Literatura académica sobre el tema "In situ TEM nanoindentation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "In situ TEM nanoindentation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "In situ TEM nanoindentation"
Carlton, C. E. y P. J. Ferreira. "In situ TEM nanoindentation of nanoparticles". Micron 43, n.º 11 (noviembre de 2012): 1134–39. http://dx.doi.org/10.1016/j.micron.2012.03.002.
Texto completoWarren, Oden L., Zhiwei Shan, S. A. Syed Asif, Eric A. Stach, J. W. Morris y Andrew M. Minor. "In situ nanoindentation in the TEM". Materials Today 10, n.º 4 (abril de 2007): 59–60. http://dx.doi.org/10.1016/s1369-7021(07)70051-2.
Texto completoMinorl, A. M., E. A. Stach y J. W. Morris. "Quantitative In-Situ Nanoindentation of Thin Films in a Transmission Electron Microscope". Microscopy and Microanalysis 7, S2 (agosto de 2001): 912–13. http://dx.doi.org/10.1017/s1431927600030634.
Texto completoLiu, Dongdong, Zhenyu Zhang, Leilei Chen, Dong Wang, Junfeng Cui, Keke Chang y Dongming Guo. "An in situ TEM nanoindentation-induced new nanostructure in cadmium zinc telluride". Nanoscale 13, n.º 15 (2021): 7169–75. http://dx.doi.org/10.1039/d1nr00447f.
Texto completoMa, X. G. y K. Komvopoulos. "In situ Transmission Electron Microscopy and Nanoindentation Studies of Phase Transformation and Pseudoelasticity of Shape-memory Titanium-nickel Films". Journal of Materials Research 20, n.º 7 (1 de julio de 2005): 1808–13. http://dx.doi.org/10.1557/jmr.2005.0226.
Texto completoZhang, Zhenyu, Junfeng Cui, Keke Chang, Dongdong Liu, Guoxin Chen, Nan Jiang y Dongming Guo. "Deformation induced new pathways in silicon". Nanoscale 11, n.º 20 (2019): 9862–68. http://dx.doi.org/10.1039/c9nr01478k.
Texto completoLiu, Y., H. Wang y X. Zhang. "In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials". JOM 68, n.º 1 (30 de noviembre de 2015): 226–34. http://dx.doi.org/10.1007/s11837-015-1707-y.
Texto completoWang, Bo, Zhenyu Zhang, Junfeng Cui, Nan Jiang, Jilei Lyu, Guoxin Chen, Jia Wang et al. "In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation". ACS Applied Materials & Interfaces 9, n.º 35 (23 de agosto de 2017): 29451–56. http://dx.doi.org/10.1021/acsami.7b11103.
Texto completoDe Hosson, Jeff T. M., Wouter A. Soer, Andrew M. Minor, Zhiwei Shan, Eric A. Stach, S. A. Syed Asif y Oden L. Warren. "In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon". Journal of Materials Science 41, n.º 23 (diciembre de 2006): 7704–19. http://dx.doi.org/10.1007/s10853-006-0472-2.
Texto completoWall, M. A. y U. Dahmen. "Development of an In-Situ Nanoindentation Specimen Holder for the High Voltage Electron Microscope". Microscopy and Microanalysis 3, S2 (agosto de 1997): 593–94. http://dx.doi.org/10.1017/s1431927600009855.
Texto completoTesis sobre el tema "In situ TEM nanoindentation"
Calvié, Emilie. "Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques". Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0098.
