Literatura académica sobre el tema "Hypoellipticité"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hypoellipticité".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hypoellipticité"
Xu, Chaojiang. "Hypoellipticité d'équations aux dérivées partielles non linéaires". Journées équations aux dérivées partielles, n.º 1 (1985): 1–16. http://dx.doi.org/10.5802/jedp.299.
Texto completoMorioka, Tatsushi. "Hypoellipticité pour un certain opérateur à caractéristique double". Tsukuba Journal of Mathematics 21, n.º 3 (diciembre de 1997): 739–62. http://dx.doi.org/10.21099/tkbjm/1496163378.
Texto completoDonno, Giuseppe De. "Generalized Vandermonde determinants for reversing Taylor's formula and application to hypoellipticity". Tamkang Journal of Mathematics 38, n.º 2 (30 de junio de 2007): 183–89. http://dx.doi.org/10.5556/j.tkjm.38.2007.89.
Texto completoBergamasco, Adalberto P. y Sérgio Luís Zani. "Global Hypoellipticity of a Class of Second Order Operators". Canadian Mathematical Bulletin 37, n.º 3 (1 de septiembre de 1994): 301–5. http://dx.doi.org/10.4153/cmb-1994-045-4.
Texto completoNedeljkov, M. y S. Pilipović. "Hypoelliptic differential operators with generalized constant coefficients". Proceedings of the Edinburgh Mathematical Society 41, n.º 1 (febrero de 1998): 47–60. http://dx.doi.org/10.1017/s0013091500019428.
Texto completoHimonas, A. Alexandrou. "analytic hypoellipticity". Duke Mathematical Journal 59, n.º 1 (agosto de 1989): 265–87. http://dx.doi.org/10.1215/s0012-7094-89-05909-7.
Texto completoStreet, Brian. "What is ...Hypoellipticity?" Notices of the American Mathematical Society 65, n.º 04 (1 de abril de 2018): 1. http://dx.doi.org/10.1090/noti1670.
Texto completoBergamasco, A. P., G. A. Mendoza y S. Zani. "On Global Hypoellipticity". Communications in Partial Differential Equations 37, n.º 9 (29 de marzo de 2012): 1517–27. http://dx.doi.org/10.1080/03605302.2011.641054.
Texto completoNedeljkov, Marko y Stevan Pilipovic. "On hypoellipticity in ς". Bulletin: Classe des sciences mathematiques et natturalles 123, n.º 27 (2002): 47–56. http://dx.doi.org/10.2298/bmat0227047n.
Texto completoStreet, Brian. "WHAT ELSE about...Hypoellipticity?" Notices of the American Mathematical Society 65, n.º 04 (1 de abril de 2018): 1. http://dx.doi.org/10.1090/noti1664.
Texto completoTesis sobre el tema "Hypoellipticité"
Valentin, Jérôme. "Extensions de la formule d'Itô par le calcul de Malliavin et application à un problème variationnel". Thesis, Paris, ENST, 2012. http://www.theses.fr/2012ENST0029/document.
Texto completoThis dissertation studies the extension of the Itô formula to the case of distibution-valued paths of bounded variation lifted by processes which are regular in the sense of Malliavin calculus. We make optimal hypotheses, which gives us access to many applications. The first chapter is a primer in Malliavin calculus. The second chapter provides useful results on the toplogy of the schwartz class and of the space of tempered distributions. in the third chapter, we give optimal conditions under which a tempered distribution may be composed by a random variable and we study the malliavin regularity of the object thus defined. Interpolation techniques give access to results in fractional spaces. We also give results for the case where the tempered distribution is itself stochastic. These results allow us to obtain, in chapter 4, a weak Itô formula under hypotheses which are much weaker than those usually made in the litterature. We also give an Itô-Wentzell and an anticipative version. In the case where the process to which the ito formula is applied is the solution to an SDE, we give a more precise result, which we use to study the reguarity of the multi-dimensional local time. Finally the fifth chapter solves a variational problem under hypotheses which are much weaker than the usual assumption of hypoellipticity
Cao, Chuqi. "Equations de Fokker-Planck cinétiques : hypocoercivité et hypoellipticité". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED040.
