Literatura académica sobre el tema "Heat transfer limit"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Heat transfer limit".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Heat transfer limit"
Li, Xi Bing, Shi Gang Wang, Jian Hua Guo y Dong Sheng Li. "A Mathematical Modeling Method on Micro Heat Pipe with a Trapezium-Grooved Wick Structure". Applied Mechanics and Materials 29-32 (agosto de 2010): 1686–94. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.1686.
Texto completoDobran, Flavio. "Suppression of the Sonic Heat Transfer Limit in High-Temperature Heat Pipes". Journal of Heat Transfer 111, n.º 3 (1 de agosto de 1989): 605–10. http://dx.doi.org/10.1115/1.3250725.
Texto completoMartin, Michael J. y Iain D. Boyd. "Stagnation-Point Heat Transfer Near the Continuum Limit". AIAA Journal 47, n.º 1 (enero de 2009): 283–85. http://dx.doi.org/10.2514/1.39789.
Texto completoBertoli, Sávio L., José Alexandre B. Valle, Antônio G. Gerent y Juliano de Almeida. "Heat transfer at pneumatic particle transport — Limit solutions". Powder Technology 232 (diciembre de 2012): 64–77. http://dx.doi.org/10.1016/j.powtec.2012.07.050.
Texto completoKashi, Barak y Herman D. Haustein. "Microscale sets a fundamental limit to heat transfer". International Communications in Heat and Mass Transfer 104 (mayo de 2019): 1–7. http://dx.doi.org/10.1016/j.icheatmasstransfer.2019.02.003.
Texto completoLi, Xi Bing, Chang Long Yang, Gong Di Xu, Wen Yuan y Shi Gang Wang. "A Mathematical Modeling Method for Capillary Limit of Micro Heat Pipe with Sintered Wick". Solid State Phenomena 175 (junio de 2011): 335–41. http://dx.doi.org/10.4028/www.scientific.net/ssp.175.335.
Texto completoOGUSHI, Tetsuro y Goro YAMANAKA. "Heat transfer performance of axial grooved heat pipes. The capillary pumping limit." Transactions of the Japan Society of Mechanical Engineers Series B 53, n.º 486 (1987): 600–607. http://dx.doi.org/10.1299/kikaib.53.600.
Texto completoWilliams, Richard R. y Daniel K. Harris. "The heat transfer limit of step-graded metal felt heat pipe wicks". International Journal of Heat and Mass Transfer 48, n.º 2 (enero de 2005): 293–305. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.08.024.
Texto completoMichiyoshi, I., O. Takahashi y Y. Kikuchi. "Heat transfer and the low limit of film boiling". Experimental Thermal and Fluid Science 2, n.º 3 (julio de 1989): 268–79. http://dx.doi.org/10.1016/0894-1777(89)90016-2.
Texto completoArpacı, V. S. y S. H. Kao. "Thermocapillary Driven Turbulent Heat Transfer". Journal of Heat Transfer 120, n.º 1 (1 de febrero de 1998): 214–19. http://dx.doi.org/10.1115/1.2830044.
Texto completoTesis sobre el tema "Heat transfer limit"
Kucuk, Sinan. "A Comparative Investigation Of Heat Transfer Capacity Limits Of Heat Pipes". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12609125/index.pdf.
Texto completoGdhaidh, Farouq A. S. "Heat Transfer Characteristics of Natural Convection within an Enclosure Using Liquid Cooling System". Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/7824.
Texto completoGdhaidh, Farouq Ali S. "Heat transfer characteristics of natural convection within an enclosure using liquid cooling system". Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/7824.
Texto completoZhang, Yufang. "Coupled convective heat transfer and radiative energy transfer in turbulent boundary layers". Phd thesis, Ecole Centrale Paris, 2013. http://tel.archives-ouvertes.fr/tel-00969159.
Texto completoSaid, Frédérique. "Etude expérimentale de la couche limite marine : structure turbulente et flux de la surface (expérience TOXANE-T)". Toulouse 3, 1988. http://www.theses.fr/1988TOU30022.
Texto completoStefanini, Luciano Martinez. "Efeitos da camada limite térmica na formação de gelo em aerofólios de uso aeronáutico". Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-17082009-165521/.