Texto completoKnowledge of the behavior and properties of materials is of great importance to optimize their processing and adapt their use. To study these properties, many techniques are commonly used: tensile tests, microindentation, instrumented nanoindentation ... Today, particular interest is focused on nanomaterials and nanostructured materials because they often have different and more interesting properties. Instrumented nanoindentation allow to determine material parameters. However, the real-time behavior can not be observed and the study of nano-objects is difficult (nanoparticles for example). The main advantage of in situ TEM (Transmission Electron Microscopy) nanoindentation is the ability to study the behavior of nano-objects in real time. In this study, we evaluated the potential of this new technique by analyzing ceramics extensively studied in the laboratory such as biomaterials: stabilized zirconia and alumina. In the case of zirconia (stabilized with yttrium or cerium), the goal was to locate at the nanoscale, the constraints responsible for the tetragonal to monoclinic phase transformation. This phenomenon having a great influence on the bulk material properties. To do this, after having determined a suitable preparation method, we suggest a way to study the localization of constraints: the CBED (Convergent Beam Electron Diffraction) coupled with in situ TEM nanoindentation. In the case of alumina, the goal was to study the material in its original form (nano powder of transition alumina). The idea was to study the behavior of these nanoparticles under compression. We particularly observed that these particles could undergo large plastic deformation at room temperature. We have also obtained during compression on few particles, series of images and the corresponding load-displacement curve. These results were then analyzed by image analysis coupled with Finite Element simulations (performed in LAMCOS lab)
Guitton, Antoine. "Mécanismes de déformation des phases MAX : une approche expérimentale multi-échelle". Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2280/document.
Texto completoIt is commonly believed that plastic deformation mechanisms of MAX phases consistin basal dislocation glide, thus forming pile-ups and walls. The latter can form local disorientationareas, known as kink bands. Nevertheless, the elementary mechanisms and the exact role ofmicrostructural defects are not fully understood yet. This thesis report presents a multi-scale experimentalstudy of deformation mechanisms of the Ti2AlN MAX phase. At the macroscopic scale,two kinds of experiments were performed. In-situ compression tests at room temperature coupledwith neutron diffraction brought new insight into the deformation behavior of the different grainfamilies in the polycrystalline Ti2AlN. Compression tests from the room temperature to 900 °Cunder confining pressure were also performed. At the mesoscopic scale, deformed surface microstructureswere observed by SEM and AFM. These observations associated with nanoindentationtests showed that grain shape and orientation relative to the stress direction control formationof intra- and inter- granular strains and plasticity localization. Finally, at the microscopic scale,a detailed dislocation study of samples deformed under confining pressure revealed the presenceof dislocation configurations never observed before in MAX phases, such as dislocation reactions,dislocation dipoles and out-of-basal plane dislocations. In the light of these new results, mechanicalproperties of MAX phases are discussed
Johnson, Lars. "Nanoindentation in situ a Transmission Electron Microscope". Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8333.
Texto completoThe technique of Nanoindentation in situ Transmission Electron Microscope has been implemented on a Philips CM20. Indentations have been performed on Si and Sapphire (α-Al2O3) cut from wafers; Cr/Sc multilayers and Ti3SiC2 thin films. Different sample geometries and preparation methods have been evaluated. Both conventional ion and Focused Ion Beam milling were used, with different ways of protecting the sample during milling. Observations were made of bending and fracture of samples, dislocation nucleation and dislocation movement. Basal slip was observed upon unloading in Sapphire. Dislocation movement constricted along the basal planes were observed in Ti3SiC2. Post indentation electron microscopy revealed kink formation in Ti3SiC2 and layer rotation and slip across layers in Cr/Sc multilayer stacks. Limitations of the technique are presented and discussed.
Hummelgård, Magnus. "In-situ TEM Probing of Nanomaterials". Doctoral thesis, Mittuniversitetet, Institutionen för naturvetenskap, teknik och matematik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-8998.
