Literatura académica sobre el tema "Linjär algoritm"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Linjär algoritm".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Linjär algoritm"
Cáceres, José y Alberto Márquez. "A linear algorithm to recognize maximal generalized outerplanar graphs". Mathematica Bohemica 122, n.º 3 (1997): 225–30. http://dx.doi.org/10.21136/mb.1997.126148.
Texto completoAmrullah, Muhammad. "PEMODELAN PEMROGRAMAN LINIER DENGAN KOEFISIEN FUNGSI OBJEKTIF, FUNGSI KENDALA DAN VARIABEL KEPUTUSAN BERBENTUK BILANGAN KABUR BESERTA APLIKASINYA". Jurnal Matematika, Statistika dan Komputasi 16, n.º 1 (27 de junio de 2019): 85. http://dx.doi.org/10.20956/jmsk.v16i1.5802.
Texto completoPatel, Roshni V. y Jignesh S. Patel. "Optimization of Linear Equations using Genetic Algorithms". Indian Journal of Applied Research 2, n.º 3 (1 de octubre de 2011): 56–58. http://dx.doi.org/10.15373/2249555x/dec2012/19.
Texto completoPAȘA, Tatiana. "THE GENETIC ALGORITHM FOR SOLVING THE NON-LINEAR TRANSPORTATION PROBLEM". Review of the Air Force Academy 16, n.º 2 (31 de octubre de 2018): 37–44. http://dx.doi.org/10.19062/1842-9238.2018.16.2.4.
Texto completoMahapatra, Gautam, Srijita Mahapatra y Soumya Banerjee. "A Study of Firefly Algorithm and its Application in Non-Linear Dynamic Systems". International Journal of Trend in Scientific Research and Development Volume-2, Issue-2 (28 de febrero de 2018): 542–49. http://dx.doi.org/10.31142/ijtsrd8393.
Texto completoSharma, Aditya y Er Praveen Kumar Patidar. "Review on Linear Array Antenna with Minimum Side Lobe Level Using Genetic Algorithm". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30 de junio de 2018): 2067–70. http://dx.doi.org/10.31142/ijtsrd14544.
Texto completoMarusenkova, T. "A gating algorithm with reduced computational complexity for linear Kalman filters in embedded systems". Jornal of Kryvyi Rih National University, n.º 50 (2020): 25–31. http://dx.doi.org/10.31721/2306-5451-2020-1-50-25-31.
Texto completoHan, F., X. Huang, E. Teye, H. Gu, H. Dai y L. Yao. "A nondestructive method for fish freshness determination with electronic tongue combined with linear and non-linear multivariate algorithms". Czech Journal of Food Sciences 32, No. 6 (27 de noviembre de 2014): 532–37. http://dx.doi.org/10.17221/88/2014-cjfs.
Texto completoGusti, Kharisma Wiati, Rinda Cahyana y Luthfi Nurwandi. "Simulasi Perhitungan Integral Non Linier Menggunakan Monte Carlo (Studi Kasus Ekonomi Total Biaya)". Jurnal Algoritma 9, n.º 2 (1 de septiembre de 2012): 406–15. http://dx.doi.org/10.33364/algoritma/v.9-2.406.
Texto completoMukesh, Anand Mohan Sinha, Kumar. "Algorithm for Linear Programming". IOSR Journal of Mathematics 4, n.º 4 (2012): 48–51. http://dx.doi.org/10.9790/5728-0444851.
Texto completoTesis sobre el tema "Linjär algoritm"
Åkerling, Erik y Jimmy Jerenfelt. "Analys och framtagning av algoritm för rodermätning". Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-23459.
Texto completoThe task is an investigation to try and locate errors and make improvements on a test equipment that measures rudder angles on the rear-end of a robot. The report contains an overview of the previous method and the errors that is found by testing it. The investigation also challenges many of the assumptions made when the previous method was made. This was made in order to either confirm or deny the assumptions. This is done by the use of mathematical models to simulate different parts of the method. Each part of the report consists of a description of the section followed by explaining the discovered errors that was found by testing the method in the models. The new produced method suggestion is exposed to the same tests as the previous method to discern the differences. The conclusions made from the sections can be found in the results.
