Literatura académica sobre el tema "Lignocellulosic biomass"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lignocellulosic biomass".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Lignocellulosic biomass"
Wang, Cai, Zhang, Xu y Yu. "Laboratory Investigation of Lignocellulosic Biomass as Performance Improver for Bituminous Materials". Polymers 11, n.º 8 (29 de julio de 2019): 1253. http://dx.doi.org/10.3390/polym11081253.
Texto completoDeivy Andhika Permata, Anwar Kasim, Alfi Asben y Yusniwati. "Delignification of Lignocellulosic Biomass". World Journal of Advanced Research and Reviews 12, n.º 2 (30 de noviembre de 2021): 462–69. http://dx.doi.org/10.30574/wjarr.2021.12.2.0618.
Texto completoSaini, Anita, Neeraj K. Aggarwal, Anuja Sharma y Anita Yadav. "Actinomycetes: A Source of Lignocellulolytic Enzymes". Enzyme Research 2015 (17 de diciembre de 2015): 1–15. http://dx.doi.org/10.1155/2015/279381.
Texto completoChaves, Julie E., Gerald N. Presley y Joshua K. Michener. "Modular Engineering of Biomass Degradation Pathways". Processes 7, n.º 4 (23 de abril de 2019): 230. http://dx.doi.org/10.3390/pr7040230.
Texto completoHasanov, Isa, Merlin Raud y Timo Kikas. "The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass". Energies 13, n.º 18 (17 de septiembre de 2020): 4864. http://dx.doi.org/10.3390/en13184864.
Texto completoVintila, Teodor, Vasile Daniel Gherman, Nicolae Popa, Dumitru Popescu, Carmen Buzatu y Marilena Motoc. "Influence of Enzymatic Cocktails on Conversion of Agricultural Lignocellulose to Fermentable Sugars". Revista de Chimie 68, n.º 2 (15 de marzo de 2017): 373–77. http://dx.doi.org/10.37358/rc.17.2.5456.
Texto completoTaggar, Monica Sachdeva. "Insect cellulolytic enzymes: Novel sources for degradation of lignocellulosic biomass". Journal of Applied and Natural Science 7, n.º 2 (1 de diciembre de 2015): 625–30. http://dx.doi.org/10.31018/jans.v7i2.656.
Texto completoChen, Kun, Long Jun Xu y Jun Yi. "Bioconversion of Lignocellulose to Ethanol: A Review of Production Process". Advanced Materials Research 280 (julio de 2011): 246–49. http://dx.doi.org/10.4028/www.scientific.net/amr.280.246.
Texto completoLuo, Xingxing, Baiquan Zeng, Yanan Zhong y Jienan Chen. "Production and detoxification of inhibitors during the destruction of lignocellulose spatial structure". BioResources 17, n.º 1 (9 de diciembre de 2021): 1939–61. http://dx.doi.org/10.15376/biores.17.1.luo.
Texto completoZhang, Yu, Jinshui Yang, Lijin Luo, Entao Wang, Ruonan Wang, Liang Liu, Jiawen Liu y Hongli Yuan. "Low-Cost Cellulase-Hemicellulase Mixture Secreted by Trichoderma harzianum EM0925 with Complete Saccharification Efficacy of Lignocellulose". International Journal of Molecular Sciences 21, n.º 2 (7 de enero de 2020): 371. http://dx.doi.org/10.3390/ijms21020371.
Texto completoTesis sobre el tema "Lignocellulosic biomass"
Girisuta, Buana. "Levulinic acid from lignocellulosic biomass". [S.l. : Groningen : s.n. ; University Library Groningen] [Host], 2007. http://irs.ub.rug.nl/ppn/304751316.
Texto completoBrandt, Agnieszka. "Ionic liquid pretreatment of lignocellulosic biomass". Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9166.
Texto completoSamad, Abdul. "SOPHOROLIPID PRODUCTION FROM LIGNOCELLULOSIC BIOMASS FEEDSTOCKs". OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1799.
Texto completoBorén, Eleonora. "Off-gassing from thermally treated lignocellulosic biomass". Doctoral thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-141921.
Texto completoCorredor, Deisy Y. "Pretreatment and enzymatic hydrolysis of lignocellulosic biomass". Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/693.