Texto completoNanomaterial har givits stort intresse under det senaste årtiondet, detta på grund av deras unika egenskaper som gör att de i många hänseenden överträffar traditionella material. Egenskaperna beror till största del på storlek och därför är det nödvändigt att studera dessa material på nanonivå, något som är problematiskt. För sådana studier krävs ett instrument med tillräckligt hög upplösning på nanonivå samt ett system med en prob som möjligör selektion och karakterisering utav individuella byggstenar. I denna avhandling används ett transmissionselektronmikroskop (TEM) tillsammans med ett sveptunnelmikroskop (STM) där det senare används som prob. Systemet medger studier på nanonivå och karakterisering av enskilda byggstenar under realtids avbildning (in situ). Metoden medger en bättre överblick och hanterbarhet vid nanomanipulering än vad till exempel atomkraftmikroskopi medger. Piezodrivna probar kan även användas i svepelektronmikroskop men dessa medger inte samma upplösning som transmissionselektronmikroskopet. Nanotrådar av Mo6S3I6 är ett alternativt material till kolnanorör och överträffar dessa i form av löslighet i båda organiska såväl som polära lösningsmedel. De är enkla att syntetisera men deras elektriska konduktivitet är låg. Mo6S3I6 nanotrådar studerades med in situ TEM probing. Vi fann att genom att driva en tillräckligt hög elektrisk ström genom nanotråden så resulterade detta i en omvandling till en solid metallisk molybden nanotråd med en konduktivitet nära värdet för bulkmaterialet. Resultat är intressant då nanotrådar kan användas i t.ex. fältemission, men resultatet visar också på att det kan vara en generell metod för att förbättra nanotrådar överlag. På dessa nanotrådar har även en elektromekanisk resonans studie utförts där böjmodulen för materialet bestämdes till 4.9 GPa. Med in situ-TEM-probing metoden har även silvernanobläck studerats under en sintringsprocess. Studien visade att vid sintringen så bildas perkulativa vägar genom bläckets silvernanopartiklar samt att vid hög sinteringstemperatur förkolnades det lösningsmedel som silvernanopartiklarna är lösta i. Förkolningen av lösningsmedlet resulterade i ett kolnät med liknande egenskaper som för grafit. Förståelse utav sinteringsprocessen är nödvändig eftersom vid tryckning av elektriskt ledande banor på papper används sintring för att höja ledningsförmågan. Genom att växa nanopartiklar på nanotrådar förändras deras egenskaper och tillämpningar. Existerande metoder är endera komplicerade eller ger dåligt ut- byte. Ett enkelt recept för att växa guldnanopartiklar på kolnanorör och Mo6S3I6 nanotrådar har därför tagits fram. Dessa kolnanorör och nanotrådar har sedan studerats med in-situ-TEM-probing metoden som visade att utanpå dessa guldnanopartiklar kan burar av kol skapas. Eftersom partiklarnas storlek kan kontrolleras kan även kolnanoburarnas storlek kontrolleras. Burarna har användningsområden t.ex. inom medicin och vid lagring av vätgas.
The thesis covers six scientific papers
Barnoush, Afrooz. "Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation". Aachen Shaker, 2007. http://d-nb.info/992479851/04.
Texto completoSylvain, Wilgens. "Étude de la plasticité du monocristal de phase MAX par déformation aux petites échelles". Thesis, Poitiers, 2016. http://www.theses.fr/2016POIT2307/document.
Texto completoThe thesis's goal is to study the deformation, at microscopic scale, of the MAX phase Ti2AlN synthesized by powder metallurgy. This work is divided into three parts: in the first part, the interest has been put on the hysteretic behavior of the MAX phases via cyclic mechanical solicitations, during spherical indentation tests and ex-situ compression of micro-pillars, on differently orientated grains beforehand determined by EBSD. In the second part, we were interested into the micro-pillar's deformation via insitu cyclic compression tests coupled with Laue micro-diffraction. The goal was to analyse the evolution diffraction lines during the pillar's deformation in order to highlight the elementary deformation mechanisms and to observe the finale structures via the post-mortem SEM imaging of the pillars. Finally, a last part was devoted to study the deformation mechanisms in temperature at microscopic scale via nano-indentation tests up to 800°C. The characterization of the slip lines on the surface has been revealed by AFM and that of t he microstructural configurations (dislocations) under the indent has been done by TEM. All data collected by these various tests at the small scales have refined our understanding of the deformation mechanisms of crystal MAX phase, particularly with respect to the models usually proposed in the literature
Barnoush, Afrooz [Verfasser]. "Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation / Afrooz Barnoush". Aachen : Shaker, 2009. http://d-nb.info/1161310207/34.