Texto completoThis thesis mainly study the hypocoercivity and long time behaviour of kinetic equations. We first consider the kinetic Fokker-Planck equation with weak confinement force and a class of general force. We prove the existence and uniqueness of a positive normalized equilibrium (in the case of a general force) and establish some exponential rate or sub-geometric rate of convergence to the equilibrium (and the rate can be explicitly computed). Then we study convergence to equilibriumof the linear relaxation Boltzmann (also known as linear BGK) and the linear Boltzmann equations either on the torus or on the whole space with a confining potential. We present explicit convergence results in total variation or weighted total variation norms. The convergence rates are exponential when the equations are posed on the torus, or with a confining potential growing at least quadratically at infinity. Moreover, we give algebraic convergence rates when subquadratic potentials considered. We use a method known as Harris’s Theorem
Pigato, Paolo. "Tube estimates for hypoelliptic diffusions and scaling properties of stochastic volatility models". Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1029/document.
Texto completoIn this thesis we address two problems. In the first part we consider hypoelliptic diffusions, under both strong and weak Hormander condition. We find Gaussian estimates for the density of the law of the solution at a fixed, short time. A main tool to prove these estimates is Malliavin Calculus, in particular some techniques recently developed to deal with degenerate problems. We then use these short-time estimates to show exponential two-sided bounds for the probability that the diffusion remains in a small tube around a deterministic path up to a given time. In our hypoelliptic framework, the shape of the tube must reflect the fact the diffusion moves with a different speed in the direction of the diffusion coefficient and in the direction of the Lie brackets. For this reason we introduce a norm accounting of this anisotropic behavior, which can be adapted to both the strong and weak Hormander framework. We establish a connection between this norm and the standard control distance in the strong Hormander case. In the weak Hormander case, we introduce a suitable equivalent control distance. In the second part of the thesis we work with mean reverting stochastic volatility models, with a volatility driven by a jump process. We first suppose that the jumps follow a Poisson process, and consider the decay of cross asset correlations, both theoretically and empirically. This leads us to study an algorithm for the detection of jumps in the volatility profile. We then consider a more subtle phenomenon widely observed in financial indices: the multiscaling of moments, i.e. the fact that the q-moment of the log-increment of the price on a time lag of length h scales as h to a certain power of q, which is non-linear in q. We work with models where the volatility follows a mean reverting SDE driven by a Lévy subordinator. We show that multiscaling occurs if the characteristic measure of the Lévy has power law tails and the mean reversion is super-linear at infinity. In this case the scaling function is piecewise linear
Valentin, Jérôme. "Extensions de la formule d'Itô par le calcul de Malliavin et application à un problème variationnel". Electronic Thesis or Diss., Paris, ENST, 2012. http://www.theses.fr/2012ENST0029.
Texto completoThis dissertation studies the extension of the Itô formula to the case of distibution-valued paths of bounded variation lifted by processes which are regular in the sense of Malliavin calculus. We make optimal hypotheses, which gives us access to many applications. The first chapter is a primer in Malliavin calculus. The second chapter provides useful results on the toplogy of the schwartz class and of the space of tempered distributions. in the third chapter, we give optimal conditions under which a tempered distribution may be composed by a random variable and we study the malliavin regularity of the object thus defined. Interpolation techniques give access to results in fractional spaces. We also give results for the case where the tempered distribution is itself stochastic. These results allow us to obtain, in chapter 4, a weak Itô formula under hypotheses which are much weaker than those usually made in the litterature. We also give an Itô-Wentzell and an anticipative version. In the case where the process to which the ito formula is applied is the solution to an SDE, we give a more precise result, which we use to study the reguarity of the multi-dimensional local time. Finally the fifth chapter solves a variational problem under hypotheses which are much weaker than the usual assumption of hypoellipticity
Pigato, Paolo. "Tube Estimates for Hypoelliptic Diffusions and Scaling Properties of Stochastic Volatility Models". Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424189.