Sehovic, Mirsad y Markus Carlsson. "Nåbarhetstestning i en baneditor : En undersökning i hur nåbarhetstester kan implementeras i en baneditor samt funktionens potential i att ersätta manuell testning". Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-36394.
Texto completoThe following study examines whether it is possible to implement reachability testing in a map editor designed for 2D-platform games. The purpose of reachability testing is to replace manual testing, that being the level designer having to play through the map just to see if the player can reach all supposedly reachable positions in the map.A simple map editor is created to enable the implementation after which we perform a theoretical study in order to determine which algorithm would be best suited for the implementation of the reachability testing.The results comparing algorithms shows that A* (A star) worked best with the function. Whether or not manual testing can be replaced by automatic testing is open for debate, however the results points to an increase in time efficiency when it comes to level design.
Morad, Farhad. "Non-linear Curve Fitting". Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-43600.
Texto completoSyftet med denna uppsats är att beskriva och använda olika metoder för kurvanpassning, det vill säga att passa matematiska funktioner till data. De metoder som undersöks är Newtons metod, Gauss--Newton metoden och Levenberg--Marquardt metoden. Även skillnaden mellan linjär minsta kvadrat anpassning och olinjär minsta kvadrat anpassning. Till sist tillämpas Newton, Gauss Newton och Levenberg--Marquardt metoderna på olika exempel.
Uyanga, Enkhzul y Lida Wang. "Algorithm that creates productcombinations based on customerdata analysis : An approach with Generalized Linear Modelsand Conditional Probabilities". Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210176.
Texto completoDetta kandidatexamensarbete är en kombinerad studie av tillämpad matematisk statistik och industriell ekonomisk implementering för att utveckla en algoritm som skapar produktkombinationer baserad på kunddata analys för eleven AB. I den matematiska delen tillämpades generaliserade linjära modeller, kombinatorik och betingade sannolikheter för att skapa prediktionsmodeller för försäljningsantal, generera potentiella kombinationer och beräkna betingade sannolikheter att kombinationerna bli köpta. SWOT-analys användes för att identifiera vilka faktorer som kan öka försäljningen från ett industriell ekonomiskt perspektiv. Baserat på regressionsanalysen, studien har visat att de betraktade variablerna, som var försäljningspriser, varumärken, försäljningsländer, försäljningsmånader och hur nya produkterna är, påverkade försäljningsantalen på produkterna. Algoritmen tar emot en streckkod av en produkt som inmatning och kontrollerar om den motsvarande produkttypen uppfyller kraven för predikterad försäljningssumma och betingad sannolikhet. Algoritmen returnerar en lista av alla möjliga kombinationer på produkter som uppfyller rekommendationerna.
Silva, Jair da. "Uma familia de algoritmos para programação linear baseada no algoritmo de Von Neumann". [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306741.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T08:57:24Z (GMT). No. of bitstreams: 1 Silva_Jairda1_D.pdf: 1755258 bytes, checksum: 2ecb493aab3646838f54c2df2012b5d9 (MD5) Previous issue date: 2009
Resumo: Neste trabalho apresentamos uma nova família de algoritmos para resolver problemas de programação linear. A vantagem desta família de algoritmos é a sua simplicidade, a possibilidade de explorar a esparsidade dos dados do problema original e geralmente possuir raio de convergência inicial rápido. Esta família de algoritmos surgiu da generalização da idéia apresentada por João Gonçalves, Robert Storer e Jacek Gondzio, para desenvolver o algoritmo de ajustamento pelo par ótimo. Este algoritmo foi desenvolvido por sua vez tendo como base o algoritmo de Von Neumann. O algoritmo de Von Neumann possui propriedades interessantes, como simplicidade e convergência inicial rápida, porém, ele não é muito prático para resolver problemas lineares, visto que sua convergência é muito lenta. Do ponto de vista computacional, nossa proposta não é utilizar a família de algoritmos para resolver os problemas de programação linear até encontrar uma solução e sim explorar a sua simplicidade e seu raio de convergência inicial geralmente rápido e usá-la em conjunto com um método primal-dual de pontos interiores infactível, para melhorar a eficiência deste. Experimentos numéricos revelam que ao usar esta família de algoritmos em conjunto com um método primal-dual de pontos interiores infactível melhoramos o seu desempenho na solução de algumas classes de problemas de programação linear de grande porte.