Texto completoHajduček, Jan. "Zobrazování metamagnetických tenkých vrstev pomocí TEM". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443233.
Texto completoVineis, Christopher J. (Christopher Joseph) 1974. "Characterization of OMVPE-grown GaSb-based epilayers using in situ reflectance and ex situ TEM". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8452.
Texto completoIncludes bibliographical references (leaves 227-238).
The focus of this thesis was to investigate and characterize GaSb, GaInAsSb, and AlGaAsSb epilayers grown by organometallic vapor phase epitaxy (OMVPE). These epilayers were principally characterized using in situ spectral reflectance and ex situ transmission electron microscopy (TEM). An in situ spectral (380-1100 nm) reflectance monitoring system was designed and fitted to the OMVPE reactor. It was determined that longer wavelengths are more useful for quantitative growth rate analysis, while shorter wavelengths are more sensitive to the GaSb substrate oxide desorption process. It was also determined that the GaInAsSb and AlGaAsSb alloy compositions could be determined accurately using in situ reflectance ratios. Use of the in situ reflectance monitor to efficiently perform necessary reactor/growth calibrations was also demonstrated. Analytic functions were used to model the refractive indices of GaSb, AlGaAsSb, and GaInAsSb. Specifically, Adachi's Model Dielectric Function [1, 2] was curve-fit to data for GaSb between 400 and 1000 nm, and fourth-order polynomials were fit to data for GaSb and GaInAsSb between 1 and 3 gnm. A linear interpolation of binary functions was used to generate a refractive index model for AlGaAsSb between 1 and 3 m as a function of Al fraction. These models were helpful in interpreting in situ reflectance data, and also in designing distributed Bragg reflectors. Phase separation in GaInAsSb was studied using TEM. A wide range of microstructures was observed, from nearly homogeneous to strongly phase separated.
(cont.) It was seen that in phase separated samples, the composition modulations typically created and coupled to morphological perturbations in the surface. One interesting manifestation of the phase separation was the spontaneous formation of a natural superlattice (period typically 10-30 nm) throughout the epilayer. This superlattice had two variants: one parallel to the growth surface, and one tilted with respect to the growth surface. It was discovered that the tilted superlattice was coupled to surface to relieve surface strain associated with the superlattice ...
by Christopher J. Vineis.
Ph.D.
Jia, Xiaoting. "In-situ TEM study of carbon nanomaterials and thermoelectric nanomaterials". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69666.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 103-112).
Graphene nanoribbons (GNRs) are quasi one dimensional structures which have unique transport properties, and have a potential to open a bandgap at small ribbon widths. They have been extensively studied in recent years due to their high potential for future electronic and spintronic device applications. The edge structures - including the edge roughness and chirality - dramatically affect the transport, electronic, and magnetic properties of GNRs, and are of the critical importance. We have developed an efficient way of modifying the edges structures, to produce atomically smooth zigzag and armchair edges by using insitu TEM with a controlled bias. This work provides us with many opportunities for both fundamental studies and for future applications. I also report the use of either furnace heating or Joule heating to pacify the exposed graphene edges by loop formation in the graphitic nanoribbons. The edge energy minimization process involves the formation of loops between adjacent graphene layers. An estimation of the temperature during in-situ Joule heating is also reported based on the melting and evaporation of Pt nanoparticles. In this thesis work, I have also investigated the morphological and electronic properties of GNRs grown by chemical vapor deposition. Our results suggest that the GNRs have a surprisingly high crystallinity and a clean surface. Both folded and open edges are observed in GNRs. Atomic resolution scanning tunneling microscopy (STM) images were obtained on the folded layer and the bottom layer of the GNR, which enables clear identification of the chirality for both layers. We have also studied the electronic properties of the GNRs using low temperature scanning tunneling spectroscopy (STS). Our findings suggest that edges states exist at GNR edges which are dependent on the chiral angles of the GNRs.
by Xiaoting Jia.
