Literatura académica sobre el tema "H2 Fuel Cell"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "H2 Fuel Cell".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "H2 Fuel Cell"

1

Livshits, V., A. Ulus y E. Peled. "High-power H2/Br2 fuel cell". Electrochemistry Communications 8, n.º 8 (agosto de 2006): 1358–62. http://dx.doi.org/10.1016/j.elecom.2006.06.021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Li, Cong y Xun Cheng Wu. "Thermodynamic Analysis of Fuel Processor for Fuel Cell Vehicles". Advanced Materials Research 197-198 (febrero de 2011): 715–18. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.715.

Texto completo
Resumen
Thermodynamic analysis was carried out for theoretical reaction of hydrogen produced from dimethyl ether (DME) auto-thermal reforming by using the minimum of GIBBS energy. The volume content of various gases were calculated at adiabatic condition as function of air to DME ratio (0.2~0.8), H2O to DME ratio (1~6) and pressure (0.1~0.6MPa). The result proves that the volume content of H2 decrease with the increasing of pressure. With the increasing of the H2O to DME ratio and the O2 to DME ratio the volume of H2 increases first then decreases. With the increasing of the H2O to DME ratio the volume of CH4 and CO decreases, the volume of CO2 increases. The model reliability was verified experimentally on self-designed equipment. The experiments data are closed to simulation results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Du, Zhemin, Congmin Liu, Junxiang Zhai, Xiuying Guo, Yalin Xiong, Wei Su y Guangli He. "A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles". Catalysts 11, n.º 3 (19 de marzo de 2021): 393. http://dx.doi.org/10.3390/catal11030393.

Texto completo
Resumen
Nowadays, we face a series of global challenges, including the growing depletion of fossil energy, environmental pollution, and global warming. The replacement of coal, petroleum, and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2) energy is considered the ultimate energy in the 21st century because of its diverse sources, cleanliness, low carbon emission, flexibility, and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission, they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops, H2 fuel supply, especially H2 quality, attracts increasing attention. Compared with H2 for industrial use, the H2 purity requirements for fuel cells are not high. Still, the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore, we analyze the causes and developing trends for the changes in these standards in detail. On the other hand, according to characteristics of H2 for fuel cell vehicles, standard H2 purification technologies, such as pressure swing adsorption (PSA), membrane separation and metal hydride separation, were analyzed, and the latest research progress was reviewed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Nagamori, Minako, Yoshihiro Hirata y Soichiro Sameshima. "Influence of Hydrogen Sulfide in Fuel on Electric Power of Solid Oxide Fuel Cell". Materials Science Forum 544-545 (mayo de 2007): 997–1000. http://dx.doi.org/10.4028/www.scientific.net/msf.544-545.997.

Texto completo
Resumen
Terminal voltage, electric power density and overpotential were measured for the solid oxide fuel cell with gadolinium-doped ceria electrolyte (Ce0.8Gd0.2O1.9, GDC), 30 vol% Ni-GDC anode and Pt cathode using a H2 fuel or biogas (CH4 47, CO2 31, H2 19 vol %) at 1073 K. Addition of 1 ppm H2S in the 3vol % H2O-containing H2 fuel gave no change in the open circuit voltage (0.79 - 0.80 V) and the maximum power density (65 - 72 mW/cm2). Furthermore, no reaction between H2S and Ni in the anode was suggested by the thermodynamic calculation. On the other hand, the terminal voltage and electric power density decreased when 1 ppm H2S gas was mixed with the biogas. After the biogas with 1 ppm H2S flowed into the anode for 8 h, the electric power density decreased from 125 to 90 mW/cm2. The reduced electric power density was also recovered by passing 3 vol % H2O-containing H2 fuel for 2 h.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Furukawa, Naoki, Yoshihiro Hirata, Soichiro Sameshima y Naoki Matsunaga. "Evaluation of Electric Power of SOFC Using Reformed Biogas". Materials Science Forum 761 (julio de 2013): 11–14. http://dx.doi.org/10.4028/www.scientific.net/msf.761.11.