Texto completoHåseth, Jenny Kristin. "Decrystallization of Lignocellulosic Biomass using Ionic Liquids". Thesis, Norges Teknisk-Naturvitenskaplige Universitet, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-21106.
Texto completoFrazão, Cláudio José Remédios. "Challenges of ethanol production from lignocellulosic biomass". Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13657.
Texto completoThe present work aimed to tackle two of the major challenges in bioethanol production from lignocellulosic feedstocks: (i) high tolerance of microorganisms to lignocellulosic inhibitors, and (ii) microbial contamination avoidance. Lignocellulosic inhibitors are an important fraction of spent sulphite liquor (SSL), a by-product of the pulp and paper industries. Hardwood SSL (HSSL) is rich in pentose sugars, mainly xylose, which can be converted to ethanol by the yeast Scheffersomyces stipitis. In this work, a population of S. stipitis previously adapted to 60 % (v/v) of HSSL was used, and its stability on the absence of inhibitors during ten sequential transfers was investigated at single-clone level. During the screening trials, all the isolated clones showed higher xylose and acetate uptake rates and lower ethanol productivities than the parental strain. The clone exhibiting higher xylose uptake rate (0.558 g L-1 h-1) was named isolate C4. The effect of short-term adaptation on isolate C4 fermentation performance was evaluated by pre-cultivating the clone in the presence or absence of 60 % (v/v) of HSSL. The uptake rates of glucose and xylose were similar under both conditions, but a higher acetate consumption rate (0.101 g L-1 h-1) and maximum ethanol concentration (4.51 g L-1) were achieved without pre-adaptation step, suggesting the robustness of isolate C4. The industrial bioethanol production is mostly carried out under non-sterile conditions, which favours microbial contamination. In this work, the mechanism that triggers Lactobacillus pentosus contamination in SSL plants was investigated. A simulated synthetic hydrolysate mimicking the average composition of sugars and inhibitors of softwood SSL (SSSL) was used and the impact of different factors in bacterial and Saccharomyces cerevisiae viability was analysed. The presence of yeast extract led to an increase in lactate production (9-fold higher) and L. pentosus viability when only bacteria was inoculated. Using different inoculation ratios of yeast/bacteria, the ethanol production rates were not affected after 48 h, and L. pentosus failed to overtake S. cerevisiae. The presence of inhibitors delayed yeast growth, but the bacteria did not outcompete S. cerevisiae. When the pH was optimal to L. pentosus in co-culture experiments, the bacterial cell viability decreased slower. The results indicate that L. pentosus was unable to overtake S. cerevisiae. The presence of yeast extract and favourable pH to bacteria are important factors that can play a role in the mechanism that triggers the bacterial contamination in ethanol plants.
A presente dissertação tem como objetivo abordar dois dos maiores desafios na produção de bioetanol a partir de biomassa lenhocelulósica: (i) elevada tolerância de microrganismos a inibidores, e (ii) prevenção de contaminação microbiana. Os inibidores lenhocelulósicos são uma fração relevante do licor de cozimento ao sulfito ácido (SSL), um subproduto das indústrias do papel e pastas. O SSL de folhosas (HSSL) é rico em pentoses, principalmente xilose, que podem ser fermentadas em etanol pela levedura Scheffersomyces stipitis. Neste estudo, utilizou-se uma população de S. stipitis previamente adaptada a 60 % (v/v) HSSL, e avaliou-se a sua estabilidade na ausência de inibidores durante dez transferências sequenciais. Comparando com a estirpe original, todos os clones isolados exibiram taxas de consumo de xilose e ácido acético superiores e produtividades em etanol inferiores. O clone que demonstrou a maior taxa de consumo de xilose (0,558 g L-1 h-1) foi designado isolado C4, e o efeito de adaptação de curta duração no seu desempenho fermentativo foi investigado através do seu pré-cultivo na presença ou ausência de 60 % (v/v) HSSL. Nas duas condições, as taxas de consumo de glucose e xilose foram idênticas, contudo, atingiu-se maior