Literatura académica sobre el tema "Industrial wastewater"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Industrial wastewater".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Industrial wastewater"

1

Gulyas, H., R. von Bismarck, and L. Hemmerling. "Treatment of industrial wastewaters with ozone/hydrogen peroxide." Water Science and Technology 32, no. 7 (1995): 127–34. http://dx.doi.org/10.2166/wst.1995.0217.

Texto completo
Resumen
Treatment with ozone and ozone/hydrogen peroxide was tested in a laboratory scale reactor for removal of organics from four different industrial wastewaters: wastewaters of a paper-mill and of a biotechnical pharmaceutical process as well as two process waters from soil remediation by supercritical water extraction. Moreover, an aqueous solution of triethyleneglycoldimethylether and humic acid which was a model for a biologically treated oil reclaiming wastewater was also oxidized. The aim of the oxidation of the pharmaceutical wastewater was the removal of the preservative 1.1.1-trichloro-2-m
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Vítězová, Monika, Anna Kohoutová, Tomáš Vítěz, Nikola Hanišáková, and Ivan Kushkevych. "Methanogenic Microorganisms in Industrial Wastewater Anaerobic Treatment." Processes 8, no. 12 (2020): 1546. http://dx.doi.org/10.3390/pr8121546.

Texto completo
Resumen
Over the past decades, anaerobic biotechnology is commonly used for treating high-strength wastewaters from different industries. This biotechnology depends on interactions and co-operation between microorganisms in the anaerobic environment where many pollutants’ transformation to energy-rich biogas occurs. Properties of wastewater vary across industries and significantly affect microbiome composition in the anaerobic reactor. Methanogenic archaea play a crucial role during anaerobic wastewater treatment. The most abundant acetoclastic methanogens in the anaerobic reactors for industrial wast
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Gao, Ai Hua, Shui Jiao Yang, Shang Bin Hu, Xiao Qing He, and Zhi Guo Lu. "Discharge Plasma for the Treatment of Industrial Wastewater." Applied Mechanics and Materials 71-78 (July 2011): 3075–78. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.3075.

Texto completo
Resumen
The treatment of industrial wastewaters collected from petrochemical works, gypsum plant, and printing and dyeing mill, was investigated at atmospheric pressure in air discharge plasma. The degradation effects of organic contaminants in water were compared for the printing and dyeing wastewater under different discharging conditions and for the wastewater from the other two plants under the same discharging conditions. The influences of several factors on chemical oxygen demand (COD) remove rate were studied experimentally. The results showed that the treatment effects for the same industrial
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sreesai, Siranee, and Suthipong Sthiannopkao. "Utilization of zeolite industrial wastewater for removal of copper and zinc from copper-brass pipe industrial wastewaterA paper submitted to the Journal of Environmental Engineering and Science." Canadian Journal of Civil Engineering 36, no. 4 (2009): 709–19. http://dx.doi.org/10.1139/l09-008.

Texto completo
Resumen
Utilization of zeolite industrial wastewater as a sorbent and (or) precipitant to remove Cu and Zn from copper-brass pipe industrial wastewater was conducted. These wastewaters were sampled and values for pH, temperature, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), total suspended solids (TSS), and heavy metals were determined. In addition, the sorption isotherms of Cu and Zn in copper-brass pipe industrial wastewater onto solids of zeolite industrial wastewater at various dilutions of copper-brass pipe industrial wastewater
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ahmed, Mohd Elmuntasir, Adel Al-Haddad, and Suad Al-Dufaileej. "Characterization and Profiling of Industrial Wastewater Toxicity in Kuwait." International Journal of Environmental Science and Development 13, no. 2 (2022): 35–41. http://dx.doi.org/10.18178/ijesd.2022.13.2.1369.

Texto completo
Resumen
Toxicity reduction is a main criterion in prioritizing industrial wastewater treatment objectives. This paper utilized a comprehensive survey of 41 industrial facilities to characterize their wastewater quality parameters and to assess their wastewater toxicity. The 41 factories were grouped under eleven industrial categories. Microtox relative toxicity test results indicated that industrial wastewater in Kuwait are mostly very toxic to toxic with the exception of farms wastewater which was found to be slightly toxic. The highest ranking toxic wastewaters where found to be metal forming, print
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Prokkola, Hanna, Anne Heponiemi, Janne Pesonen, Toivo Kuokkanen, and Ulla Lassi. "Reliability of Biodegradation Measurements for Inhibitive Industrial Wastewaters." ChemEngineering 6, no. 1 (2022): 15. http://dx.doi.org/10.3390/chemengineering6010015.

