Literatura académica sobre el tema "Graph and hypergraph drawing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Graph and hypergraph drawing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Graph and hypergraph drawing"
Jia, Jun, Xiao Yuan He y Xiao Feng Hu. "Drawing Hypergraphs in Hyperedge’s Average Degree and Multi-Rules". Applied Mechanics and Materials 713-715 (enero de 2015): 1682–88. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1682.
Texto completoRÖDL, V., A. RUCIŃSKI y A. TARAZ. "Hypergraph Packing and Graph Embedding". Combinatorics, Probability and Computing 8, n.º 4 (julio de 1999): 363–76. http://dx.doi.org/10.1017/s0963548399003879.
Texto completoBrown, Jason I. y Derek G. Corneil. "Graph properties and hypergraph colourings". Discrete Mathematics 98, n.º 2 (diciembre de 1991): 81–93. http://dx.doi.org/10.1016/0012-365x(91)90034-y.
Texto completoDevezas, José y Sérgio Nunes. "Hypergraph-of-entity". Open Computer Science 9, n.º 1 (6 de junio de 2019): 103–27. http://dx.doi.org/10.1515/comp-2019-0006.
Texto completoZakiyyah, Alfi Yusrotis. "Laplacian Integral of Particular Steiner System". Engineering, MAthematics and Computer Science (EMACS) Journal 3, n.º 1 (31 de enero de 2021): 31–32. http://dx.doi.org/10.21512/emacsjournal.v3i1.6883.
Texto completoVu Dang, Nguyen Trinh, Loc Tran y Linh Tran. "Noise-robust classification with hypergraph neural network". Indonesian Journal of Electrical Engineering and Computer Science 21, n.º 3 (10 de marzo de 2021): 1465. http://dx.doi.org/10.11591/ijeecs.v21.i3.pp1465-1473.
Texto completoPaul, Viji y K. A. Germina. "On hypergraph coloring and 3-uniform linear hypergraph set-indexers of a graph". Discrete Mathematics, Algorithms and Applications 07, n.º 02 (25 de mayo de 2015): 1550015. http://dx.doi.org/10.1142/s1793830915500159.
Texto completoCowling, Peter. "The total graph of a hypergraph". Discrete Mathematics 167-168 (abril de 1997): 215–36. http://dx.doi.org/10.1016/s0012-365x(96)00230-0.
Texto completoD'Atri, Alessandro y Marina Moscarini. "On hypergraph acyclicity and graph chordality". Information Processing Letters 29, n.º 5 (noviembre de 1988): 271–74. http://dx.doi.org/10.1016/0020-0190(88)90121-4.
Texto completoNarayanamoorthy, S. y A. Tamilselvi. "Bipolar Fuzzy Line Graph of a Bipolar Fuzzy Hypergraph". Cybernetics and Information Technologies 13, n.º 1 (1 de marzo de 2013): 13–17. http://dx.doi.org/10.2478/cait-2013-0002.
Texto completoTesis sobre el tema "Graph and hypergraph drawing"
Sallaberry, Arnaud. "Visualisation d'information : de la théorie sémiotique à des exemples pratiques basés sur la représentation de graphes et d'hypergraphes". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2011. http://tel.archives-ouvertes.fr/tel-00646397.
Texto completoYilma, Zelealem Belaineh. "Results in Extremal Graph and Hypergraph Theory". Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/49.
Texto completoSuderman, Matthew. "Layered graph drawing". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86054.
Texto completoAs a first very drastic restriction, we consider layered drawings that are planar. Even with this restriction, however, the resulting problems can still be NP -hard. In addition to proving one such hardness result, we do succeed in deriving efficient algorithms for two problems. In both cases, we correct previously published results that claimed extremely simple and efficient algorithmic solutions to these problems. Our solutions, though efficient as well, show that the truth about these problems is significantly more complex than the published results would suggest.
We also study non-planar layered drawings, particularly drawings obtained by crossing minimization and minimum planarization. Though the corresponding problems are NP -hard, they become tractable when the value to be minimized is upper-bounded by a constant. This approach to obtaining tractable problems is formalized in a theory called parameterized complexity, and the resulting tractable problems and algorithmic solutions are said to be fixed-parameter tractable ( FPT ). Though relatively new, this theory has attracted a rapidly growing body of theoretical results. Indeed, we derive original FPT algorithms with the best-known asymptotic running times for planarization in two layer drawings.
