Literatura académica sobre el tema "Guided ultrasonic waves"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Guided ultrasonic waves".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Guided ultrasonic waves"
Moilanen, Petro. "Ultrasonic guided waves in bone". Journal of the Acoustical Society of America 123, n.º 5 (mayo de 2008): 3631. http://dx.doi.org/10.1121/1.2934867.
Texto completoMoilanen, P. "Ultrasonic guided waves in bone". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 55, n.º 6 (junio de 2008): 1277–86. http://dx.doi.org/10.1109/tuffc.2008.790.
Texto completoPeng, Kunhong, Yi Zhang, Xian Xu, Jinsong Han y Yaozhi Luo. "Crack Detection of Threaded Steel Rods Based on Ultrasonic Guided Waves". Sensors 22, n.º 18 (12 de septiembre de 2022): 6885. http://dx.doi.org/10.3390/s22186885.
Texto completoBanerjee, Sourav. "Quantum analogous spin states to explain topological phase for guided waves in ultrasonic nondestructive evaluation". Journal of the Acoustical Society of America 157, n.º 4 (1 de abril de 2025): 2477–97. https://doi.org/10.1121/10.0036345.
Texto completoZhu, Xin Jie, Zan Dong Han, Dong Du, Yi Fang Chen y Ke Yi Yuan. "Imaging and Testing of Ultrasonic Sh Guided Waves in Plate with Lap Welding Structure". Advanced Materials Research 301-303 (julio de 2011): 603–9. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.603.
Texto completoTanveer, Mohad, Muhammad Umar Elahi, Jaehyun Jung, Muhammad Muzammil Azad, Salman Khalid y Heung Soo Kim. "Recent Advancements in Guided Ultrasonic Waves for Structural Health Monitoring of Composite Structures". Applied Sciences 14, n.º 23 (28 de noviembre de 2024): 11091. http://dx.doi.org/10.3390/app142311091.
Texto completoQi, Wei Qiang, Yan Ran Li, Xiao Xin Chen y Da Peng Duan. "Study of PD Ultrasonic Wave's Properties in Solid Medium". Advanced Materials Research 860-863 (diciembre de 2013): 2161–67. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.2161.
Texto completoMichaels, Jennifer E., Sang Jun Lee, Anthony J. Croxford y Paul D. Wilcox. "Chirp excitation of ultrasonic guided waves". Ultrasonics 53, n.º 1 (enero de 2013): 265–70. http://dx.doi.org/10.1016/j.ultras.2012.06.010.
Texto completoMendig, C., J. Riemenschneider, H. P. Monner, L. J. Vier, M. Endres y Hannah Sommerwerk. "Ice detection by ultrasonic guided waves". CEAS Aeronautical Journal 9, n.º 3 (9 de marzo de 2018): 405–15. http://dx.doi.org/10.1007/s13272-018-0289-0.
Texto completoHonarvar, F., E. Enjilela y A. N. Sinclair. "Guided ultrasonic waves in composite cylinders". Mechanics of Composite Materials 43, n.º 3 (mayo de 2007): 277–88. http://dx.doi.org/10.1007/s11029-007-0027-x.
Texto completoTesis sobre el tema "Guided ultrasonic waves"
Pavlakovic, Brian Nicholas. "Leaky guided ultrasonic waves in NDT". Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/7907.
Texto completoBartoli, Ivan. "Structural health monitoring by ultrasonic guided waves". Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3283893.
Texto completoTitle from first page of PDF file (viewed December 3, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 311-325).
Ghandourah, E. I. I. "Large plate monitoring using guided ultrasonic waves". Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1463979/.
Texto completoVallet, Quentin. "Predicting bone strength with ultrasonic guided waves". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066626.