taxa de consumo de ácido acético (0,101 g L-1 h-1) e maior concentração máxima de etanol (4,51 g L-1) foram atingidas na ausência do processo de adaptação de curta duração. Tais resultados demonstram a robustez do isolado C4. A maioria dos processos de produção industrial de bioetanol é realizada na ausência de esterilidade, favorencendo a contaminação por microrganismos. Neste estudo, investigou-se o mecanismo responsável pela contaminação com Lactobacillus pentosus na indústria de SSL. Para tal, utilizou-se um hidrolisado sintético mimetizando a composição média de açúcares e inibidores de SSL de resinosas (SSSL) e averiguou-se o impacto de vários fatores na viabilidade de L. pentosus e S. cerevisiae. A presença de extrato de levedura foi responsável pelo aumento da produção de ácido lático (9 vezes) e da viabilidade bacteriana quando L. pentosus foi cultivado na ausência de levedura. Diferentes proporções de inóculo de levedura/bactéria não afetaram a produção de etanol após 48 h de fermentação, e L. pentosus foi incapaz de ser a estirpe dominante durante os ensaios de co-cultura. A presença de inibidores retardou o crescimento da levedura, mas a bactéria foi de novo incapaz de se a espécie dominante. Ajustando o valor de pH para o ótimo de L. pentosus nos ensaios de co-cultura, a viabilidade celular da bactéria diminuiu mais lentamente. Os resultados demonstram que L. pentosus não foi a espécie dominante nos ensaios de co-cultura. A presença de extrato de levedura e de valores de pH favoráveis a L. pentosus podem desempenhar um papel importante no mecanismo responsável pela contaminação bacteriana nas indústrias de produção de bioetanol.
Gan, Jing. "Hydrothermal conversion of lignocellulosic biomass to bio-oils". Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13768.
Texto completoDepartment of Biological and Agricultural Engineering
Wenqiao Yuan
Donghai Wang
Corncobs were used as the feedstock to investigate the effect of operating conditions and crude glycerol (solvent) on bio-oil production. The highest bio-oil yield of 33.8% on the basis of biomass dry weight was obtained at 305°C, 20 min retention time, 10% biomass content, 0.5% catalyst loading. At selected conditions, bio-oil yield based on the total weight of corn cobs and crude glycerol increased to 36.3% as the crude glycerol/corn cobs ratio increased to 5. Furthermore, the optimization of operating conditions was conducted via response surface methodology. A maximum bio-oil yield of 41.3% was obtained at 280°C, 12min, 21% biomass content, and 1.56% catalyst loading. A highest bio-oil carbon content of 74.8% was produced at 340°C with 9% biomass content. A maximum carbon recovery of 25.2% was observed at 280°C, 12min, 21% biomass content, and 1.03% catalyst loading. The effect of biomass ecotype and planting location on bio-oil production were studied on big bluestems. Significant differences were found in the yield and elemental composition of bio-oils produced from big bluestem of different ecotypes and/or planting locations. Generally, the IL ecotype and the Carbondale, IL and Manhattan, KS planting locations gave higher bio-oil yield, which can be attributed to the higher total cellulose and hemicellulose content and/or the higher carbon but lower oxygen contents in these feedstocks. Bio-oil from the IL ecotype also had the highest carbon and lowest oxygen contents, which were not affected by the planting location. In order to better understand the mechanisms of hydrothermal conversion, the interaction effects between cellulose, hemicellulose and lignin in hydrothermal conversion were studied. Positive interaction between cellulose and lignin, but negative interaction between cellulose and hemicellulose were observed. No significant interaction was found between hemicelluose and lignin. Hydrothermal conversion of corncobs, big bluestems, switchgrass, cherry, pecan, pine, hazelnut shell, and their model biomass also were conducted. Bio-oil yield increased as real biomass cellulose and hemicellulose content increased, but an opposite trend was observed for low lignin content model biomass.
Lopes, André Miguel da Costa. "Pre-treatment of lignocellulosic biomass with ionic liquids". Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/9521.