Texto completoIn questa tesi ci occupiamo di due problemi. Nella prima parte consideriamo delle diffusioni ipoellittiche, sia sotto una condizione di Hormander forte che debole. Troviamo delle stime gaussiane per la densità della legge della soluzione in tempo corto. Uno strumento fondamentale per dimostrare questo tipo di stime è il calcolo di Malliavin. In particolare, utilizziamo delle tecniche sviluppate negli ultimi anni per affrontare dei problemi degeneri. Poi, grazie a queste stime in tempo corto, troviamo dei bound inferiore e superiore esponenziali per la probabilità che la diffusione rimanga in un piccolo tubo attorno a una traiettoria deterministica, fino a un tempo fissato. In questo contesto ipoellittico, la forma del tubo deve riflettere il fatto che la diffusione si muove con una velocità diversa nella direzione dei coefficienti di diffusione e nella direzione delle parentesi di Lie. Per questo motivo introduciamo una norma che tenga conto di questo comportamento anisotropo, adattabile al caso di Hormander forte e debole. Nel caso Hormander forte stabiliamo un'equivalenza tra questa norma e la distanza di controllo classica. Nel caso Hormander debole introduciamo una distanza di controllo equivalente adeguata. Nella seconda parte della tesi lavoriamo con dei modelli a volatilità stocastica con ritorno alla media, in cui la volatilità è diretta da un processo di salto. Supponiamo inizialmente che i salti siano dati da un processo di Poisson, e consideriamo il decadimento delle correlazioni incrociate, sia teoricamente che empiricamente. Questo ci porta a studiare un algoritmo per identificare i picchi nel profilo della volatilità. Consideriamo successivamente un fenomeno più sottile largamente osservato negli indici finanziari: il "multiscaling" dei momenti, ovvero il fatto che i momenti d'ordine q dei log-incrementi del prezzo su un tempo h, hanno un'ampiezza di ordine h a una certa potenza, che è non lineare in q. Lavoriamo con dei modelli in cui la volatilità è data da un'equazione differenziale stocastica con ritorno alla media, diretta da un subordinatore di Lévy. Mostriamo che il multiscaling si produce se la misura caratteristica del Lévy ha delle code di legge di potenza e il ritorno alla media è superlineare all'infinito. In questo caso l'esponente di scaling è lineare a tratti.
Tartakoff, David S. y Andreas Cap@esi ac at. "Results in Gevrey and Analytic Hypoellipticity". ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi967.ps.
Texto completoWenyi, Chen y Wang Tianbo. "The hypoellipticity of differential forms on closed manifolds". Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2980/.
Texto completoChen, Hua, Wei-Xi Li y Chao-Jiang Xu. "Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations". Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3028/.
Texto completoShimoda, Taishi. "Hypoellipticity of second order differential operators with sign-changing principal symbols /". Sendai : Tohoku Univ, 2000. http://www.loc.gov/catdir/toc/fy0713/2007329003.html.
Texto completoChinni, Gregorio <1980>. "Analytic and gevrey (micro-)hypoellipticity for sums of squares: an FBI approach". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/947/1/Tesi_Chinni_Gregorio.pdf.
Texto completoLibros sobre el tema "Hypoellipticité"
Boggiatto, Paolo. Global hypoellipticity and spectral theory. Berlin: Akademie Verlag, 1996.
Buscar texto completoYu, Ching-Chau. Nonlinear eigenvalues and analytic-hypoellipticity. Providence, R.I: American Mathematical Society, 1998.
Buscar texto completoBell, Denis R. Degenerate stochastic differential equations and hypoellipticity. New York: Longman, 1995.
Buscar texto completoBell, Denis R. Degenerate stochastic differential equations and hypoellipticity. Harlow, Essex: Longman, 1995.
Buscar texto completoShimoda, Taishi. Hypoellipticity of second order differential operators with sign-changing principal symbols. Sendai, Japan: Tohoku University, 2000.
Buscar texto completoJean, Nourrigat, ed. Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs. Boston: Birkhäuser, 1985.