Texto completoThe model to evaluate the momentum and thermal boundary layer was implemented, in the present work, in a numerical module to calculate the convective heat transfer coecient over aeronautical airfoils with ice accretion. It was considered, in the turbulent boundary layer model, the eects of the equivalent sand grain roughness ks , and the laminar to turbulent transition was evaluated with two models, the abrupt and the smooth one. The smooth transition model used an intermittency function proposed by (ABU-GHANNAM; SHAW, 1980). The module developed in this work was integrated with the modules of the code ONERA in order to simulate the airfoil icing shapes for several air stream with water droplets condition. The ice shapes obtained was compared with experimental data of Shin e Bond (1994) and with simulation results for the codes LEWICE, TRAJICE e ONERA (KIND, 2001). The results of the simulations for the present work showed a good similarity with the other codes results. The Glaze icing shapes simulation, in the present work and in the other codes, resulted in icing shapes with thickness and volumes lesser than the experimental shapes. It was noted that a reasonable prediction of the convective heat transfer coecient aects the simulation of this type of ice shape. One case of Kind (2001) was used to evaluate the eects of the momentum and thermal boundary layer for the icing accreations in the airfoil. It was noted the onset position, the lenght of the laminar-turbulent transition, and the sand grain roughness value aects the icing shape, thickness and volume and this parameters might be used to adjust the boundary layer models in order to get better predictions of Glaze icing shapes.
Lambrinos, Grégoire. "Sublimation des milieux disperses congeles soumis a des temperatures negatives". Paris 6, 1988. http://www.theses.fr/1988PA066637.
Texto completoThiagalingam, Ilango. "Modélisation des transferts thermiques convectifs en régime turbulent à l'interface milieu poreux / paroi dans les lits catalytiques". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066126/document.
Texto completoThis work deals with the modeling of near wall heat transfers in catalytic packed beds at the macroscopic scale. The main aims of the present work are the understanding and the modeling of physical mechanisms responsible for the heat transfers in the vicinity of the wall at the observation scale. Volume averaging concept is first extended to systems we consider. Thus, relevant physical mechanisms occurring in the near wall zone are unequivocally up-scaled from pore to bed scale. Then, the detailed analysis of the wall heat transfer coefficient, used in the popular two coefficient model λr - hw, brings to light each physical mechanism and its respective weighted contribution lumped in it. A model, based on the flow dynamic and describing the radial heat transfer, is finally derived at the reactor scale. It highlights that a channel effect occurs in the near wall zone, damping transfers by diffusion in the wall normal direction. It is hence showed that heat transfers mainly driven by mechanical dispersion are facing a convective thermal resistance near the wall. A wall law is also derived to model boundary layer/porous medium interactions, which ultimately connect the porous media model to the wall. Wall temperature is thus recovered with satisfaction
Gadiraju, Siddhartha. "Study of Lean Blowout Limits and Effects of Near Blowout Oscillations on Flow Field and Heat Transfer on Gas Turbine Combustor". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82480.
Texto completoPh. D.
Sharma, Sushank. "Transition laminaire turbulent dans les couches limites supersoniques : différents scénarios et contrôle possible Control of oblique-type breakdown in a supersonic boundary layer employing streaks Turbulent flow topology in supersonic boundary layer with wall heat transfer Laminar-to-turbulent transition in supersonic boundary layer : : Effects of initial perturbation and wall heat transfer Effect of thermo-mechanical non-equilibrium on the onset of transition in supersonic boundary layers". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR16.
Texto completoDirect numerical simulations (DNS) of both adiabatic and isothermal (heated and cooled) supersonic boundary layers are performed. Two different transition scenarios, namely the Oblique-type breakdown and the By-pass transition are presented in detail. For the oblique-type transition scenario, the results show that the control modes with four to five times the fundamental wavenumber are beneficial for controlling the transition. In the first region, after the control-mode forcing, the beneficial mean-flow distortion (MFD) generated by inducing the control mode is solely responsible for hampering the growth of the fundamental-mode. Globally, the MFD and the three-dimensional part of the control contribute equally towards controlling the oblique breakdown. Effects of physical parameters like wall-temperature, perturbation intensity and baseflow are investigated for the By-pass transition. The results regarding the by-pass scenario reveal that increasing the perturbation intensity moves the transition onset upstream and also increases the length of the transition region. Additionally, below 1% perturbation levels, wall-cooling stabilizes the flow while inverse happens at higher values. The existence of the thermo-mechanical non-equilibrium advances the onset of transition for the heated cases while the cooled wall behaves in the opposite sense. The analyses of the turbulent boundary layer show that the thermal factors influence the topology and inclination of the vortical structures. Moreover, regarding the heat flux, different transfer process is dominant in the near-wall region for the cooled wall
Libros sobre el tema "Heat transfer limit"
Bensoussan, Alain. Asymptotic analysis for periodic structures. Providence, R.I: American Mathematical Society, 2011.
Buscar texto completoRez, Peter. Buildings. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198802297.003.0003.
Texto completoParlange, Marc B. y Jan W. Hopmans. Vadose Zone Hydrology. Oxford University Press, 1999. http://dx.doi.org/10.1093/oso/9780195109900.001.0001.
Texto completoCapítulos de libros sobre el tema "Heat transfer limit"
Frederking, T. H. K. "Heat Transfer Related to Superconducting Magnet Stability: He II - He I Dynamic Limits". En Advances in Cryogenic Engineering, 149–53. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0639-9_18.