Texto completoWe aimed at developing new ultrasound-based biomarkers of cortical bone to enhance fracture risk prediction in osteoporosis. Our approach was based on the original concept of measuring ultrasonic guided waves in cortical bone. The bi-directional axial transmission technique was used to measure the guided modes propagating in the cortical envelope of long bones (i.e., the radius). Strength-related structural and material properties of bone were recovered from the dispersion curves through an inversion scheme. To this goal, a fully automatic inverse problem based on genetic algorithms optimization, using a 2-D transverse isotropic free plate waveguide model was developed. The proposed inverse procedure was first tested on laboratory-controlled measurements performed on academic samples with known properties. Then, the feasibility of estimating cortical properties of ex vivo radius specimens was assessed. The inferred bone properties were validated by face-to-face comparison with reference values determined by a set of independent state-of-the art technologies, including X-ray micro-computed tomography (thickness, porosity) and resonance ultrasound spectroscopy (stiffness). A good agreement was found between reference values and estimates of thickness, porosity and stiffness. Lastly, the method was extended to in vivo measurements, first, by ensuring the validity of the waveguide model in presence of soft tissues to demonstrate the feasibility of measuring experimental dispersion curves in vivo and infer from them bone properties. Estimated cortical thickness values were consistent with actual values derived from high resolution peripheral computed tomography
Vallet, Quentin. "Predicting bone strength with ultrasonic guided waves". Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066626.
Texto completoWe aimed at developing new ultrasound-based biomarkers of cortical bone to enhance fracture risk prediction in osteoporosis. Our approach was based on the original concept of measuring ultrasonic guided waves in cortical bone. The bi-directional axial transmission technique was used to measure the guided modes propagating in the cortical envelope of long bones (i.e., the radius). Strength-related structural and material properties of bone were recovered from the dispersion curves through an inversion scheme. To this goal, a fully automatic inverse problem based on genetic algorithms optimization, using a 2-D transverse isotropic free plate waveguide model was developed. The proposed inverse procedure was first tested on laboratory-controlled measurements performed on academic samples with known properties. Then, the feasibility of estimating cortical properties of ex vivo radius specimens was assessed. The inferred bone properties were validated by face-to-face comparison with reference values determined by a set of independent state-of-the art technologies, including X-ray micro-computed tomography (thickness, porosity) and resonance ultrasound spectroscopy (stiffness). A good agreement was found between reference values and estimates of thickness, porosity and stiffness. Lastly, the method was extended to in vivo measurements, first, by ensuring the validity of the waveguide model in presence of soft tissues to demonstrate the feasibility of measuring experimental dispersion curves in vivo and infer from them bone properties. Estimated cortical thickness values were consistent with actual values derived from high resolution peripheral computed tomography
Valle, Christine. "Guided circumferential waves in annular structures". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17271.
Texto completoBelanger, Pierre. "Feasibility of thickness mapping using ultrasonic guided waves". Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/5503.
Texto completoBuys, B. J. "Rock bolt condition monitoring using ultrasonic guided waves". Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-06222009-135318/.
Texto completoLevine, Ross M. "Ultrasonic guided wave imaging via sparse reconstruction". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51829.
Texto completoLi, Zongbao. "Crack detection in annular components by ultrasonic guided waves". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15920.
Texto completoLibros sobre el tema "Guided ultrasonic waves"
Huang, Songling, Shen Wang, Weibin Li y Qing Wang. Electromagnetic Ultrasonic Guided Waves. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0564-0.
Texto completoPetrishchev, O. N. Ulʹtrazvukovye magnitostrikt͡s︡ionnye volnovodnye sistemy. Kiev: Izd-vo pri Kievskom gos. universitete, 1989.
Buscar texto completoNational Center for Devices and Radiological Health (U.S.). Ultrasonic therapy reporting guide. [Washington, D.C.?: National Center for Devices and Radiological Health], 1985.
Buscar texto completoHuang, Songling, Yu Zhang, Zheng Wei, Shen Wang y Hongyu Sun. Theory and Methodology of Electromagnetic Ultrasonic Guided Wave Imaging. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-8602-2.
Texto completoUltrasonic Guided Waves. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03928-299-9.
Texto completoWang, Qing, Shen Wang, Songling Huang y Weibin Li. Electromagnetic Ultrasonic Guided Waves. Springer, 2016.
Buscar texto completoWang, Qing, Shen Wang, Songling Huang y Weibin Li. Electromagnetic Ultrasonic Guided Waves. Springer, 2018.