Texto completo
Resumen
Industrial wastewaters may contain toxic or highly inhibitive compounds, which makes the measurement of biological oxygen demand (BOD) challenging. Due to the high concentration of organic compounds within them, industrial wastewater samples must be diluted to perform BOD measurements. This study focused on determining the reliability of wastewater BOD measurement using two different types of industrial wastewater, namely pharmaceutical wastewater containing a total organic carbon (TOC) value of 34,000 mg(C)/L and industrial paper manufacturing wastewater containing a corresponding TOC value o
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gulyas, H. "Processes for the removal of recalcitrant organics from industrial wastewaters." Water Science and Technology 36, no. 2-3 (1997): 9–16. http://dx.doi.org/10.2166/wst.1997.0471.

Texto completo
Resumen
Processes that are suitable for the elimination of recalcitrant organics from industrial wastewaters are reviewed. Most advantageous are separation processes which enable not only reuse of the water phase but also the recycling of the wastewater constituents. Besides separation processes many degradative wastewater techniques are available. However, for the removal of recalcitrant organics biological processes (which are economically beneficial) cannot be chosen, but a variety of nonbiological degradative processes exist which can be divided into oxidative and reductive technologies. The latte
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Böhm, B. "A test method to determine inhibition of nitrification by industrial wastewaters." Water Science and Technology 30, no. 6 (1994): 169–72. http://dx.doi.org/10.2166/wst.1994.0265.

Texto completo
Resumen
A biotest to investigate wastewaters for the presence of nitrification-inhibiting substances has been developed. The principal feature of the test system is a packed-bed fixed-film biological reactor operated as a differential reactor. The test has been used to determine the effects on nitrification of wastewaters especially from textile and leather industries. Inhibition could be found even when the wastewater was diluted considerably. Tannery sewage may cause particularly severe problems in biological wastewater treatment, as the degree of inhibition of this wastewater has been observed to b
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Toczyłowska-Mamińska, Renata, and Mariusz Ł. Mamiński. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology." Energies 15, no. 19 (2022): 6928. http://dx.doi.org/10.3390/en15196928.

Texto completo
Resumen
An underappreciated source of renewable energy is wastewater, both municipal and industrial, with global production exceeding 900 km3 a year. Wastewater is currently perceived as a waste that needs to be treated via energy-consuming processes. However, in the current environmental nexus, traditional wastewater treatment uses 1700–5100 TWh of energy on a global scale. The application of modern and innovative treatment techniques, such as microbial fuel cells (MFC), would allow the conversion of wastewater’s chemical energy into electricity without external energy input. It has been demonstrated
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Liu, J., and M. Tang. "Wastewater management approach in an industrial park." Water Science and Technology 2017, no. 2 (2018): 546–51. http://dx.doi.org/10.2166/wst.2018.160.

Texto completo
Resumen
Abstract Many industrial parks adopt a two-tier wastewater management framework whereby tenants and the park are required to build satellite and centralized wastewater treatment facilities, respectively. Due to the diversity of industrial wastewaters, the treatment process scheme in the public centralized wastewater treatment plant (WWTP) may not suit the characteristics of all effluents discharged from the tenants. In consideration of varying wastewater biodegradability, the treatment scheme in a centralized WWTP is advised to install two series of treatment processes. In detail, various effl
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Industrial wastewater"

1

Kapadi, Shourie. "Biological denitrification system for industrial wastewater." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024688.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Walker, Gavin Michael. "Industrial wastewater treatment using biological activated carbon." Thesis, Queen's University Belfast, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295433.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Zakaria, Khalid. "Industrial wastewater treatment using electrochemically generated ozone." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2596.

Texto completo
Resumen
The remediation of industrial wastewater is highly challenging, difficult task, and demands highly efficient technologies. Electrochemical and ozonation technologies are among the most efficient methods in treating the industrial wastewater. The electrochemical generation of ozone can provide very high concentrations of the reagent in both the gas phase and solution. The aim of the research reported in this thesis was to develop durable and highly efficient Ni/Sb – SnO2 anodes to generate ozone and to investigate their efficiency in treating industrial wastewater. Different anode sizes were st
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dragoo, Ron. "Pretreatment Optimization of Fiberglass Manufacturing Industrial Wastewater." Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc277875/.