Texto completo
Resumen
Biogas of about 60 % CH4 -40% CO2 composition is produced from waste food or drainage. Electrochemical reforming of CH4 with CO2 using a porous gadolinium-doped ceria (GDC) cell is an attractive process to produce a H2-CO fuel used in solid oxide fuel cell. The supplied CO2 is converted to CO and O2- ions by the reaction with electrons at cathode (CO2 + 2e- → CO + O2-). The produced CO and O2- ions are transported to the anode through a porous mixed conductor GDC electrolyte. In the anode CH4 reacts with O2- ions to produce CO, H2 and electrons (CH4 + O2- → CO + 2H2 + 2e-). This process suppresses the carbon deposition from CH4. The formed H2 and CO fuels were supplied to a solid oxide fuel cell with dense GDC electrolyte (Ce0.8Gd0.2O1.9). The open circuit voltage and maximum power density were measured for the reformed gas and for a pure H2 fuel. Little difference in the electric power was measured at 1073 K for both the fuels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rowshanzamir, S. y M. Kazemeini. "A new immobilized-alkali H2/O2 fuel cell". Journal of Power Sources 88, n.º 2 (junio de 2000): 262–68. http://dx.doi.org/10.1016/s0378-7753(00)00371-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Park, J. W., R. Wycisk y P. N. Pintauro. "Membranes for a Regenerative H2/Br2 Fuel Cell". ECS Transactions 50, n.º 2 (15 de marzo de 2013): 1217–31. http://dx.doi.org/10.1149/05002.1217ecst.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lee, Ji-Yong, Kyoung-Hoon Cha, Tae-Won Lim y Tak Hur. "Eco-efficiency of H2 and fuel cell buses". International Journal of Hydrogen Energy 36, n.º 2 (enero de 2011): 1754–65. http://dx.doi.org/10.1016/j.ijhydene.2010.10.074.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Baradie, B., C. Poinsignon, J. Y. Sanchez, Y. Piffard, G. Vitter, N. Bestaoui, D. Foscallo, A. Denoyelle, D. Delabouglise y M. Vaujany. "Thermostable ionomeric filled membrane for H2/O2 fuel cell". Journal of Power Sources 74, n.º 1 (julio de 1998): 8–16. http://dx.doi.org/10.1016/s0378-7753(97)02816-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hong, Young-Jin y Seung M. Oh. "Fabrication of polymer electrolyte fuel cell (PEFC) H2 sensors". Sensors and Actuators B: Chemical 32, n.º 1 (abril de 1996): 7–13. http://dx.doi.org/10.1016/0925-4005(96)80101-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "H2 Fuel Cell"

1

Ito, Hiroshi. "Electrochemical studies for the development of Li-H2 thermally regenerative fuel cell". Kyoto University, 2004. http://hdl.handle.net/2433/147426.

Texto completo
Resumen
Kyoto University (京都大学)
0048
新制・課程博士
博士(エネルギー科学)
甲第10980号
エネ博第91号
新制||エネ||25(附属図書館)
UT51-2004-G827
京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻
(主査)教授 伊藤 靖彦, 教授 尾形 幸生, 教授 片桐 晃
学位規則第4条第1項該当
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Yazaydin, Ahmet Ozgur. "Investigations Of New Horizons On H2/o2 Proton Exchange Membrane Fuel Cells". Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1054402/index.pdf.

Texto completo
Resumen
Proton exchange membrane fuel cells are electrochemical devices which convert the chemical energy of hydrogen into electrical energy with a high efficiency. They are compact and produce a powerful electric current relative to their size. Different from the batteries they do not need to be recharged. They operate as long as the fuel is supplied. Fuel cells, therefore, are considered as one of the most promising options to replace the conventional power generating systems in the future. In this study five PEMFCs
namely EAE1, AOY001, AOY002, AOY003 and AOY004 were manufactured with different methods and in different structures. A test station was built to make the performance tests. Performances of the PEMFCs were compared by comparing the voltage-current (V-i) diagrams obtained during the initial tests at 25 º
C of fuel cell and gas humidification temperatures. AOY001 showed the best performance among all PEMFCs with a current density of 77.5 mA/cm2 at 0.5 V and it was chosen for further parametric studies where the effect of different flow rates of H2 and O2 gases, gas humidification and fuel cell temperatures on the performance were investigated. It was found that increasing fuel cell and gas humidification temperatures increased the performance. Excess flow rate of reactant gases had an adverse effect on the performance. On the other hand increasing the ratio of flow rate of oxygen to hydrogen had a positive but limited effect. AOY001 delivered a maximum current density of 183 mA/cm2 at 0.5 V. The highest power obtained was 4.75 W
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Khadke, Prashant Subhas [Verfasser] y Ulrike [Akademischer Betreuer] Krewer. "Analysis of Performance Limiting factors in H2-O2 Alkaline Membrane Fuel Cell / Prashant Subhas Khadke ; Betreuer: Ulrike Krewer". Braunschweig : Technische Universität Braunschweig, 2016. http://d-nb.info/1175818275/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Khadke, Prashant Subhas Verfasser] y Ulrike [Akademischer Betreuer] [Krewer. "Analysis of Performance Limiting factors in H2-O2 Alkaline Membrane Fuel Cell / Prashant Subhas Khadke ; Betreuer: Ulrike Krewer". Braunschweig : Technische Universität Braunschweig, 2016. http://nbn-resolving.de/urn:nbn:de:gbv:084-16092811020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Araújo, Adriana Fernandes Felix de Lima. "Catalisadores à base de platina frente a correntes de H2 contendo acetaldeído geradas via reforma do etanol". Universidade do Estado do Rio de Janeiro, 2011. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=2684.