Because parameterized complexity is so new, little is known about its implications to the practice of graph drawing. Consequently, we have implemented a few FPT algorithms and compared them experimentally with previously implemented approaches, especially integer linear programming (ILP). Our experiments show that the performance of our FPT planarization algorithms are competitive with current ILP algorithms, but that, for crossing minimization, current ILP algorithms remain the clear winners.
Puppe, Thomas. "Spectral graph drawing". [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11759114.
Texto completoSchulz, Michael. "Simultaneous graph drawing". Tönning Marburg Lübeck Der Andere Verl, 2008. http://d-nb.info/992494834/04.
Texto completoWang, Guan. "STREAMING HYPERGRAPH PARTITION FOR MASSIVE GRAPHS". Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1385097649.
Texto completoPampel, Barbara [Verfasser]. "Constrained Graph Drawing / Barbara Pampel". Konstanz : Bibliothek der Universität Konstanz, 2012. http://d-nb.info/1024457656/34.
Texto completoHe, Dayu. "Algorithms for Graph Drawing Problems". Thesis, State University of New York at Buffalo, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10284151.
Texto completoA graph G is called planar if it can be drawn on the plan such that no two distinct edges intersect each other but at common endpoints. Such drawing is called a plane embedding of G. A plane graph is a graph with a fixed embedding. A straight-line drawing G of a graph G = (V, E) is a drawing where each vertex of V is drawn as a distinct point on the plane and each edge of G is drawn as a line segment connecting two end vertices. In this thesis, we study a set of planar graph drawing problems.
First, we consider the problem of monotone drawing: A path P in a straight line drawing Γ is monotone if there exists a line l such that the orthogonal projections of the vertices of P on l appear along l in the order they appear in P. We call l a monotone line (or monotone direction) of P. G is called a monotone drawing of G if it contains at least one monotone path Puw between every pair of vertices u,w of G. Monotone drawings were recently introduced by Angelini et al. and represent a new visualization paradigm, and is also closely related to several other important graph drawing problems. As in many graph drawing problems, one of the main concerns of this research is to reduce the drawing size, which is the size of the smallest integer grid such that every graph in the graph class can be drawn in such a grid. We present two approaches for the problem of monotone drawings of trees. Our first approach show that every n-vertex tree T admits a monotone drawing on a grid of size O(n1.205) × O( n1.205) grid. Our second approach further reduces the size of drawing to 12n × 12n, which is asymptotically optimal. Both of our two drawings can be constructed in O(n) time.
We also consider monotone drawings of 3-connected plane graphs. We prove that the classical Schnyder drawing of 3-connected plane graphs is a monotone drawing on a f × f grid, which can be constructed in O(n) time.
Second, we consider the problem of orthogonal drawing. An orthogonal drawing of a plane graph G is a planar drawing of G such that each vertex of G is drawn as a point on the plane, and each edge is drawn as a sequence of horizontal and vertical line segments with no crossings. Orthogonal drawing has attracted much attention due to its various applications in circuit schematics, relationship diagrams, data flow diagrams etc. . Rahman et al. gave a necessary and sufficient condition for a plane graph G of maximum degree 3 to have an orthogonal drawing without bends. An orthogonal drawing D(G) is orthogonally convex if all faces of D(G) are orthogonally convex polygons. Chang et al. gave a necessary and sufficient condition (which strengthens the conditions in the previous result) for a plane graph G of maximum degree 3 to have an orthogonal convex drawing without bends. We further strengthen the results such that if G satisfies the same conditions as in previous papers, it not only has an orthogonally convex drawing, but also a stronger star-shaped orthogonal drawing.
Lauw, Madelaine L. "TiddlyGraph : graph drawing tool for TiddlyWiki /". Leeds : University of Leeds, School of Computer Studies, 2008. http://www.comp.leeds.ac.uk/fyproj/reports/0708/Lauw.pdf.