Buscar texto completoWang, Qing, Shen Wang, Songling Huang y Weibin Li. Electromagnetic Ultrasonic Guided Waves. Springer, 2016.
Buscar texto completoLISSENDEN. Nonlinear Ultrasonic Guided Waves. Institute of Physics Publishing, 2024.
Buscar texto completoCapítulos de libros sobre el tema "Guided ultrasonic waves"
Samaitis, Vykintas, Elena Jasiūnienė, Pawel Packo y Damira Smagulova. "Ultrasonic Methods". En Structural Health Monitoring Damage Detection Systems for Aerospace, 87–131. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72192-3_5.
Texto completoHuang, Songling, Shen Wang, Weibin Li y Qing Wang. "Finite Element Simulation of Ultrasonic Guided Waves". En Electromagnetic Ultrasonic Guided Waves, 237–70. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0564-0_6.
Texto completoHuang, Songling, Shen Wang, Weibin Li y Qing Wang. "Applications of the Electromagnetic Ultrasonic Guided Wave Technique". En Electromagnetic Ultrasonic Guided Waves, 271–301. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0564-0_7.
Texto completoHuang, Songling, Shen Wang, Weibin Li y Qing Wang. "Electromagnetic Acoustic Transducer". En Electromagnetic Ultrasonic Guided Waves, 1–42. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0564-0_1.
Texto completoHuang, Songling, Shen Wang, Weibin Li y Qing Wang. "Analytical Method of EMAT Based on Lorentz Force Mechanism". En Electromagnetic Ultrasonic Guided Waves, 43–102. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0564-0_2.
Texto completoHuang, Songling, Shen Wang, Weibin Li y Qing Wang. "Analytical Method of EMAT Based on Magnetostrictive Mechanism". En Electromagnetic Ultrasonic Guided Waves, 103–51. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0564-0_3.
Texto completoHuang, Songling, Shen Wang, Weibin Li y Qing Wang. "The Propagation Characteristics of Ultrasonic Guided Waves in Plate and Pipe". En Electromagnetic Ultrasonic Guided Waves, 153–81. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0564-0_4.
Texto completoHuang, Songling, Shen Wang, Weibin Li y Qing Wang. "Simulation of Interactions Between Guided Waves and the Defects by Boundary Element Method". En Electromagnetic Ultrasonic Guided Waves, 183–235. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0564-0_5.
Texto completoKhalil, Abdelgalil, Faeez Masurkar y A. Abdul-Ameer. "Estimating the Reliability of the Inspection System Employed for Detecting Defects in Rail Track Using Ultrasonic Guided Waves". En BUiD Doctoral Research Conference 2023, 190–202. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-56121-4_19.
Texto completoLanza di Scalea, Francesco, Ankit Srivastava y Claudio Nucera. "Nonlinear Guided Waves and Thermal Stresses". En Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation, 345–417. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94476-0_9.
Texto completoActas de conferencias sobre el tema "Guided ultrasonic waves"
Tang, Xiaoyu, Yunfei Xu, Haoming Xiang y Wenbin Huang. "Ultrasonic Guided Waves-Enabled Gear Meshing Force Measurement". En 2024 18th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 463–67. IEEE, 2024. https://doi.org/10.1109/spawda63926.2024.10878891.
Texto completoRose, J. L., D. Jiao, S. P. Pelts, J. N. Barshinger y M. J. Quarry. "Hidden Corrosion Detection with Guided Waves". En CORROSION 1997, 1–15. NACE International, 1997. https://doi.org/10.5006/c1997-97292.
Texto completoRose, Joseph L., Luis E. Soley, Thom Hay y Vinod S. Agarwala. "Ultrasonic Guided Waves for Hidden Corrosion Detection in Naval Aircraft". En CORROSION 2000, 1–15. NACE International, 2000. https://doi.org/10.5006/c2000-00267.
Texto completoRaghu, Damodaran, Humberto Figueroa, Lee Whittington y Jim Haupt. "Experience with Torsional Guided Wave Ultrasonic Technique for the Inspection of Offshore Pipeline Installations". En CORROSION 2004, 1–19. NACE International, 2004. https://doi.org/10.5006/c2004-04146.