Texto completo
Resumen
Devido ao efeito estufa, a produção de hidrogênio a partir da reação de reforma do bioetanol tem se tornado um assunto de grande interesse em catálise heterogênea. Os catalisadores à base de Pt são empregados nos processos de purificação de H2 e também em eletrocatalisadores das células a combustível do tipo membrana polimérica (PEMFC). O hidrogênio obtido a partir da reforma do etanol contém como contaminante o acetaldeído e pequenas quantidades de CO. Assim, pode-se prever que muitas reações podem ocorrer na presença de catalisadores de Pt durante o processo de purificação do H2 e mesmo no próprio eletrocatalisador. Desta forma, este trabalho tem como objetivo descrever o comportamento do acetaldeído na presença de catalisadores de Pt. Para tanto foram preparados dois catalisadores, Pt/SiO2 e Pt/USY, contendo 1,5% de metal em ambos. Também foi estudado um eletrocatalisador (comercial) de Pt suportado em carvão (Pt/C). Os catalisadores foram caracterizados através das técnicas de análise textural, difração de raios X (DRX), quimissorção de H2, reação de desidrogenação do ciclohexano, espectroscopia no infravermelho de piridina adsorvida, dessorção a temperatura programada de n-butilamina (TPD de n-butilamina), dessorção a temperatura programada de CO2 (TPD-CO2), análise termogravimétrica, microscopia eletrônica de varredura (MEV) e espectroscopia de dispersão de energia (EDS). Os testes catalíticos foram realizados entre as temperaturas de 50 e 350 C em corrente contendo acetaldeído, H2 e N2. Foi observado que as propriedades ácido-básicas dos suportes promovem as reações de condensação com formação de éter etílico e acetato de etila. O acetaldeído em catalisadores de Pt sofre quebra das ligações C-C e C=O. A primeira ocorre em uma ampla faixa de temperaturas, enquanto a segunda apenas em temperaturas abaixo de 200 C. A quebra da ligação C-C produz metano e CO. Já a quebra da ligação C=O gera carbono residual nos catalisadores, assim como espécies oxigênio, que por sua vez são capazes de eliminar o CO da superfície dos catalisadores. Nota-se que o tipo de suporte utilizado influencia na distribuição de produtos, principalmente a baixas temperaturas. Além disso, constatou-se que a descarbonilação não é uma reação sensível à estrutura do catalisador. Verificou-se também a presença de resíduos sobre os catalisadores, possivelmente oriundos não somente da quebra da ligação C=O, mas também de reações de polimerização
Due to the greenhouse effect, hydrogen production from bioethanol reforming is a very important subject in heterogeneous catalysis research. Pt based catalysts are employed in H2 purification processes and also as electrocatalysts of PEM (Proton Exchange Membrane) fuel cells. Hydrogen obtained from ethanol reforming may contain acetaldehyde and small amounts of CO as contaminants. This very reactive aldehyde can interact with Pt based catalysts during purification process, and also with the electrocatalyst. Therefore, this work aims to study the acetaldehyde behavior in the presence of platinum based catalysts under hydrogen atmosphere. Two catalysts named Pt/SiO2 and Pt/USY were prepared, containing 1,5% of Pt. A commercial Pt eletrocatayst supported on carbon (Pt/C) was also studied. The catalysts were characterized by textural analysis, XRD, H2 chemisorption, cyclohexane dehydrogenation reaction, pyridine IR, n-butylamine TPD, CO2 TPD, TGA/DTG, SEM and EDS. The catalytic tests were carried out in a fixed bed reactor at temperature range of 50-350 C, under acetaldehyde, H2 and N2 flow. It was observed that the acid-basic supports properties promoted condensation reactions with the formation of ethylic ether and ethyl acetate. Once in contact with Pt based catalysts, acetaldehyde undergoes C-C and C=O bond scissions. The former occurs at a wide temperature range, whereas the latter occurs only at low temperatures (< 200 C). The C-C bond scission (decarbonylation) produces methane and CO. The C=O bond scission generates carbon residues on the catalyst, as well as oxygen species, which in turn eliminate CO from the catalytic surface. It was noticed that the type of support influences products distribution, mainly at low temperatures. The data also show that decarbonylation is not a structure-sensitive reaction. Residues were observed on Pt/USY which were generated not only from C=O bond rupture, but also from acetaldehyde polymerization
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Salim, Witopo. "CO2-selective Membranes for Fuel Cell H2 Purification and Flue Gas CO2 Capture: From Lab Scale to Field Testing". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1514889154359659.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Mainka, Julia. "Impédance locale dans une pile à membrane H2/air (PEMFC) : études théoriques et expérimentales". Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10042/document.