Texto completoO objetivo deste trabalho foi estudar o pré-tratamento de biomassa lignocelulósica, como a palha de trigo, usando líquidos iónicos (LIs) de modo a obter a separação dos principais componentes, nomeadamente, celulose, hemicelulose e lignina. O processo de pré-tratamento foi otimizado com base em duas metodologias descritas na literatura utilizando o líquido iónico acetato de 1-etil-3-metilimidazólio ([emim][CH3COO]). A metodologia otimizada permitiu separar as frações ricas em hidratos de carbono das frações de lignina, ambas com elevada pureza, e com uma recuperação de LIs até um máximo de 97% da sua massa inicial. Desta forma, o LI pode ser reusado confirmando a flexibilidade do processo desenvolvido. A versatilidade do método foi testada com a investigação de três líquidos iónicos diferentes, nomeadamente hidrogenossulfato de 1-butil-3-metilimidazólio ([bmim][HSO4]), tiocianato de 1-butil-3-metilimidazólio ([bmim][SCN]) e dicianamida de 1-butil-3-metilimidazólio ([bmim][N(CN)2]). No processo de dissolução de palha de trigo observou-se uma dissolução completa a nível macroscópico apenas para os líquidos iónicos [emim][CH3COO] e [bmim][HSO4]. O [emim][CH3COO] apresentou maior eficiência no processo de dissolução e regeneração da biomassa. Contrariamente, o [bmim][SCN] demonstrou ser o menos eficiente em todo o processo de pré-tratamento. Um comportamento diferente foi observado para o [bmim][HSO4], cujo pré-tratamento apresentou similaridades a uma hidrólise ácida. Os pré-tratamentos com [bmim][HSO4] e [bmim][N(CN)2] permitiram a obtenção de frações ricas em celulose com um conteúdo em hidratos de carbono de 87 a 90%. Para as frações ricas em celulose provenientes do pré-tratamento com [emim][CH3COO] foram efetuados ensaios de hidrólise enzimática para verificar a potencial aplicação destas frações, bem como, avaliar a eficiência das metodologias de pré-tratamento estudadas. Os resultados obtidos demonstraram elevado índice de digestibilidade da celulose e confirmou o elevado teor de glucose presente na fração celulósica obtida pela metodologia otimizada. A técnica de Espectroscopia de Infravermelho com Transformadas de Fourier (FT-IR) permitiu efetuar análises qualitativas e quantitativas de todas as amostras obtidas nos pré-tratamentos realizados. Para avaliar a pureza dos LIs após os pré-tratamentos utilizou-se a técnica espectroscópica de ressonância magnética nuclear (RMN). Os resultados provenientes dos ensaios de hidrólise enzimática foram obtidos através da técnica cromatográfica de HPLC.
This work is devoted to the pre-treatment of lignocellulosic biomass using ionic liquids (ILs) to separate cellulose, hemicellulose and lignin fractions. Particularly, research was focused on studying the influence of various ILs on the pre-treatment of wheat straw. The pre-treatment procedure was optimised basing on two methodologies presented in the literature. In the optimised method 1-ethyl-3-methylimidazolium acetate ([emim][CH3COO]) IL was used. The developed method is beneficial as allows a separation of highly-purified carbohydrate and lignin-rich samples and permits to recover ILs with a yield of 97wt%. Therefore, the IL could be reused confirming a great flexibility of the developed method. Furthermore, versatility of the method was confirmed by examination of different ILs such as 1-butyl-3-methylimidazolium hydrogensulfate ([bmim][HSO4]), 1-butyl-3-methylimidazolium thiocyanate ([bmim][SCN]) and 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN)2]). Only [emim][CH3COO] and [bmim][HSO4] ILs were found to be capable to achieve a macroscopic complete dissolution of wheat straw. Considering dissolution and regeneration process, [emim][CH3COO] was the most efficient among investigated ILs. On the contrary, [bmim][SCN] demonstrated the lowest efficiency either in dissolution and regeneration or fractionation processes. The [bmim][HSO4] showed different behaviour from other ILs exhibiting similarities to acid hydrolysis pre-treatment. Pre-treatments with [bmim][HSO4] and [bmim][N(CN)2] allowed to recover cellulose rich-samples with a carbohydrate content between 87 to 90wt%. In order to verify the potential further applicability of obtained carbohydrate-rich fractions as well as to evaluate the pre-treatment efficiency, the cellulose-rich fraction obtained from treatment with [emim][CH3COO] was applied for the enzymatic hydrolysis. Achieved results showed a high digestibility of cellulose-rich samples and confirmed a high glucose yield for the optimised methodology. Qualitative and quantitative analyses of the pre-treatment with ILs were made using the Fourier-Transform Infrared Spectroscopy (FT-IR). The NMR analysis was used to evaluate the purity of ILs after pre-treatments. Results of enzymatic hydrolysis analysis were controlled by the HPLC.