Abstract: In this work, we present a new family of algorithms to solve linear programming problems. The advantage of this family of algorithms relies in its simplicity, the possibility of exploiting the sparsity of the original problem data and usually to have fast initial ratio of convergence. This family of algorithms arose from the generalization of the idea presented by João Gonçalves, Robert Storer and Jacek Gondzio to develop the optimal pair adjustment algorithm. This algorithm was developed in its own turn based on the Von Neumann's algorithm. It has interesting properties, such as simplicity and fast initial convergence, but it is not very practical for solving linear problems, since its convergence is very slow. From the computational point of view, our suggestion is not to use the family of algorithms to solve problems of linear programming until optimality, but to exploit its simplicity and its fast initial ratio of convergence and use it together with a infeasible primal-dual interior point method to improve its efficiency. Numerical experiments show that using this family of algorithms with an infeasible primal-dual interior point method improves its performance in the solution of some classes of large-scale linear programming problems.
Doutorado
Doutor em Matemática Aplicada
Wilbanks, John W. (John Winston). "Linear Unification". Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc500971/.
Texto completoLammoglia, Bruna. "Sobre minimização de quadraticas em caixas". [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306045.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T01:30:21Z (GMT). No. of bitstreams: 1 Lammoglia_Bruna_M.pdf: 679586 bytes, checksum: 221fa89afc7d9f594781baed1dfe6b0e (MD5) Previous issue date: 2007
Resumo: Neste trabalho o objetivo principal foi a minimização de quadráticas em caixas. Dissertamos sobre os métodos de máxima descida e dos gradientes conjugados, bem como sobre um método mais recente denominado gradiente espectral. O GENCAN, um algoritmo que minimiza funções em caixas, foi estudado em detalhe, particularmente avaliando sua aplicação para quadráticas. O objetivo foi analisar o desempenho do GENCAN, comparado com algoritmos anteriores, como o LANCELOT e o QUACAN. Foram executados experimentos numéricos a fim de avaliar o desempenho das versões de GENCAN sem e com pré-condicionamento. Concluiu-se que pré-condicionar o método dos gradientes conjugados neste caso tornou o GENCAN mais robusto. No entanto, o pré-condicionador usado neste software mostrou-se computacionalmente caro. Em relação à comparação do GENCAN, LANCELOT e QUACÁN, podemos afirmar que o GENCAN. mostrou-se competitivo
Abstract: The focus of this work was the minimization of quadratic functions with box constraints. We were mainly concerned about the steepest descent and conjugated gradient methods, besides a more recent approach called spectral gradient method. The GENCAN, an algorithm that minimizes functions on a box, was studied in details particularly evaluating this algorithm applied to quadratics. The objective was to analyze the efficiency of GENCAN, comparing it to classical algorithms, such as LANCELOT and QUACAN. We executed numerical experiments in order to investigate the efficiency of GENCAN version with and without preconditioning. Evaluating the results we concluded that preconditioning the conjugated gradient method makes the GENCAN work considerably better; despite the fact that the preconditioner used here turned the computational process more expensive. Comparing GENCA'N, LANCELOT, and QUACAN we can state that GENCAN is competitive
Mestrado
Otimização
Mestre em Matemática Aplicada
Paula, Lauro Cássio Martins de. "Paralelização de algoritmos APS e Firefly para seleção de variáveis em problemas de calibração multivariada". Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/3418.