Texto completo
Resumen
Cette thèse apporte des éléments de compréhension de la boucle basse fréquence des spectres d'impédance de PEMFC H2/air. Différentes expressions de l'impédance de transport de l'oxygène alternatives à l'élément de Warburg sont proposées. Elles prennent en compte des phénomènes de transport dans les directions perpendiculaire et parallèle à l'électrode qui sont habituellement négligés: convection à travers la GDL et le long du canal d'air, résistance protonique de la couche catalytique et appauvrissement en oxygène entre l'entrée et la sortie de la cellule. Une attention particulière est portée sur les oscillations de concentration induites par le signal de mesure qui se propagent le long du canal d'air. Ces différentes expressions de l'impédance de transport de l'oxygène sont utilisées dans un circuit électrique équivalent destiné à simuler l'impédance de la cellule. Une comparaison entre résultats expérimentaux et théoriques permet d'identifier les paramètres du circuit électrique. A partir de ces paramètres, il est possible d'analyser les mécanismes physiques et électro-chimiques qui se produisent dans la pile, ainsi que de tirer certaines conclusions sur les phénomènes de transport de l'oxygène dans les milieux poreux de la cathode. Pour cela, nous avons utilité des cellules segmentées et instrumentées conçues et fabriquées au laboratoire
The aim of this Ph.D thesis is to contribute to a better understanding of the low frequency loop in impedance spectra of H2/air fed PEMFC and to bring information about the main origin(s) of the oxygen transport impedance through the porous media of the cathode via locally resolved EIS. Different expressions of the oxygen transport impedance alternative to the one-dimensional finite Warburg element are proposed. They account for phenomena occurring in the directions perpendicular and parallel to the electrode plane that are not considered usually: convection through the GDL and along the channel, finite proton conduction in the catalyst layer, and oxygen depletion between the cathode inlet and outlet. A special interest is brought to the oxygen concentration oscillations induced by the AC measuring signal that propagate along the gas channel and to their impact on the local impedance downstream. These expressions of the oxygen transport impedance are used in an equivalent electrical circuit modeling the impedance of the whole cell. Experimental results are obtained with instrumented and segmented cells designed and built in our group. Their confrontation with numerical results allows to identify parameters characterizing the physical and electrochemical processes in the MEA
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

De, poulpiquet de Brescanvel Anne. "Biopiles enzymatiques H2-O2 : nanostructuration de l'interface électrochimique pour l'immobilisation des enzymes redox". Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4752/document.

Texto completo
Resumen
Dans la nature, la réduction de l'oxygène et l'oxydation de l'hydrogène sont catalysées par des enzymes oxydoréductases. Ces catalyseurs spécifiques, efficaces, renouvelables et biodégradables constituent une alternative séduisante au platine dans les piles à combustible. L'immobilisation à des interfaces nanostructurées de l'hydrogénase membranaire tolérante à l'oxygène de la bactérie hyperthermophile Aquifex aeolicus, et de la bilirubine oxydase thermostable de la bactérie Bacillus pumilus, a été étudiée dans ce sens.L'électrochimie et la dynamique moléculaire ont permis d'affiner le modèle d'orientation de l'hydrogénase sur les surfaces planes. L'efficacité de l'immobilisation de l'hydrogénase sur différents nanomatériaux carbonés (nano-particules, tubes et fibres de carbone) structurant la surface de l'électrode a été évaluée. Les nanofibres de carbone (CNFs) ont permis de former une bioanode efficace pour l'oxydation de l'H2 en l'absence de médiateurs redox. L'étude a souligné l'importance d'un transport efficace du substrat dans le film carboné mésoporeux. Les CNFs ont également été utilisées comme matériau d'électrode pour réaliser la 1ère connexion directe de la bilirubine oxydase. L'existence d'une forme resting alternative de l'enzyme, influencée par les ions chlorures, le pH et la température, a été mise en évidence. Une biocathode efficace pour la réduction de l'oxygène a été développée.Les deux électrodes thermostables ont permis le développement de la 1ère biopile H2/O2 qui délivre des densités de puissance supérieures au mW.cm-2 sur une large gamme de température. Ce résultat ouvre la voie à l'alimentation électrique de dispositifs de faibles puissances
The oxygen reduction and the hydrogen oxidation reactions are realized in nature by oxidoreductase enzymes. These highly efficient, specific, renewable and biodegradable catalysts appear as a seducing alternative to platinum in fuel cell devices. The immobilization at nanostructured interfaces of the membrane-bound oxygen-tolerant hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus, and of the thermostable bilirubin oxidase from Bacillus pumilus, has been studied within this objective.Electrochemistry and molecular dynamics have been used to validate the orientation model of the hydrogenase at planar electrodes. Hydrogenase immobilisation in 3D-networks based on various carbon materials (nanoparticles, nanotubes and nanofibers) has been especially studied. Fishbone carbon nanofibers were demonstrated to provide an efficient platform for mediatorless H2 oxidation. Mass transport inside the carbon mesoporous film has been especially studied and demonstrated to be one of the limitations of the catalytic efficiency. Direct electrical connection of bilirubin oxidase has also been realized for the first time thanks to its immobilization on carbon nanofiber films. An alternative resting form of the enzyme, influenced by chlorides, pH and temperature, has been evidenced. An efficient biocathode for the oxygen reduction reaction has been developed. Thanks to the two thermostable electrodes, the first H2-O2 bio fuel cell able to deliver power densities over 1 mW.cm-2 over a large temperature range has been developed. This result paves the way for the electrical alimentation of low-power devices
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Thinon, Olivier. "CO conversion over dual-site catalysts by the Water-Gas Shift Reaction for fuel cell applications : comparative mechanistic and kinetic study of gold and platinum supported catalysts". Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10187.