Busby, David Preston. "The cost of producing lignocellulosic biomass for ethanol". Master's thesis, Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-07052007-124350.
Texto completoLibros sobre el tema "Lignocellulosic biomass"
Boot, Michael, ed. Biofuels from Lignocellulosic Biomass. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527685318.
Texto completoKubicek, Christian P. Fungi and Lignocellulosic Biomass. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118414514.
Texto completoKubicek, C. P. Fungi and lignocellulosic biomass. Ames, Iowa: Wiley-Blackwell, 2012.
Buscar texto completoSharma, Vinay. Lignocellulosic Biomass Production and Industrial Applications. Editado por Arindam Kuila. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119323686.
Texto completoBajpai, Pratima. Pretreatment of Lignocellulosic Biomass for Biofuel Production. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0687-6.
Texto completoBajpai, Pratima. Single Cell Protein Production from Lignocellulosic Biomass. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5873-8.
Texto completoBioalcohol production: Biochemical conversion of lignocellulosic biomass. Boca Raton: CRC Press, 2010.
Buscar texto completoBioalcohol production: Biochemical conversion of lignocellulosic biomass. Boca Raton: CRC Press, 2010.
Buscar texto completoBajpai, Pratima. Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4013-1.
Texto completoCapítulos de libros sobre el tema "Lignocellulosic biomass"
Rödl, Anne. "Lignocellulosic Biomass". En Biokerosene, 189–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53065-8_9.
Texto completoGhislain, Thierry, Xavier Duret, Papa Niokhor Diouf y Jean-Michel Lavoie. "Lignocellulosic Biomass". En Handbook on Characterization of Biomass, Biowaste and Related By-products, 499–535. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35020-8_3.
Texto completoYu, Fei y Jonathan Y. Chen. "Lignocellulosic Biomass Processing". En Food and Industrial Bioproducts and Bioprocessing, 293–311. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781119946083.ch12.
Texto completoTakara, Devin, Prachand Shrestha y Samir Kumar Khanal. "Lignocellulosic Biomass Pretreatment". En Bioenergy and Biofuel from Biowastes and Biomass, 172–200. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/9780784410899.ch09.
Texto completoMcCormick, Robert L., Robert M. Baldwin, Stephen Arbogast, Don Bellman, Dave Paynter y Jim Wykowski. "Biomass Pyrolysis Oils". En Biofuels from Lignocellulosic Biomass, 189–207. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527685318.ch8.
Texto completoWyman, Charles E., Charles M. Cai y Rajeev Kumar. "Bioethanol from Lignocellulosic Biomass". En Energy from Organic Materials (Biomass), 997–1022. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7813-7_521.
Texto completoShafiei, Marzieh, Rajeev Kumar y Keikhosro Karimi. "Pretreatment of Lignocellulosic Biomass". En Lignocellulose-Based Bioproducts, 85–154. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14033-9_3.
Texto completoWu, Xiaorong, James McLaren, Ron Madl y Donghai Wang. "Biofuels from Lignocellulosic Biomass". En Sustainable Biotechnology, 19–41. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3295-9_2.
Texto completoKim, Tae Hyun. "Pretreatment of Lignocellulosic Biomass". En Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 91–110. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118642047.ch6.
Texto completoBajpai, Pratima. "Structure of Lignocellulosic Biomass". En SpringerBriefs in Molecular Science, 7–12. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0687-6_2.
Texto completoActas de conferencias sobre el tema "Lignocellulosic biomass"
"Comparison of crystallinity index computational methods based on lignocellulose X-ray diffractogram". En Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-16.
Texto completoZewei Miao. "Lignocellulosic Biomass Feedstock Supply Logistic Analysis". En 2011 Louisville, Kentucky, August 7 - August 10, 2011. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.37203.
Texto completoNikolić, Valentina, Slađana Žilić, Danka Milovanović, Beka Sarić y Marko Vasić. "NOVEL TRENDS IN APPLICATION AND PRETREATMENT OF LIGNOCELLULOSIC AGRICULTURAL WASTE". En 1st International Symposium on Biotechnology. University of Kragujevac, Faculty of Agronomy, 2023. http://dx.doi.org/10.46793/sbt28.271n.