Texto completo
Resumen
Wastewater effluent produced in the fiberglass manufacturing industry contains a significant amount of total suspended solids. Environmental regulations require pretreatment of effluent before it is discharged to the municipal wastewater treatment plant. Chemical precipitation by coagulation and flocculation is the method of pretreatment used at the Vetrotex CertainTeed Corporation (VCT). A treatability study was conducted to determine conditions at which the VCT Wastewater Pretreatment Plant could operate to consistently achieve a total suspended solids concentration ≤ 200-mg/L. Jar tests var
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tuan, Tong Anh Sittipong Dilokwanich. "Industrial wastewater management of Nhue river, Vietnam /." Abstract, 2006. http://mulinet3.li.mahidol.ac.th/thesis/2549/cd387/4737900.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Senior, Kerry Charles. "Biotreatment of industrial effluents containing naphthalene sulphonate." Thesis, University of Kent, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270819.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Perera, Kuruppu Arachchige Kalyani, University of Western Sydney, of Science Technology and Environment College, and of Science Food and Horticulture School. "Characteristics of a developing biofilm in a petrochemical wastewater treatment plant." THESIS_CSTE_SFH_Perera_K.xml, 2003. http://handle.uws.edu.au:8081/1959.7/777.

Texto completo
Resumen
A study was undertaken to investigate developing biofilms in a petrochemical wastewater treatment plant encompassing the architecture, microflora and the chemical nature of the matrix. Biofilms were developed on glass slides immersed in the activated sludge unit and analysed at known time intervals using a range of techniques. Initially, biofilms were investigated using conventional and emerging microscopic approaches to select a suitable technique. Scanning Confocal Laser Microscopy (SCLM) allowed visualisation of biofilms in situ with minimal background interference and non-destructive and o
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Nazir, Karnachi Nayeem A. "Control of the chemical quality of industrial wastewater." Thesis, Leeds Beckett University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500766.

Texto completo
Resumen
Quality control of wastewater is an important treatment process more so now, tnan ever before. Due to an extremely unpredictable nature of the wastewater, which is a mixture of both inorganic and organic waste, it is very difficult to neutralise. Two approaches have been proposed in developing alternative control strategies as suggestions for the pH control of the wastewater in an industrial plant. The first is to develop a mathematical model of a continuously stirred tank reactor (CSTR) with a possible use of MATLAB®. Three different control methods (linear, nonlinear and adaptive) are subjec
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hanna, J. A. "Industrial wastewater treatment using dolomite and dolomitic sorbents." Thesis, Queen's University Belfast, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431602.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Jagadevan, Sheeja. "Hybrid technologies for remediation of recalcitrant industrial wastewater." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:295c8a29-42aa-47ee-b2b2-89403cee1886.

Texto completo
Resumen
In metal machining processes, the regulation of heat generation and lubrication at the contact point are achieved by application of a fluid referred to as metalworking fluid (MWF). This has the combined features of the cooling properties of water and lubricity of oil. MWFs inevitably become operationally exhausted with age and intensive use, which leads to compromised properties, thereby necessitating their safe disposal. Disposal of this waste through a biological route is an increasingly attractive option, since it is effective with relatively low energy demands when compared to current phys
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Industrial wastewater"

1

Agency, Ireland Environmental Protection. Wastewater treatment manuals: Characterisation of industrial wastewaters. Environmental Protection Agency, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Shah, Maulin P., ed. Industrial Wastewater Reuse. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2489-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

1940-, Patterson James William, ed. Industrial wastewater treatment technology. 2nd ed. Butterworth, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

M, Boddu Veera, Peyton Gary R, United States. Army. Corps of Engineers., and Construction Engineering Research Laboratories (U.S.), eds. Advanced oxidation treatment of army industrial wastewaters: Propellant wastewater. U.S. Army Construction Engineering Research Laboratory, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Shah, Maulin P., ed. Biological Treatment of Industrial Wastewater. Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839165399.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Moussa, Moustafa Samir. Nitrification in saline industrial wastewater. Balkema, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Edwards, Joseph D. Industrial wastewater treatment: A guidebook. Lewis Publishers, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

1950-, Blackburn James W., ed. The industrial wastewater systems handbook. CRC Press, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Alexandros, Stefanakis, ed. Constructed Wetlands for Industrial Wastewater Treatment. John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119268376.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Türkman, Ayşen, and Orhan Uslu, eds. New Developments in Industrial Wastewater Treatment. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3272-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Industrial wastewater"