Texto completo
Resumen
Les piles à combustible, alimentée par de l’hydrogène, représentent une solution prometteuse pour limiter la pollution. L’une des alternatives économiques envisagées à court et moyen terme est de produire l’hydrogène à partir d’un carburant tel que le méthane ou le bio-éthanol. Cette transformation a pour objectif d’obtenir un mélange de gaz riche en hydrogène avec une très faible teneur en CO, ce dernier étant un poison pour les piles de type PEM. La réaction de Water-Gas Shift (WGS) est une étape clé du procédé ; elle convertit CO en CO2 par réaction avec l’eau et fournit une quantité d’hydrogène supplémentaire. Des catalyseurs métalliques (Pt, Pd, Ru, Rh, Au, Cu) supportés sur des oxydes (CeO2, TiO2, ZrO2, Fe2O3, CeO2/Al2O3) ont été comparés dans des conditions de WGS identiques en présence de CO2 et H2. Une étude cinétique a été réalisée sur les catalyseurs Pt/CeO2, Au/CeO2, Pt/TiO2 et Au/TiO2. Les énergies d’activation apparentes et les ordres de réaction ont été déterminés à partir d’un modèle de type loi de puissance. Un mécanisme réactionnel avec deux sites a été proposé pour décrire les différentes activités des 4 catalyseurs. Des expériences de désorption programmée en température ont été réalisées pour déterminer les paramètres cinétiques sur le support
The Fuel Cells are promising solution to reduce the air pollution. One of the cost-efficient alternatives is to produce hydrogen from another fuel such as methane or bio-ethanol. A hydrogen fuel processor consists in generating a hydrogen-rich mixture and reducing the carbon monoxide content, as PEM fuel cells are very low CO tolerance. One of these units is the water-gas shift reactor, which converts CO into CO2 by the reaction with water and provides additional hydrogen. Catalysts based on a metal (Pt, Pd, Ru, Rh, Au, Cu) supported on an oxide (CeO2, TiO2, ZrO2, Fe2O3, CeO2/Al2O3) were compared for the WGS reaction in the same conditions and in the presence of CO2 and H2. A kinetic study was conducted on catalysts Pt/CeO2, Au/CeO2, Pt/TiO2 and Au/TiO2. A power law rate model was used to determine apparent activation energies and reaction orders. A dual-site reaction mechanism was proposed to explain the different activities between the four catalysts. The sorption parameters of H2O and CO2 on the supports was quantitatively determined from temperature-programmed desorption experiments
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Gailly, Frédéric. "Alimentation électrique d'un site isolé à partir d'un générateur photovoltaïque associé à un tandem électrolyseur/pile à combustible (batterie H2/O2)". Phd thesis, Toulouse, INPT, 2011. http://oatao.univ-toulouse.fr/11527/1/Gailly_Frederic.pdf.

Texto completo
Resumen
Les systèmes à énergies renouvelables couplés à un stockage hydrogène apportent des solutions nouvelles et innovantes à l'alimentation électrique des milieux peu ou non électrifiés. Le concept de batterie H2 qui équipe ce type de système est une forme de stockage originale qui apporte l'autonomie et l'indépendance électrique pour des longues durées (typiquement stockage saisonnier). Le fonctionnement de cette batterie H2 est le suivant : un électrolyseur produit des gaz (H2 et O2) avec les surplus d'énergie de la source renouvelable ; l'hydrogène, voire l'oxygène, est ensuite stocké dans des réservoirs pour être utilisé ultérieurement grâce à une pile à combustible lorsque la source renouvelable est insuffisante. Dans cette étude, nous nous intéresserons spécifiquement au couplage entre des générateurs photovoltaïques avec une batterie H2/O2 pour l'alimentation d'un site isolé sans interruption. Ces travaux de recherche s'inscrivent dans le projet ANR PEPITE (ANR-PanH 2007-2012) et ont été menés en partenariat avec HELION Hydrogen Power, le CEA Liten et l'Université de Corse. Le projet est également labellisé par les pôles de compétitivité CAPENERGIES et TENERRDIS. Tout d'abord, une réflexion générale s'appuyant sur les propriétés d'une batterie H2/O2 démontre la nécessité d'introduire une batterie (ici au plomb) pour garantir un fonctionnement instantané et sans interruption. Puis, une étude qualitative sur les architectures électriques possibles (bus de tension DC, AC…) a été menée pour s'achever sur une étude quantitative réalisée spécifiquement pour le projet PEPITE. Parallèlement à cela, différentes stratégies de gestions énergétiques ont été proposées afin d'utiliser les deux stockages dans les meilleures conditions, de limiter leur vieillissement ainsi que les pertes. Deux bancs d'essais à échelle réduite (un premier à bus DC et un second à bus AC) ont été réalisés au sein du laboratoire LAPLACE afin de valider les études et de préparer le prototype final qui sera testé sur le site de HELION Hydrogen Power au cours de l'été 2011.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "H2 Fuel Cell"

