr/2007PA066416.
Texto completoCousin, Marion. "La "révolution" de l'enseignement de la géométrie dans le Japon de l'ère Meiji (1868-1912) : une étude de l'évolution des manuels de géométrie élémentaire". Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10082/document.
Texto completoDuring the Meijing era, the political context in East Asia led the Japanese authorities to embark on a nationwide modernization program. This resulted in the introduction of Western mathematics, and especially Euclidean geometry into Japanese education. However, as traditional mathematics (was an) were very successful at that time, there were no Japanese translations of texts dealing with this new geometry available at this time. My work focuses on the first Japanese textbooks that were developed, distributed and used during this period of scientific transfer. My analysis concentrates on language and logical reasoning in order to highlight the various phases in the importation and adaptation of Western knowledge to the Japanese context
Moussard, Guillaume. "Les notions de problèmes et de méthodes dans les ouvrages d’enseignement de la géométrie en France (1794-1891)". Nantes, 2015. http://www.theses.fr/2015NANT2084.
Texto completoThis thesis systematically surveys textbooks of elementary geometry and analytic geometry published in France between 1794 and 1891 in order to identify the place of problems and methods, the challenges in introducing them, as well as the authors' arguments on the subject. The choices made are related to the institutional and mathematical contexts. This work led to identify steps towards normalization along the century of the organization of the problems in geometry textbooks, which involves the classification of different types of problems. We show how the presence of problems is related to the preparation of examinations and competitions, to educational intentions of the authors, to the idea of implementing the theory and to the idea of what is geometric activity. We also show that the methods are the focus of the attention not only of geometers, but also, to a large extent, of the teachers. We analyze how the geometrical and analytical methods are renewed in the 19th century at the same time they circulate between the books. Different underlying conceptions to the exposure of these methods are identified and throw light on the connection the authors have with the notion of generality in geometry. Finally, we analyze the nature of the relations between problems and methods in our textbooks, and the changes in their interactions over the century
Petitfour, Edith. "Enseignement de la géométrie à des élèves en difficulté d'apprentissage : étude du processus d'accès à la géométrie d'élèves dyspraxiques visuo-spatiaux lors de la transition CM2-6ème". Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC022.
Texto completoThe aim of our study is to provide a method for teaching elementary plane geometry to dyspraxic fifth and sixth-grade pupils other than making them produce geometric constructions using instruments, because their lack of organisational and fine motor skills prevent them from learning in this way. Based on the instrumental approach of cognitive ergonomics, motor developnnent from neurophysiology and our own observations of dyspraxic pupils, we developed a theoretical framework for analysing the process of learning geometry via construction with geometric instruments. This enables us to separate geometric knowledge from practical skills during the construction process. We then added tools for analysing language and movement activated during geometric constructions created in a pairs setting as well as tools for analysing aids likely to be given to a dyspraxic pupil. Using this framework, we analysed how the dyspraxic pupil is catered for in class, to provide a basis for experimenting with two pupils, one of whom is dyspraxic, outside the classroom. The excellent results obtained pave the way for developing strategies for including dyspraxic pupils in class by creating appropriate conditions to enable them to learn geometry. Moreover, the study leads us to challenge the accepted consensus that construction with geometric instruments described by a geometric language disconnected from the instruments is the best approach for learning geometry in the 5th grade. The study also identifies hidden aspects of learning in geometry
Libros sobre el tema "Géométrie – Histoire"
Flament, Dominique. Histoire des nombres complexes: Entre algèbre et géométrie. Paris: CNRS, 2003.
Buscar texto completoHistoire des nombres complexes: Entre algèbre et géométrie. Paris: CNRS, 2003.
Buscar texto completoKouneiher, Joseph. Géométrie au XXe siècle, 1930-2000: Histoire et horizons. Paris: Hermann, 2005.
Buscar texto completoMlodinow, Leonard. Euclid's window: The story of geometry from parallel lines to hyperspace. London: Allen Lane, 2002.
Buscar texto completoChasles, M. Aperçu historique sur l'origine et le développement des méthodes en géométrie. Sceaux (France, Hauts-de-Seine): Editions Jacques Gabay, 1989.
Buscar texto completoKrop, André. La Quadrature du cercle et le nombre [Pi]. Paris: Ellipses, 2005.
Buscar texto completoOntario. Esquisse de cours 12e année: Géométrie et mathématiques discrètes mga4u cours préuniversitaire. Vanier, Ont: CFORP, 2002.
Buscar texto completoBold, Stephen C. Pascal geometer: Discovery and invention in seventeenth-century France. Geǹeve, Switzerland: Librairie Droz, 1996.
Buscar texto completoAh istory of non-euclidean geometry: Evolution of the concept of a geometric space. New York: Springer-Verlag, 1987.
Buscar texto completoCapítulos de libros sobre el tema "Géométrie – Histoire"
BERGERAT, Françoise y Brigitte VAN VLIET-LANOË. "L’Islande, un rift océanique émergé". En L’Islande au cœur de l’Atlantique Nord 1, 45–137. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9014.ch2.
Texto completoMoyon, Marc. "La géométrie de la mesure en pays d’Islam et ses prolongements en Europe latine (ixe-xiiie siècle)". En Mesure et histoire médiévale, 269–80. Éditions de la Sorbonne, 2013. http://dx.doi.org/10.4000/books.psorbonne.28606.
Texto completo