1

Pintér, János D. "Industrial Wastewater Management." In Nonconvex Optimization and Its Applications. Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2502-5_25.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Moore, James W. "Industrial Wastewater Management." In Balancing the Needs of Water Use. Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3496-8_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Al Arni, Saleh S., and Mahmoud M. Elwaheidi. "Industrial Wastewater Treatment." In Concise Handbook of Waste Treatment Technologies. CRC Press, 2020. http://dx.doi.org/10.4324/9781003112266-10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Al Arni, Saleh S., and Mahmoud M. Elwaheidi. "Industrial Wastewater Treatment." In Concise Handbook of Waste Treatment Technologies. CRC Press, 2020. http://dx.doi.org/10.1201/9781003112266-10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bwapwa, J. K., and B. F. Bakare. "Industrial Wastewater Treatment." In Removal of Refractory Pollutants from Wastewater Treatment Plants. CRC Press, 2021. http://dx.doi.org/10.1201/9781003204442-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Verma, Subhash, Varinder S. Kanwar, and Siby John. "Industrial Wastewater Treatment." In Environmental Engineering. CRC Press, 2022. http://dx.doi.org/10.1201/9781003231264-30.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Theodore, Mary K., and Louis Theodore. "Industrial Wastewater Management." In Introduction to Environmental Management, 2nd ed. CRC Press, 2021. http://dx.doi.org/10.1201/9781003171126-22.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Abdellaoui, Hind, and Ilias Mouallif. "Wastewater." In Handbook of Sustainable Industrial Wastewater Treatment. CRC Press, 2025. https://doi.org/10.1201/9781003496649-12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Islam, Md Didarul, Meem Muhtasim Mahdi, Md Arafat Hossain, and Md Minhazul Abedin. "Biological Wastewater Treatment Plants (BWWTPs) for Industrial Wastewaters." In Wastewater Treatment. CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057-12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Inobeme, Abel, Alexander Ikechukwu Ajai, Charles Oluwaseun Adetunji, et al. "Wastewater Treatment Technologies." In Industrial Wastewater Reuse. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2489-9_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Industrial wastewater"

1

Davé, Bhasker B. "Wastewater Minimization in Industrial Applications: Challenges and Solutions." In CORROSION 1998. NACE International, 1998. https://doi.org/10.5006/c1998-98575.

Texto completo
Resumen
Abstract The impetus for waste minimization and water recycle in the metal processing industry comes from increasingly stringent environmental regulations and dwindling water supplies. Tougher discharge permits often dictate additional wastewater treatments, which can make water recycle and waste minimization an attractive option. The most challenging part in the design of a water recycle system is to minimize the capital and operating costs while meeting the water quality requirements of the process. Computer simulation of water recycle alternatives provides: (i) "expected" water chemistry, (
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Schooley, K. E., and R. S. Ludlum. "Recovering Distilled Water and Pure Salt Products from Industrial Wastewater: Three Case Studies." In CORROSION 1996. NACE International, 1996. https://doi.org/10.5006/c1996-96574.

Texto completo
Resumen
Abstract Industry is slowly moving beyond the concept of zero liquid discharge toward the ideal of “zero waste discharge”. While zero liquid discharge means no liquids are discharged off site, the tons of dry solids removed from treated wastewater are often hauled to landfills off site if they cannot be stored at the plant. In recent years, some plants have opted to recover valuable salts and chemicals from wastewater to reduce the cost of hauling away useless mixed salts. Some plants even recover some of the cost of wastewater treatment by selling recovered salt. This paper will discuss three
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cristescu, Simona, Roderik Krebbers, Kees van Kempen, and Amir Khodabakhsh. "Application of an Open-Path Broadband Source-Based Mobile Instrumentation for Greenhouse Gas Monitoring." In Applied Industrial Spectroscopy. Optica Publishing Group, 2024. https://doi.org/10.1364/ais.2024.aw1a.2.

Texto completo
Resumen
Open-path spectroscopy using broadband coherent light sources can provide highly sensitive multispecies detection capability for various real-life applications. Using these systems, we present our recent results for monitoring gas emissions from a wastewater treatment plant. Full-text article not available; see video presentation
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hoffman, Herman William. "Industrial Water Reuse in Texas." In CORROSION 1999. NACE International, 1999. https://doi.org/10.5006/c1999-99373.

Texto completo
Resumen
Abstract The use of treated wastewater effluent for industrial purposes holds the promise of an economical source of water in a State with limited conventional fresh water resources such as Texas. By combining water reuse and increased water use efficiency with the development of conventional resources such as groundwater and new surface water reservoirs, we can ensure that water is available for industrial growth into the foreseeable future. Reuse holds some specific advantages as a future resource for industry, including: Effluent from municipal wastewater plants is a drought-proof water sou
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kelle Zeiher, E. H., A. S. Kowalski, and K. S. Salmen. "Making Waves with Microfilters in Water and Wastewater Treatment." In CORROSION 2000. NACE International, 2000. https://doi.org/10.5006/c2000-00315.