Buscar texto completoservice), SpringerLink (Online, ed. Nonelliptic Partial Differential Equations: Analytic Hypoellipticity and the Courage to Localize High Powers of T. New York, NY: Springer Science+Business Media, LLC, 2011.
Buscar texto completoRockland, C. Hypoellipticity and Eigenvalue Asymptotics. Springer London, Limited, 2006.
Buscar texto completoBell, Denis. Degenerate Stochastic Differential Equations and Hypoellipticity. Taylor & Francis Group, 1996.
Buscar texto completoStreet, Brian. The Calder´on-Zygmund Theory II: Maximal Hypoellipticity. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691162515.003.0002.
Texto completoCapítulos de libros sobre el tema "Hypoellipticité"
Gårding, Lars. "Hypoellipticity". En University Lecture Series, 61–64. Providence, Rhode Island: American Mathematical Society, 1997. http://dx.doi.org/10.1090/ulect/011/09.
Texto completoChrist, Michael. "Hypoellipticity: Geometrization and speculation". En Complex Analysis and Geometry, 91–109. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8436-5_5.
Texto completoTartakoff, David S. "Gevrey and Analytic Hypoellipticity". En Microlocal Analysis and Spectral Theory, 39–59. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5626-4_2.
Texto completoMalliavin, Paul. "Hypoellipticity in Infinite Dimensions". En Diffusion Processes and Related Problems in Analysis, Volume I, 17–31. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4684-0564-4_2.
Texto completoCordaro, Paulo D. y Nicholas Hanges. "Symplectic strata and analytic hypoellipticity". En Phase Space Analysis of Partial Differential Equations, 83–94. Boston, MA: Birkhäuser Boston, 2006. http://dx.doi.org/10.1007/978-0-8176-4521-2_7.
Texto completoHelffer, Bernard y Francis Nier. "7. Hypoellipticity and Nilpotent Groups". En Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, 73–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31553-7_7.
Texto completoMendoza, Gerardo A. "Topological Implications of Global Hypoellipticity". En Microlocal Methods in Mathematical Physics and Global Analysis, 125–27. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0466-0_29.
Texto completoTartakoff, David S. "Nonsymplectic Strata and Germ Analytic Hypoellipticity". En Nonelliptic Partial Differential Equations, 131–51. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9813-2_11.
Texto completoChrist, Michael. "REMARKS ON ANALYTIC HYPOELLIPTICITY OF ∂̅b". En Modern Methods in Complex Analysis (AM-137), editado por Thomas Bloom, David W. Catlin, John P. D'Angelo y Yum-Tong Siu, 41–62. Princeton: Princeton University Press, 1996. http://dx.doi.org/10.1515/9781400882571-007.
Texto completoWong, M. W. "Global Hypoellipticity in the Schwartz Space". En Partial Differential Equations, 75–82. 2a ed. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003206781-10.
Texto completoActas de conferencias sobre el tema "Hypoellipticité"
Hairer, Martin. "Hypoellipticity in infinite dimensions". En Proceedings of the 7th International ISAAC Congress. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814313179_0062.
Texto completoAYELE, TSEGAYE G. y WORKU T. BITEW. "PARTIAL HYPOELLIPTICITY OF DIFFERENTIAL OPERATORS". En Proceedings of the 6th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837332_0056.
Texto completoGaretto, Claudia. "G- and G∞-hypoellipticity of partial differential operators with constant Colombeau coefficients". En Linear and Non-Linear Theory of Generalized Functions and its Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc88-0-9.
Texto completoPOPIVANOV, P. R. "ON THE HYPOELLIPTICITY OF SOME CLASSES OF OVERDETERMINED SYSTEMS OF DIFFERENTIAL AND PSEUDODIFFERENTIAL OPERATORS". En Proceedings of the 8th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709806_0030.
Texto completoInformes sobre el tema "Hypoellipticité"
Ustunel, A. S. Hypoellipticity of the Stochastic Partial Differential Operators. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1985. http://dx.doi.org/10.21236/ada170326.
Texto completo