Texto completoJin, Shijiu, Liying Sun, Guichun Liu, Yibo Li y Hong Zhang. "Study on Ultrasonic Guided Waves in Fluid-Filled Pipes Surrounded by Water". En 2006 International Pipeline Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ipc2006-10493.
Texto completoBeard, M. D. "Inspection of rockbolts using guided ultrasonic waves". En The 27th annual review of progress in quantitative nondestructive evaluation. AIP, 2001. http://dx.doi.org/10.1063/1.1373885.
Texto completoPattanayak, Roson Kumar, Krishnan Balasubramaniam y Prabhu Rajagopal. "Ultrasonic guided waves in eccentric annular pipes". En 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4864831.
Texto completoRose, Joseph L. "The upcoming revolution in ultrasonic guided waves". En SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. SPIE, 2011. http://dx.doi.org/10.1117/12.897025.
Texto completoKropf, Matthew M. y B. R. Tittmann. "Ultrasonic magnetostrictive transducers for guided ultrasonic waves in thin wires". En The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, editado por Tribikram Kundu. SPIE, 2007. http://dx.doi.org/10.1117/12.715815.
Texto completoWei, Yao, Weibin Wang, Yuqin Wang, Guichun Liu, Guangwen Liu y Kun Wang. "Inspection of Buried Gas Pipeline Using Ultrasonic Guided Waves". En 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64205.
Texto completoInformes sobre el tema "Guided ultrasonic waves"
Michaels, Jennifer E., Sang J. Lee, Anthony J. Croxford y Paul D. Wilcox. Chirp Excitation of Ultrasonic Guided Waves (Preprint). Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2011. http://dx.doi.org/10.21236/ada553286.
Texto completoBunget, Gheorghe, Fritz Friedersdorf y Jeon-Kwan Na. Quantitative Diagnostics of Multilayered Composite Structures with Ultrasonic Guided Waves. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2014. http://dx.doi.org/10.21236/ada615759.
Texto completoMatt, Howard M. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers. Office of Scientific and Technical Information (OSTI), enero de 2006. http://dx.doi.org/10.2172/899976.
Texto completoSriramadasu, Rajeshwara C., Ye Lu y Sauvik Banerjee. IDENTIFICATION OF PITTING CORROSION IN STEEL BARS AND REBARS EMBEDDED IN CONCRETE USING ULTRASONIC GUIDED WAVES. The Hong Kong Institute of Steel Construction, diciembre de 2018. http://dx.doi.org/10.18057/icass2018.p.163.
Texto completoLi, Yan. Application of ultrasonic guided waves to the characterization of texture in metal sheets of cubic and hexagonal crystallites. Office of Scientific and Technical Information (OSTI), octubre de 1990. http://dx.doi.org/10.2172/6566168.
Texto completoGribok, Andrei V. Performance of Advanced Signal Processing and Pattern Recognition Algorithms Using Raw Data from Ultrasonic Guided Waves and Fiber Optics Transducers. Office of Scientific and Technical Information (OSTI), septiembre de 2018. http://dx.doi.org/10.2172/1495185.
Texto completoNestleroth. L52298 Augmenting MFL Tools With Sensors that Assess Coating Condition. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzo de 2009. http://dx.doi.org/10.55274/r0010396.
Texto completoRay, Jason y Clayton Thurmer. 2020 guided wave inspection of California Department of Water Resources tainter gate post-tensioned trunnion anchor rods : Oroville Dam. Engineer Research and Development Center (U.S.), marzo de 2022. http://dx.doi.org/10.21079/11681/43762.
Texto completoRay, Jason D. y Clayton R. Thurmer. 2021 Guided Wave Inspection of California Department of Water Resources Tainter Gate Post-Tensioned Trunnion Anchor Rods: Oroville Dam. U.S. Army Engineer Research and Development Center, diciembre de 2022. http://dx.doi.org/10.21079/11681/46282.
Texto completoZhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan y Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzo de 2005. http://dx.doi.org/10.55274/r0012049.
Texto completo