Texto completoApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-10-21T18:37:00Z (GMT) No. of bitstreams: 2 Dissertação - Lauro Cássio Martins de Paula - 2014.pdf: 2690755 bytes, checksum: 3f2c0a7c51abbf9cd88f38ffbe54bb67 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2014-10-21T18:37:00Z (GMT). No. of bitstreams: 2 Dissertação - Lauro Cássio Martins de Paula - 2014.pdf: 2690755 bytes, checksum: 3f2c0a7c51abbf9cd88f38ffbe54bb67 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-07-15
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The problem of variable selection is the selection of attributes for a given sample that best contribute to the prediction of the property of interest. Traditional algorithms as Successive Projections Algorithm (APS) have been quite used for variable selection in multivariate calibration problems. Among the bio-inspired algorithms, we note that the Firefly Algorithm (AF) is a newly proposed method with potential application in several real world problems such as variable selection problem. The main drawback of these tasks lies in them computation burden, as they grow with the number of variables available. The recent improvements of Graphics Processing Units (GPU) provides to the algorithms a powerful processing platform. Thus, the use of GPUs often becomes necessary to reduce the computation time of the algorithms. In this context, this work proposes a GPU-based AF (AF-RLM) for variable selection using multiple linear regression models (RLM). Furthermore, we present two APS implementations, one using RLM (APSRLM) and the other sequential regressions (APS-RS). Such implementations are aimed at improving the computational efficiency of the algorithms. The advantages of the parallel implementations are demonstrated in an example involving a large number of variables. In such example, gains of speedup were obtained. Additionally we perform a comparison of AF-RLM with APS-RLM and APS-RS. Based on the results obtained we show that the AF-RLM may be a relevant contribution for the variable selection problem.
O problema de seleção de variáveis consiste na seleção de atributos de uma determinada amostra que melhor contribuem para a predição da propriedade de interesse. O Algoritmo das Projeções Sucessivas (APS) tem sido bastante utilizado para seleção de variáveis em problemas de calibração multivariada. Entre os algoritmos bioinspirados, nota-se que o Algoritmo Fire f ly (AF) é um novo método proposto com potencial de aplicação em vários problemas do mundo real, tais como problemas de seleção de variáveis. A principal desvantagem desses dois algoritmos encontra-se em suas cargas computacionais, conforme seu tamanho aumenta com o número de variáveis. Os avanços recentes das Graphics Processing Units (GPUs) têm fornecido para os algoritmos uma poderosa plataforma de processamento e, com isso, sua utilização torna-se muitas vezes indispensável para a redução do tempo computacional. Nesse contexto, este trabalho propõe uma implementação paralela em GPU de um AF (AF-RLM) para seleção de variáveis usando modelos de Regressão Linear Múltipla (RLM). Além disso, apresenta-se duas implementações do APS, uma utilizando RLM (APS-RLM) e uma outra que utiliza a estratégia de Regressões Sequenciais (APS-RS). Tais implementações visam melhorar a eficiência computacional dos algoritmos. As vantagens das implementações paralelas são demonstradas em um exemplo envolvendo um número relativamente grande de variáveis. Em tal exemplo, ganhos de speedup foram obtidos. Adicionalmente, realiza-se uma comparação do AF-RLM com o APS-RLM e APS-RS. Com base nos resultados obtidos, mostra-se que o AF-RLM pode ser uma contribuição relevante para o problema de seleção de variáveis.