1

Mauritz, Kenneth A., Amol Nalawade y Mohammad K. Hassan. "Proton Exchange Membranes for H2 Fuel Cell Applications". En Sol-Gel Processing for Conventional and Alternative Energy, 73–98. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1957-0_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ruggeri, Bernardo, Tonia Tommasi y Sara Sanfilippo. "Valorization of Liquid End-Residues of H2 Production by Microbial Fuel Cell". En BioH2 & BioCH4 Through Anaerobic Digestion, 137–59. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6431-9_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Yacoubi, Khalid. "A Modeling and Optimization of the Transport Phenomena of Water in a Fuel Cell H2/O2". En ICREEC 2019, 175–85. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5444-5_22.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wang, Xianqin y José A. Rodriguez. "H2 Production and Fuel Cells". En Synthesis, Properties, and Applications of Oxide Nanomaterials, 651–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470108970.ch21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nogami, Masayuki y Lakshminarayana Gandham. "Inorganic-Based Proton Exchange Membranes for H2/O2 Fuel Cells". En Sol-Gel Processing for Conventional and Alternative Energy, 37–58. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1957-0_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ferreira, Victor José, José Luís Figueiredo y Joaquim Luís Faria. "Fuel Cells: Cogeneration of C2 Hydrocarbons or Simultaneous Production/Separation of H2 and C2 Hydrocarbons". En Advanced Structured Materials, 221–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40680-5_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Goff, Alan Le y Fabien Giroud. "2. Molecular electrocatalysts for carbon-based biofuels, H2 and O2 activation: an alternative to precious metals and enzymes in fuel cells". En Bioelectrochemistry, editado por Serge Cosnier, 23–44. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110570526-002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Gu, Wenbin, Paul T. Yu, Robert N. Carter, Rohit Makharia y Hubert A. Gasteiger. "Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells – Local H2 Starvation and Start–Stop Induced Carbon-Support Corrosion". En Modern Aspects of Electrochemistry, 45–87. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98068-3_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kang, Jia-Lin, Chien-Chien Wang, Po-Hsun Chang, David Shan-Hill Wong, Shi-Shang Jang y Chun-Hsiu Wang. "Modeling of The Solid Oxide Fuel Cell Considering H2 and CO Electrochemical Reactions". En Computer Aided Chemical Engineering, 511–16. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-823377-1.50086-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

"Hydrogen H2". En Proton Exchange Membrane Fuel Cells, 145–82. CRC Press, 2013. http://dx.doi.org/10.1201/b15499-11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "H2 Fuel Cell"

1

Yap, H. T. y N. Schofield. "Test Characterisation of a H2 PEM Fuel Cell". En 2007 Vehicle Power and Propulsion Conference. IEEE, 2007. http://dx.doi.org/10.1109/vppc.2007.4544185.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Alhussan, Khaled. "A Novel Design of Polymer Electrolyte Membrane Fuel Cell". En ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37458.

Texto completo
Resumen
A fuel cell is an energy conversion device that converts the chemical energy of fuel into electrical energy. Fuel cells operate continuously if they are provided with the reactant gases, not like batteries. Fuel cells can provide power in wide range. Fuel cells are environmentally friendly; the by-product of hydrogen/oxygen fuel cell is water and heat. This paper will show a numerical modeling for this spiral design of high pressurized Polymer Electrolyte Membrane fuel cell. Numerical modeling requires understanding the physical principles of fuel cells, fluid flow, heat transfer, mass transfer in porous media, electrochemical reactions, multiphase flow with phase change, transport of current and potential field in porous media and solid conducting regions, and water transport across the polymer membrane; and this will result in optimal design process. This paper will show fuel cell models that are used in this analysis. Such as; electrochemical model: predicts local current density, voltage distributions. Potential field model: predicts current and voltage in porous and solid conducting regions. Multiphase mixture model: predicts liquid water and gas flow in the porous diffusion layers. Thin film multiphase model: tracks liquid water flow in gas flow passages. The numerical results of the theoretical modeling are shown in this paper. This paper shows the contour plots of mole fraction of H2O, H2, and O2. Results in this research include the species concentration of H2O, H2, and O2. This research also shows the plot of mass concentration of H2O, H2 and O2.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kazemiabnavi, Saeed, Aneet Soundararaj, Haniyeh Zamani, Bjoern Scharf, Priya Thyagarajan y Xinle Zhou. "A Comparative Study of Hydrogen Storage and Hydrocarbon Fuel Processing for Automotive Fuel Cells". En ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52478.