Texto completoAspegren, Villiam. "CluStic – Automatic graph drawing with clusters". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179251.
Texto completoMålet med automatiserad grafritning är att utifrån en uppsättning noder och kanter hitta en layout som är visuellt tillfredställande. Ett delområde som inte utforskats nog är möjligheten till att låsa vissa komponenter i grafen som sedan inte får alterneras av grafritningsalgoritmen. En användare som exempel, strukturerar vissa delar av grafen manuellt och applicerar sedan automatisk layout av resterande element utan att förstöra den struktur som manuellt skapats. CluStic, grafritningsverktyget som skapats och utvärderats i denna masters uppsats fyller denna funktion. CluStic bevarar den interna strukturen för ett kluster genom att tilldela en högre prioritet för noder i klustret med avseende på övriga element i grafen. Efter att högprioritets element placerats tilldelas resterande element sina bäst tillgängliga positioner. Utöver detta så uppfyller CluStic några av de vanligaste estetiska mål inom grafritning: minimera antalet kantkorsningar, minimera höjden, och räta ut kanter. Metoden som används i denna master uppsatts var att först gör en inledande studie där vi undersöker fyra populära grafritnings verktyg: Cytogate, GraphDraw, Diagram.Net och GraphNet. En uppsättning grafer genereras av dessa verktyg och vi mäter hur lång tid det tar för en användare att hitta den längsta vägen i grafen. Genom denna studie konstaterar vi att Cytogate presenterade grafer med best kvalitet. Från kunskap samlad i den inledande studien utvecklar vi CluStic och utför uppsatsens huvud studie där vi jämför CluStic med avseende på Cytogate och en bas layout Breddenförst algoritm. CluStic uppnår ett visualiserings effektivitetsvärde på 1,4 vilket är en ökning jämtemot Bredden-först algoritmen (-3,8). CluStic levererar inte layouter som är mer visuellt tillfredställande än de som skapats av Cytogate som får ett visualiserings effektivitetsvärde på 1,9. CluStic tillskillnad från Cytogate bevarar den internt fixa strukturen mellan element med hög prioritet vilket gör CluStic till det bättre verktyget för grafer med statiska element.
Libros sobre el tema "Graph and hypergraph drawing"
Bader, David A., 1969- editor of compilation, Meyerhenke, Henning, 1978- editor of compilation, Sanders, Peter, editor of compilation y Wagner, Dorothea, 1957- editor of compilation, eds. Graph partitioning and graph clustering: 10th DIMACS Implementation Challenge Workshop, February 13-14, 2012, Georgia Institute of Technology, Atlanta, GA. Providence, Rhode Island: American Mathematical Society, 2013.
Buscar texto completoIntroduction to graph and hypergraph theory. Hauppauge, NY: Nova Science Publishers, 2009.
Buscar texto completoWhitesides, Sue H., ed. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-37623-2.
Texto completoEppstein, David y Emden R. Gansner, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11805-0.
Texto completoTollis, Ioannis G. y Maurizio Patrignani, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9.
Texto completoDidimo, Walter y Maurizio Patrignani, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36763-2.
Texto completoGoodrich, Michael T. y Stephen G. Kobourov, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36151-0.
Texto completoWismath, Stephen y Alexander Wolff, eds. Graph Drawing. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03841-4.
Texto completoDiBattista, Giuseppe, ed. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63938-1.
Texto completoHong, Seok-Hee, Takao Nishizeki y Wu Quan, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77537-9.
Texto completoCapítulos de libros sobre el tema "Graph and hypergraph drawing"
Kaufmann, Michael, Marc van Kreveld y Bettina Speckmann. "Subdivision Drawings of Hypergraphs". En Graph Drawing, 396–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9_39.
Texto completoBuchin, Kevin, Marc van Kreveld, Henk Meijer, Bettina Speckmann y Kevin Verbeek. "On Planar Supports for Hypergraphs". En Graph Drawing, 345–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11805-0_33.
Texto completoSander, Georg. "Layout of Directed Hypergraphs with Orthogonal Hyperedges". En Graph Drawing, 381–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24595-7_35.