Dal, Gallo Rodrigo Marchiori. "Metodo heuristico eficiente para problemas de programação linear inteira com dimensão completa". [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306197.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T22:48:39Z (GMT). No. of bitstreams: 1 DalGallo_RodrigoMarchiori_M.pdf: 685835 bytes, checksum: 9e0e8765da2a5926a7a5952b31283ca5 (MD5) Previous issue date: 2008
Resumo: O trabalho tem como objetivo a implementação de um método heurístico para a resolução de problemas de programação inteira com dimensão completa. Nos atemos aos problemas de corte e empacotamento, mas a aplicação pode ser estendida a qualquer outro problema dessa classe. No problema de programação linear relaxado aplicamos o Método de Gilmore & Gomory e a partir da solução contínua obtida através do método simplex, aplicamos o método heurístico e comparamos os resultados com as soluções exatas obtidas a partir de Branch & Bound
Abstract: The objective of this dissertation is the implementation of a heuristic method to solve integer linear programming problems with complete dimension. We worked specifically with cutting and stock problems, but it can be aplied to any other class of integer problems. We used the Gilmore & Gomory method of column generation and starting by the continuous solution obtained with simplex method, we aplied the heuristic method and made a comparation of results with the exact solutions obtained by the Branch&Bound method
Mestrado
Pesquisa Operacional
Mestre em Matemática Aplicada
Chee, Sonny Han Seng. "RecTree, a linear collaborative filtering algorithm". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0011/MQ61420.pdf.
Texto completoLibros sobre el tema "Linjär algoritm"
Currie, James D. The complexity of the simplex algorithm. [Ottawa]: Carleton University, Mathematics and Statistics, 1985.
Buscar texto completoSima, Vasile. Algorithms for linear-quadratic optimization. New York: M. Dekker, 1996.
Buscar texto completoMathematical algorithms for linear regression. Boston: Academic Press, 1991.
Buscar texto completoKontoghiorghes, Erricos John. Parallel Algorithms for Linear Models. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4571-2.
Texto completoLee, P. Synthesizing linear-array algorithms from nested for loop algorithms. New York: Courant Institute of Mathematical Sciences, New York University, 1988.
Buscar texto completoI, Agoshkov V. y Shuti͡a︡ev V. P, eds. Sopri͡a︡zhennye uravnenii͡a︡ i algoritmy vozmushcheniĭ. Moskva: Akademii͡a︡ nauk SSSR, Otdel vychislitelʹnoĭ matematiki, 1986.
Buscar texto completoPanik, Michael J. Linear programming: Mathematics, theory and algorithms. Dordrecht: Kluwer Academic, 1996.
Buscar texto completoAbdullah, Jalaluddin. Fixed point algorithms for linear programming. Birmingham: University of Birmingham, 1992.
Buscar texto completoservice), SpringerLink (Online, ed. Max-linear Systems: Theory and Algorithms. London: Springer-Verlag London Limited, 2010.
Buscar texto completoLinear network optimization: Algorithms and codes. Cambridge, Mass: MIT Press, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Linjär algoritm"
Karloff, Howard. "Karmarkar’s Algorithm". En Linear Programming, 103–30. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4844-2_5.
Texto completoKarloff, Howard. "The Ellipsoid Algorithm". En Linear Programming, 73–101. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4844-2_4.
Texto completoKarloff, Howard. "The Simplex Algorithm". En Linear Programming, 23–47. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4844-2_2.
Texto completoKall, Peter y János Mayer. "Algorithms". En Stochastic Linear Programming, 285–382. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7729-8_4.
Texto completoBitan, Sara y Shmuel Zaks. "Optimal linear broadcast". En Algorithms, 368–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52921-7_86.
Texto completoWalrand, Jean. "Speech Recognition: B". En Probability in Electrical Engineering and Computer Science, 217–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49995-2_12.
Texto completoCottle, Richard W. y Mukund N. Thapa. "THE SIMPLEX ALGORITHM". En Linear and Nonlinear Optimization, 61–84. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7055-1_3.
Texto completoKorte, Bernhard y Jens Vygen. "Linear Programming". En Algorithms and Combinatorics, 53–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56039-6_3.