Ph.D.
Libros sobre el tema "In situ TEM nanoindentation"
Hugo, Richard Charles. In-situ TEM observations of gallium penetration into aluminum grain boundaries. 1993.
Buscar texto completoStructural characterization and gas reactions of small metal particles by high resolution in-situ TEM and TED: Periodic technical report ... for the period, January 1, 1986-December 31, 1986. [Washington, DC: National Aeronautics and Space Administration, 1987.
Buscar texto completoUnited States. National Aeronautics and Space Administration, ed. Structural characterization and gas reactions of small metal particles by high-resolution, in-situ tem and ted: Semi-annual technical report for the period January 1, 1985 to June 30, 1985. Sunnyvale, CA: Eloret Institute, 1985.
Buscar texto completoUnited States. National Aeronautics and Space Administration, ed. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM and TED: Semi-annual technical report for the period, July 1, 1985 - September 30, 1985, NSDS-grant NCC2-283. [Washington, DC: National Aeronautics and Space Administration, 1985.
Buscar texto completoCapítulos de libros sobre el tema "In situ TEM nanoindentation"
ElFallagh, Fathi, Aiden Lockwood y Beverley Inkson. "In-situ TEM Observation of Deformations in a Single Crystal Sapphire During Nanoindentation". En Advanced Structured Materials, 229–39. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00506-5_16.
Texto completoKacher, Josh, Qian Yu, Claire Chisholm, Christoph Gammer y Andrew M. Minor. "In Situ TEM Nanomechanical Testing". En MEMS and Nanotechnology, Volume 5, 9–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22458-9_2.
Texto completoCanepa, Silvia, Sardar Bilal Alam, Duc-The Ngo, Frances M. Ross y Kristian Mølhave. "In Situ TEM Electrical Measurements". En Controlled Atmosphere Transmission Electron Microscopy, 281–300. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22988-1_10.
Texto completoZhou, Guangwen y Judith C. Yang. "In-Situ TEM Studies of Oxidation". En In-Situ Electron Microscopy, 191–208. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652167.ch8.
Texto completoMinor, Andrew M. "In-Situ Nanoindentation in the Transmission Electron Microscope". En In-Situ Electron Microscopy, 255–77. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652167.ch11.
Texto completoTang, Dai-Ming. "In Situ TEM Method and Materials". En In Situ Transmission Electron Microscopy Studies of Carbon Nanotube Nucleation Mechanism and Carbon Nanotube-Clamped Metal Atomic Chains, 23–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37259-9_2.
Texto completoZheng, Kun, Yihua Gao, Xuedong Bai, Renchao Che, Ze Zhang, Xiaodong Han, Yoshio Bando, Shize Yang, Enge Wang y Qi Cao. "In Situ TEM: Theory and Applications". En Springer Tracts in Modern Physics, 381–477. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0454-5_7.
Texto completoCosta, Pedro M. F. J. y Paulo J. Ferreira. "In Situ TEM of Carbon Nanotubes". En Advanced Transmission Electron Microscopy, 207–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15177-9_7.
Texto completoTan, Xiaoli. "In-Situ TEM with Electrical Bias on Ferroelectric Oxides". En In-Situ Electron Microscopy, 321–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652167.ch14.
Texto completoHattar, Khalid, Thomas Buchheit, Paul Kotula, Alexander McGinnis y Luke Brewer. "Nanoindentation and TEM Characterization of Ion Irridiated 316L Stainless Steels". En Energy Technology 2012, 371–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118365038.ch43.