Texto completoBai, Xuefeng y Wei Wu. "Pyrolysis of Lignocellulosic Biomass from Northeast China". En 2010 IEEE Green Technologies Conference (IEEE-Green-2010). IEEE, 2010. http://dx.doi.org/10.1109/green.2010.5453776.
Texto completoWeitao Zhang, Minliang Yang y Kurt A. Rosentrater. "Pretreatment Methods for Lignocellulosic Biomass to Ethanol". En 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131594712.
Texto completoKingsley L. Iroba, Lope G. Tabil, Meda Venkatesh y Baik Oon-Doo. "Thermal properties of lignocellulosic biomass barley straw". En 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131594972.
Texto completoMei, Danhua, Shiyun Liu, Sen Wang y Zhi Fang. "Plasma-Enabled Fast Liquefaction of Lignocellulosic Biomass: Impact of Biomass Feedstocks". En 2020 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2020. http://dx.doi.org/10.1109/icops37625.2020.9717951.
Texto completoPatrick T Murphy, Kenneth J Moore y D Raj Raman. "Carbohydrate Availability Assay for Determining Lignocellulosic Biomass Quality". En 2007 Minneapolis, Minnesota, June 17-20, 2007. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.23442.
Texto completoSousa, Laura, Fábio Lisboa y Geraldo Tiago Filho. "Energetic characterization of lignocellulosic biomass: macauba (Acrocomia aculeata)". En 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-1111.
Texto completoBurra, Kiran Raj Goud y Ashwani K. Gupta. "Versatile Model Selection for Pyrolysis of Lignocellulosic-Biomass Components". En AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-4158.
Texto completoInformes sobre el tema "Lignocellulosic biomass"
McMillan, J. D. Processes for pretreating lignocellulosic biomass: A review. Office of Scientific and Technical Information (OSTI), noviembre de 1992. http://dx.doi.org/10.2172/7171656.
Texto completoMcMillan, J. D. Processes for pretreating lignocellulosic biomass: A review. Office of Scientific and Technical Information (OSTI), noviembre de 1992. http://dx.doi.org/10.2172/10104508.
Texto completoGuffey, F. D. y R. C. Wingerson. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION. Office of Scientific and Technical Information (OSTI), octubre de 2002. http://dx.doi.org/10.2172/807155.
Texto completoBinder, Thomas, Michael Erpelding, Josef Schmid, Andrew Chin, Rhea Sammons y Erin Rockafellow. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. Office of Scientific and Technical Information (OSTI), abril de 2015. http://dx.doi.org/10.2172/1253922.
Texto completoJarnigan, Alisha. Enhancing Cellulase Commercial Performance for the Lignocellulosic Biomass Industry. Office of Scientific and Technical Information (OSTI), junio de 2016. http://dx.doi.org/10.2172/1255837.
Texto completoKumar, Manoj. Development of a commercial enzymes system for lignocellulosic biomass saccharification. Office of Scientific and Technical Information (OSTI), diciembre de 2012. http://dx.doi.org/10.2172/1068167.
Texto completoHuber, George W. y Jiayue He. Catalytic Processes for Production of α,ω-diols from Lignocellulosic Biomass. Office of Scientific and Technical Information (OSTI), octubre de 2018. http://dx.doi.org/10.2172/1480118.
Texto completoDutta, A., M. Talmadge, J. Hensley, M. Worley, D. Dudgeon, D. Barton, P. Groenendijk et al. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol. Office of Scientific and Technical Information (OSTI), mayo de 2011. http://dx.doi.org/10.2172/1219435.
Texto completoPhillips, S., A. Aden, J. Jechura, D. Dayton y T. Eggeman. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass. Office of Scientific and Technical Information (OSTI), abril de 2007. http://dx.doi.org/10.2172/902168.
Texto completoPhillips, S., A. Aden, J. Jechura, D. Dayton y T. Eggeman. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. Office of Scientific and Technical Information (OSTI), abril de 2007. http://dx.doi.org/10.2172/1216397.
Texto completo