Texto completoMubayi, Dhruv y Andrew Suk. "A Ramsey-Type Result for Geometric ℓ-Hypergraphs". En Graph Drawing, 364–75. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03841-4_32.
Texto completode Fraysseix, Hubert, Patrice Ossona de Mendez y Pierre Rosenstiehl. "Representation of Planar Hypergraphs by Contacts of Triangles". En Graph Drawing, 125–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77537-9_15.
Texto completoBertault, François y Peter Eades. "Drawing Hypergraphs in the Subset Standard (Short Demo Paper)". En Graph Drawing, 164–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44541-2_15.
Texto completoChimani, Markus, Carsten Gutwenger, Petra Mutzel, Miro Spönemann y Hoi-Ming Wong. "Crossing Minimization and Layouts of Directed Hypergraphs with Port Constraints". En Graph Drawing, 141–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18469-7_13.
Texto completoChevalier, Cédric. "Hypergraph Partitioning". En Graph Partitioning, 65–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118601181.ch3.
Texto completoPshenitsyn, Tikhon. "Hypergraph Basic Categorial Grammars". En Graph Transformation, 146–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51372-6_9.
Texto completovan Wijk, Jarke J. "Graph Visualization". En Graph Drawing, 86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_9.
Texto completoActas de conferencias sobre el tema "Graph and hypergraph drawing"
Zass, Ron y Amnon Shashua. "Probabilistic graph and hypergraph matching". En 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2008. http://dx.doi.org/10.1109/cvpr.2008.4587500.
Texto completoSun, Xiangguo, Hongzhi Yin, Bo Liu, Hongxu Chen, Jiuxin Cao, Yingxia Shao y Nguyen Quoc Viet Hung. "Heterogeneous Hypergraph Embedding for Graph Classification". En WSDM '21: The Fourteenth ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3437963.3441835.
Texto completoDi Giacomo, Emilio, Walter Didimo, Seok-hee Hong, Michael Kaufmann, Stephen G. Kobourov, Giuseppe Liotta, Kazuo Misue, Antonios Symvonis y Hsu-Chun Yen. "Low ply graph drawing". En 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, 2015. http://dx.doi.org/10.1109/iisa.2015.7388020.
Texto completoDa Lozzo, Giordano, Marco Di Bartolomeo, Maurizio Patrignani, Giuseppe Di Battista, Davide Cannone y Sergio Tortora. "Drawing Georeferenced Graphs - Combining Graph Drawing and Geographic Data". En International Conference on Information Visualization Theory and Applications. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005266601090116.
Texto completoBae, Joonhyun y Sangwook Kim. "A Global Social Graph as a Hybrid Hypergraph". En 2009 Fifth International Joint Conference on INC, IMS and IDC. IEEE, 2009. http://dx.doi.org/10.1109/ncm.2009.20.
Texto completoKallaugher, John, Michael Kapralov y Eric Price. "The Sketching Complexity of Graph and Hypergraph Counting". En 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2018. http://dx.doi.org/10.1109/focs.2018.00059.
Texto completoMunshi, Shiladitya, Ayan Chakraborty y Debajyoti Mukhopadhyay. "Theories of Hypergraph-Graph (HG(2)) Data Structure". En 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies (CUBE). IEEE, 2013. http://dx.doi.org/10.1109/cube.2013.45.
Texto completoIbrahim, Bertrand, Honitriniela Randriamparany y Hidenori Yoshizumi. "Relevance of graph-drawing algorithms to graph-based interfaces". En the working conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/345513.345357.
Texto completoSamaranayake, Meththa, Helen Ji y John Ainscough. "Graph drawing alogorithms based module placement". En 2009 International Symposium on Signals, Circuits and Systems - ISSCS 2009. IEEE, 2009. http://dx.doi.org/10.1109/isscs.2009.5206087.
Texto completoNiggemann, Oliver y Benno Stein. "A meta heuristic for graph drawing". En the working conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/345513.345354.
Texto completoInformes sobre el tema "Graph and hypergraph drawing"
Fu, Xiangyang, Guangdao Gao y Peng Yang. Aircraft Drawing-Die Design CAD Expert System Based on Engineering Graph,. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1995. http://dx.doi.org/10.21236/ada300179.
Texto completo