Texto completo
Resumen
Abstract Much of membrane research in the past decade has centered on reverse osmosis (RO) and the control of scaling, fouling and troubleshooting in RO. The popular acceptance of RO has paved the way for other crossflow membrane technologies that hold great promise for commercialization. The increased use of microfiltration in industrial applications, however, presents new opportunities and challenges for chemical suppliers and end-users alike. Because of its versatility, robust nature, and small footprint, microfiltration could well replace, or at least augment, traditional equipment includi
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Gao, Saishengtai, Menggengtuya, Fang Wu, Peiying Guo, and Siqindeligeng. "Deep Learning-based Modelling of Industrial Wastewater Quality Prediction and Treatment." In 2025 2nd International Conference on Smart City and Information System (ICSCIS). IEEE, 2025. https://doi.org/10.1109/icscis65391.2025.11069510.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

McIntyre, James P. "Reuse of Industrial and Domestic Secondary Treated Wastewater as Cooling Tower Makeup." In CORROSION 1993. NACE International, 1993. https://doi.org/10.5006/c1993-93651.

Texto completo
Resumen
Abstract Reuse of secondary treated wastewater for industrial purposes is becoming increasingly popular. Some of its uses are as once-through cooling water, fire pond/emergency water, boiler feedwater makeup, and as cooling tower makeup. This paper will focus on its use as cooling tower makeup. Treatment programs to prevent corrosion and deposition and field results will be discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Heredia-Moreno, Francisco A., Jesús Porcayo-Calderón, and Jorge Cantó-Ibañez. "Atmospheric Corrosion Processes in Train Components in Sections of Industrial Zones." In LatinCORR 2023. AMPP, 2023. https://doi.org/10.5006/lac23-20447.

Texto completo
Resumen
The case of accelerated atmospheric corrosion experienced by train catenary supports is reported. The supports were made of aluminum bronze and were exposed to atmospheric pollutants present in industrial areas near wastewater.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Wu, Yongming, Mi Deng, Lizhen Liu, Jianyong Wang, Jie Zhang, and Jinbao Wan. "Wastewater treatment processes for industrial organosilicon wastewater." In 2016 International Conference on Innovative Material Science and Technology (IMST 2016). Atlantis Press, 2016. http://dx.doi.org/10.2991/imst-16.2016.9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Юй, Шуайсянь. "REMOVAL OF AMMONIA NITROGEN FROM INDUSTRIAL WASTEWATER." In Фундаментальные и прикладные исследования. Актуальные проблемы и достижения: сборник статей всероссийской научной конференции (Санкт­Петербург, Октябрь 2022). Crossref, 2022. http://dx.doi.org/10.37539/1011.2022.22.92.002.

Texto completo
Resumen
В этой статье рассматриваются несколько методов снижения содержания аммонийного азота в промышленных сточных водах в настоящее время. Обсуждаются методы снижения содержания аммонийного азота в сточных водах промышленных предприятий различных отраслей. В статье представлен обзор области применения, а также преимущества и недостатки каждого из этих методов в инженерном деле. This article discusses several methods for reducing ammoniacal nitrogen in industrial wastewater at present. Methods to reduce ammonia nitrogen in industrial wastewater from various industries are discussed. The article give
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Industrial wastewater"

1

Brunner, Christoph. Solar Energy Industrial Water Wastewater Management. IEA SHC Task 62, 2023. http://dx.doi.org/10.18777/ieashc-task62-2023-0001.

Texto completo
Resumen
This position paper provides an overview of the solar energy market for industrial water and wastewater management, outlining its importance, potential, and development of this new application area. It addresses issues for policy and decision makers and influencers and presents high-level information as a basis for the uptake and further development of these applications. It concludes by highlighting existing challenges and the actions needed to best exploit environmentally friendly technologies for water management and recovery of valuable substances.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Morgan, James H., and Mary K. Fields. Missouri Industrial Wastewater System Characterization and Analysis, Whiteman Air Force Base. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada343065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

David B. Frederick. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1013724.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mike Lewis. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1129940.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Cafferty, Kara Grace. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1364100.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lewis, Michael G. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1178363.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

David Frederick. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1035893.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Mike Lewis. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site?s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1064047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Cline, J. E., P. F. Sullivan, M. A. Lovejoy, J. Collier, and C. D. Adams. Ozone/UV treatment to enhance biodegradation of surfactants in industrial wastewater. CRADA final report. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/666205.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lewis, Mike. Idaho National Laboratory Research Center Renewal Application for the Industrial Wastewater Acceptance Permit Number IF-8733-54171-1. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1467115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!