Texto completoRival, Ivan. "Linear Extensions". En Algorithms and Order, 481–82. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2639-4_17.
Texto completoKorte, Bernhard y Jens Vygen. "Linear Programming". En Algorithms and Combinatorics, 49–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-21708-5_3.
Texto completoActas de conferencias sobre el tema "Linjär algoritm"
Mulkay, Eric L. y Singiresu S. Rao. "Fuzzy Heuristics for Sequential Linear Programming". En ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/dac-3966.
Texto completoGraf, Norman A. "Clustering algorithm studies". En Physics and experiments with future linear e+ e- colliders. AIP, 2001. http://dx.doi.org/10.1063/1.1394455.
Texto completoBenke, M., E. Shapiro y D. Drikakis. "FALCO: Fast Linear Corrector for Modelling DNA-Laden Flows". En ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62131.
Texto completoHamann, Hendrik F. "Optimization Algorithms for Energy-Efficient Data Centers". En ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73066.
Texto completoVan der Velden, Alex y David Kokan. "The Synaps Pointer Optimization Engine". En ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/cie-34403.
Texto completoGe, Cunjing y Armin Biere. "Decomposition Strategies to Count Integer Solutions over Linear Constraints". En Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/192.
Texto completoLo, Chihsiung y Panos Y. Papalambros. "A Convex Cutting Plane Algorithm for Global Solution of Generalized Polynomial Optimal Design Models". En ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0121.
Texto completoOu, Mingdong, Nan Li, Shenghuo Zhu y Rong Jin. "Multinomial Logit Bandit with Linear Utility Functions". En Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/361.
Texto completoFine, Benjamin T., Hoday Stearns y Masayoshi Tomizuka. "Identification in Iterative Learning Control: A Model Based, Iteration Varying Learning Filter for Precision Control". En ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2726.
Texto completoNieto, Zackery, V. M. Krushnarao Kotteda, Arturo Rodriguez, Sanjay Shantha Kumar, Vinod Kumar y Arturo Bronson. "Utilization of Machine Learning to Predict the Surface Tension of Metals and Alloys". En ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83248.
Texto completoInformes sobre el tema "Linjär algoritm"
Todd, Michael J. y Yinyu Ye. A Centered Projective Algorithm for Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1988. http://dx.doi.org/10.21236/ada192100.
Texto completoEntriken, Robert. A Parallel Decomposition Algorithm for Staircase Linear Programs. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1988. http://dx.doi.org/10.21236/ada204662.
Texto completoBixby, Robert E. y Donald K. Wagner. An Almost Linear-Time Algorithm for Graph Realization. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1985. http://dx.doi.org/10.21236/ada455177.
Texto completoBernal, J. An expected linear 3-dimensional Voronoi diagram algorithm. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.4340.
Texto completoLiang, Guanfeng y Nitin Vaidya. Deterministic Consensus Algorithm with Linear Per-Bit Complexity. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2010. http://dx.doi.org/10.21236/ada555082.
Texto completoForest, E. Normal form algorithm on non-linear symplectic maps. Office of Scientific and Technical Information (OSTI), abril de 1985. http://dx.doi.org/10.2172/6732425.
Texto completoStechel, E. B. Linear scaling algorithms: Progress and promise. Office of Scientific and Technical Information (OSTI), agosto de 1996. http://dx.doi.org/10.2172/285454.
Texto completoTseng, Paul. A Very Simple Polynomial-Time Algorithm for Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1988. http://dx.doi.org/10.21236/ada202502.
Texto completoRokhlin, Vladimir y Mark Tygert. A Fast Randomized Algorithm for Overdetermined Linear Least-Squares Regression. Fort Belvoir, VA: Defense Technical Information Center, abril de 2008. http://dx.doi.org/10.21236/ada489855.
Texto completoSaltzman, Robert M. A Heuristic Ceiling Point Algorithm for General Integer Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1988. http://dx.doi.org/10.21236/ada202285.
Texto completo