Texto completo
Resumen
In recent years, there has been increased interest in fuel cells as a promising energy storage technology. The environmental impacts due to the extensive fossil fuel consumption is becoming increasingly important as greenhouse gas (GHG) levels in the atmosphere continue to rise rapidly. Furthermore, fuel cell efficiencies are not limited by the Carnot limit, a major thermodynamic limit for power plants and internal combustion engines. Therefore, hydrogen fuel cells could provide a long-term solution to the automotive industry, in its search for alternate propulsion systems. Two most important methods for hydrogen delivery to fuel cells used for vehicle propulsion were evaluated in this study, which are fuel processing and hydrogen storage. Moreover, the average fuel cost and the greenhouse gas emission for hydrogen fuel cell (H2 FCV) and gasoline fuel cell (GFCV) vehicles are compared to that of a regular gasoline vehicle based on the Argonne National Lab’s GREET model. The results show that the average fuel cost per 100 miles for a H2 FCV can be up to 57% lower than that of regular gasoline vehicles. Moreover, the obtained results confirm that the well to wheel greenhouse gas emission of both H2 FCV and GFCV is significantly less than that of regular gasoline vehicles. Furthermore, the investment return period for hydrogen storage techniques are compared to fuel processing methods. A qualitative safety and infrastructure dependency comparison of hydrogen storage and fuel processing methods is also presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yu, Jingrong, Ping Cheng, Zhiqi Ma y Baolian Yi. "Fabrication of Miniature Silicon Wafer Fuel Cells Using Micro Fabrication Technologies". En ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1732.

Texto completo
Resumen
The fabrication of miniature silicon wafer fuel cells by micro-fabrication technologies and their performance evaluation are presented in this paper. Various thickness of Nafion membranes, such as Nafion 117, 115, and 112, were tested as electrolytes in a miniature single cell operating with dry H2/O2. Among these membranes, Nafion 112 (with the thinnest thickness) gave the best performance of 92.2 mW/cm2 at 250mA/cm2. In order to enhance the output voltage of the fuel cell, a miniature twin-fuel-cell was fabricated in series using two membrane-electrode-assemblies of Nafion 112 membrane sandwiched between two silicon substrates. The novel structure of the miniature twin-fuel-cell is that the electricity interconnect from the cathode of one cell to the anode of another cell is made on the same plane. The interconnect is fabricated by sputtering a layer of gold on the top of the silicon wafer. Silicon dioxide is deposited on the silicon wafer adjacent to the gold layer to prevent short-circuiting between the twin-cells. At ambient conditions, the measured peak power densities of the miniature twin-fuel-cell operating with H2/O2 and 1.5M methanol/O2, are 190.4mW/cm2 and 15.4mW/cm2, respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zhou, Fan, Samuel Simon Araya, Ionela Florentina Grigoras, Søren Juhl Andreasen y Søren Knudsen Kær. "Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells". En ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6358.

Texto completo
Resumen
Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due to the redistribution of PA between the membrane and electrodes. EIS measurement of first fuel cell during the start/stop test showed that the mass transfer resistance and ohmic resistance increased which can be attributed to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with simulated reformate as the fuel the ORR kinetic resistance and mass transfer resistance of both single cells increased. The performance of the second single cell experienced a slight decrease during the start/stop test with simulated reformate as the fuel.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hu, Jenny E., Joshua B. Pearlman, Atul Bhargav y Gregory S. Jackson. "Impact of Increased Anode CO Tolerance on Performance of Hydrocarbon-Fueled PEM Fuel Cell Systems". En ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85185.

Texto completo
Resumen
Recent advances in anode electrocatalysts for low-temperature PEM fuel cells are increasing tolerance for CO in the H2-rich anode stream. This study explores the impact of current day and future advances in CO-tolerant electrocatalysts on the system efficiency of low-temperature Nafion-based PEM fuel cell systems operating in conjunction with a hydrocarbon autothermal reformer and a preferential CO oxidation (PROx) reactor for CO clean-up. This study explores the effects of incomplete H2 cleanup by preferential oxidation reactors for partial CO removal, in combination with reformate-tolerant stacks. Empirical fuel cell performance models were based upon voltage-current characteristic from single-cell MEA tests at varying CO concentrations with new alloy reformate-tolerant electrocatalysts tested in conjunction with this study. A system-level model for a 5 kW maximum liquid-fueled system has been used to study the trade-offs between the improved performance with decreased CO concentration and the increased penalties from the air supply to the PROx reactor and associated reduction in H2 partial pressures to the anode. As CO tolerance is increased over current state-of-the-art Pt alloy catalysts system efficiencies improve due to higher fuel cell voltages. Furthermore, increasing CO tolerance of anode electrocatalysts allows for increased reformer efficiency by reducing PROx CO conversion requirements.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lin, Kuen-Song, Chi-Nan Ku, Chien-Te Hsieh, Shih-Hung Chan y Ay Su. "Synthesis, Characterization, and Hydrogen-Storage Ability of Surface-Modified Multi-Wall Carbon Nanotubes". En ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97172.