Texto completoActas de conferencias sobre el tema "In situ TEM nanoindentation"
Zorro, Fátima. "In-Situ Aberration-Corrected TEM Nanoindentation of Silver Nanoparticles". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1428.
Texto completoPfetzing, J., M. F. X. Wagner, T. Simon, A. Schaefer, Ch Somsen y G. Eggeler. "TEM investigation of the microstructural evolution during nanoindentation of NiTi". En ESOMAT 2009 - 8th European Symposium on Martensitic Transformations. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/esomat/200906027.
Texto completoMases, Mattias. "Oxidizing nanocarbons: In situ TEM observations". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.789.
Texto completoTakahashi, Yasuo y Masashi Arita. "In-situ TEM observation of ReRAM switching". En 2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). IEEE, 2014. http://dx.doi.org/10.1109/imfedk.2014.6867091.
Texto completoKarki, Khim. "In-situ/operando bulk electrochemistry in TEM". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1084.
Texto completoKim, M. J., S. Y. Park, D. K. Cha, J. Kim, H. C. Floresca, Ning Lu y J. G. Wang. "In-situ TEM characterization of nanomaterials and devices". En 2011 IEEE Nanotechnology Materials and Devices Conference (NMDC 2011). IEEE, 2011. http://dx.doi.org/10.1109/nmdc.2011.6155318.
Texto completoPersson, Axel. "Time-resolved compositional mapping for in-situ TEM". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.256.
Texto completoKarki, Khim. "In situ/operando Study of Photocatalysis in TEM". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1088.
Texto completoSchryvers, Dominique. "A new deformation mechanism in Olivine? Ex-situ and in-situ TEM studies". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.673.
Texto completoNafari, A., D. Karlen, C. Rusu, K. Svensson, H. Olin y P. Enoksson. "MEMS sensor for in situ TEM Atomic Force Microscopy". En 2007 20th IEEE International Conference on Micro Electro Mechanical Systems - MEMS '07. IEEE, 2007. http://dx.doi.org/10.1109/memsys.2007.4433025.
Texto completoInformes sobre el tema "In situ TEM nanoindentation"
Minor, Andrew M. In situ nanoindentation in a transmission electron microscope. Office of Scientific and Technical Information (OSTI), enero de 2002. http://dx.doi.org/10.2172/807441.
Texto completoPan, Xiaoqing. Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies. Office of Scientific and Technical Information (OSTI), junio de 2015. http://dx.doi.org/10.2172/1187994.
Texto completoHinks, Jonathan, Graham Greaves y Robert Harrison. TEM with in situ Ion Irradiation of Nuclear Materials under In-Service Conditions. University of Huddersfield, 2016. http://dx.doi.org/10.5920/2016.epm0111351.
Texto completoHsiung, L. In-Situ TEM Observations of Strain-Induced Interface Instability in TiAl/Ti3Al Laminate Composite. Office of Scientific and Technical Information (OSTI), abril de 2003. http://dx.doi.org/10.2172/15007359.
Texto completoEdmondson, Philip D. Report on the Installation and Preparedness of a Protochips Fusion in-situ Heating Holder for TEM. Office of Scientific and Technical Information (OSTI), marzo de 2017. http://dx.doi.org/10.2172/1356939.
Texto completoMallamaci, M. P., C. B. Carter y J. Bentley. In-situ TEM crystallization of anorthite-glass films on {alpha}-Al{sub 2}O{sub 3}. Office of Scientific and Technical Information (OSTI), diciembre de 1993. http://dx.doi.org/10.2172/10120380.
Texto completoDillon, Shen J. Final Report: In-Situ TEM Observations of Degradation Mechanisms in Next-Generation High-Energy Density Lithium-Ion Battery Systems. Office of Scientific and Technical Information (OSTI), noviembre de 2017. http://dx.doi.org/10.2172/1406527.
Texto completo