Texto completoHennes, Christian, J. Lehmann, P. Kožuch y T. Koch. "Assessment of factors influencing the wall heat transfer with regard to increasing efficiency and compliance with future CO2 limits for commercial vehicles". En Proceedings, 235–52. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-26528-1_14.
Texto completoMilanezi de Andrade, Rafhael, André Palmiro Storch, Lucas de Amorim Paulo, Antônio Bento Filho, Claysson Bruno Santos Vimieiro y Marcos Pinotti. "Transient Thermal Analysis of a Magnetorheological Knee for Prostheses and Exoskeletons during Over-Ground Walking". En Heat Transfer - Design, Experimentation and Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95372.
Texto completoOladokun, Olagoke, Bemgba Bevan Nyakuma y Arshad Ahmad. "Fundamental Theories and Kinetic Models for the Pyrolysis of Lignocellulosic Biomass Wastes". En Handbook of Research on Resource Management for Pollution and Waste Treatment, 123–51. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0369-0.ch007.
Texto completo"1Chapter 2 Optically Thin and Thick Limits for Radiative Transfer in Participating Media". En Thermal Radiation Heat Transfer, 611–48. CRC Press, 2010. http://dx.doi.org/10.1201/9781439894552-19.
Texto completoBeris, Antony N. y Brian J. Edwards. "Non-Conventional Transport Phenomena". En Thermodynamics of Flowing Systems: with Internal Microstructure. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195076943.003.0015.
Texto completoKobayashi, Shiro, Soo-Ik Oh y Taylan Altan. "Analysis and Technology in Metal Forming". En Metal Forming and the Finite-Element Method. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195044027.003.0006.
Texto completoNur Parin, Fatma. "Retrospective, Perspective and Prospective of B-Complex Vitamins: Encapsulation of Vitamins and Release from Vitamin-Loaded Polymers". En B-Complex Vitamins - Sources, Intakes and Novel Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99284.
Texto completoKobayashi, Shiro, Soo-Ik Oh y Taylan Altan. "Metal-Forming Processes". En Metal Forming and the Finite-Element Method. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195044027.003.0005.
Texto completoİsmail Tosun, Yıldırım. "Adsorption of Heavy Metals by Microwave Activated Shale/Asphaltite Char/Zeolite Granule Composts from Hazardous Sludges and Industrial Waste Slurries". En Clay Science and Technology [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94404.
Texto completoActas de conferencias sobre el tema "Heat transfer limit"
Lesin, S., A. Baron, H. Branover y Jose C. Merchuk. "DIRECT CONTACT BOILING AT THE SUPERHEAT LIMIT". En International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.580.
Texto completoKu, Jentung, Laura Ottenstein, Paul Rogers y Kwok Cheung. "Investigation of Capillary Limit in a Loop Heat Pipe". En International Heat Transfer Conference 12. Connecticut: Begellhouse, 2002. http://dx.doi.org/10.1615/ihtc12.2770.
Texto completoFlik, Markus I. y Kunio Hijikata. "APPROXIMATE THERMAL PACKAGING LIMIT FOR HYBRID SUPERCONDUCTOR-SEMICONDUCTOR ELECTRONIC CIRCUITS". En International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.500.
Texto completoKadoguchi, K., T. Fukano y Y. Emi. "OPERATING LIMIT OF A CLOSED TWO-PHASE THERMOSYPHON WITH A BINARY MIXTURE". En International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.1270.
Texto completoJi, Yulong, Chao Chang, Gen Li y Hongbin Ma. "An Investigation on Operating Limit of an Oscillating Heat Pipe". En The 15th International Heat Transfer Conference. Connecticut: Begellhouse, 2014. http://dx.doi.org/10.1615/ihtc15.hpp.009442.
Texto completoPratt, David M., Won Soon Chang y Kevin P. Hallinan. "EFFECTS OF THERMO CAPILLARY STRESSES ON THE CAPILLARY LIMIT OF CAPILLARY-DRIVEN HEAT TRANSFER DEVICES". En International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.110.
Texto completoYuksel, Anil, Michael Cullinan y Jayathi Murthy. "Thermal Energy Transport Below the Diffraction Limit in Close-Packed Metal Nanoparticles". En ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4968.
Texto completoJu, Yiguang. "Theoretical Analysis of Flame Propagation in Meso and Microscale Channels". En ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47516.
Texto completoJu, Yiguang, Kenichi Takita, Masuya Goro, Fengshan Liu y Hongsheng Guo. "ANALYSES OF EXTINCTION AND FLAMMABILITY LIMIT OF STRETCHED PREMIXED FLAMES USING THE STATISTICAL NARROW-BAND MODEL". En International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.4280.
Texto completoFeng, Qijing y Klaus Johannsen. "THE HIGH-TEMPERATURE LIMIT OF THE TRANSITION BOILING REGIME FOR WATER IN VERTICAL UPFLOW AT MEDIUM PRESSURE". En International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.4300.
Texto completo