Texto completo
Resumen
Carbon nanotubes (CNTs) have attracted increasing attention because of their unique structural, mechanical, and electronic properties. Surface chemistry modifications are also useful and critical to manipulate the adsorptive properties of CNTs and develop their hydrogen storage potential. Therefore, the synthesis or identification of multi-wall carbon nanotubes (MWCNTs) and H2 storage capacity in MWCNTs were investigated. Experimentally, the MWCNTs were produced from the catalytic-assembly benzene-thermal routes by reduction of C6Cl6 with metallic K or Na in the presence of Co/Ni catalyst precursors at 503–623 K. The diameters of K-MWCNTs and Na-MWCNTs ranged from 30–100 and 20–60 nm, respectively. The H2 storage capacity of MWCNTs improved by Pd or NaAlH4 ranged from 2.5–3.5 wt%. Extended X-ray absorption fine structural (EXAFS) spectra showed that the Pd or PdCl2 possess a Pd-Pd or Pd-Cl bond distance of 2.76 or 2.25 Å with a coordination number of 6 or 2, respectively. Therefore, Pd nanoparticles are well dispersed on MWCNTs, which may improve the H2 storage capacity significantly.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hung, Hua-Sheng, Yeong-Jey Chen y Chuin-Tih Yeh. "Partial Oxidation of Methanol Over Dispersed Silver Catalysts at Moderate Temperatures". En ASME 2004 2nd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2004. http://dx.doi.org/10.1115/fuelcell2004-2536.

Texto completo
Resumen
Supported silver catalysts displayed a moderate ignition temperature of Ti ∼ 100 °C in partial oxidation of methanol (POM). The moderate Ti was attributed to an enhanced adsorption of methanol on silver by co-adsorption of oxygen. The conversion of methanol increases with the reaction temperature and the ratio of oxygen to methanol. CO2 (instead of CO), H2 and H2O were found as the major product of POM. The selectivity of desired products, CO2 and H2, varied with the kind of support used in silver catalysts. A mechanism is proposed to account for the variation in the distribution of products.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kallo, Josef y Johannes Schirmer. "Antares DLR-H2 - Fuel cell testing under aeronautical conditions, modelling and test". En 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0530.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Petrone, R., E. Pahon, F. Harel, S. Jemei, D. Chamagne, D. Hissel y M. C. Pera. "Data-Driven Multi-Fault Approach for H2/O2 PEM Fuel Cell Diagnosis". En 2017 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2017. http://dx.doi.org/10.1109/vppc.2017.8330974.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "H2 Fuel Cell"

1

Valente, Patrick R. Raising H2 and Fuel Cell Awareness in Ohio. Office of Scientific and Technical Information (OSTI), marzo de 2013. http://dx.doi.org/10.2172/1341386.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Johnson, Terry Alan, Marcina Moreno, Marco Arienti, Joseph William Pratt, Leo Shaw y Leonard E. Klebanoff. Analysis of H2 storage needs for early market non-motive fuel cell applications. Office of Scientific and Technical Information (OSTI), marzo de 2012. http://dx.doi.org/10.2172/1039007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

James, Brian D., Jeffrey A. Kalinoski y Kevin N. Baum. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update. Office of Scientific and Technical Information (OSTI), enero de 2010. http://dx.doi.org/10.2172/1218889.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

James, Brian D. y Jeffrey A. Kalinoski. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2008 Update. Office of Scientific and Technical Information (OSTI), marzo de 2009. http://dx.doi.org/10.2172/1219352.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

James, Brian D. y Jeffrey A. Kalinoski. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update. Office of Scientific and Technical Information (OSTI), febrero de 2008. http://dx.doi.org/10.2172/1219353.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

James, Brian David, Jennie Moton Huya-Kouadio, Cassidy Houchins y Daniel Allen DeSantis. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016). Office of Scientific and Technical Information (OSTI), septiembre de 2016. http://dx.doi.org/10.2172/1346414.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Mintz, M., J. Gillette, C. Mertes, eric stewart y Stephanie Burr. Economic Impacts Associated with Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model. Office of Scientific and Technical Information (OSTI), diciembre de 2014. http://dx.doi.org/10.2172/1177466.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

WANG, X. y J. A. RODRIGUEZ. H2 PRODUCTION AND FUEL CELLS. Office of Scientific and Technical Information (OSTI), junio de 2006. http://dx.doi.org/10.2172/893011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía