Literatura académica sobre el tema "Liquid biopsy"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Liquid biopsy".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Liquid biopsy"
Singh, Pratibha, Meenakshi Gothwal y Garima Yadav. "Liquid Biopsy in Ovarian Cancer". Indian Journal of Obstetrics and Gynecology 6, n.º 4 (2018): 427–31. http://dx.doi.org/10.21088/ijog.2321.1636.6418.16.
Texto completoJain, Amit Kumar, Guruprasad Bhat, Vineet Govinda Gupta y Hari Goyal. "Liquid Biopsy". Indian Journal of Medical and Paediatric Oncology 42, n.º 01 (marzo de 2021): 077–79. http://dx.doi.org/10.1055/s-0041-1729434.
Texto completoGoodwin, Peter M. "Liquid Biopsy". Oncology Times 38, n.º 13 (julio de 2016): 40. http://dx.doi.org/10.1097/01.cot.0000489521.34002.61.
Texto completoSiddiqua, Umme Iffat. "Liquid Biopsy". KYAMC Journal 10, n.º 1 (22 de mayo de 2019): 1. http://dx.doi.org/10.3329/kyamcj.v10i1.41473.
Texto completoGingras, Isabelle, Roberto Salgado y Michail Ignatiadis. "Liquid biopsy". Current Opinion in Oncology 27, n.º 6 (noviembre de 2015): 560–67. http://dx.doi.org/10.1097/cco.0000000000000223.
Texto completoLavine, M. S. "Liquid Biopsy". Science 328, n.º 5975 (8 de abril de 2010): 141. http://dx.doi.org/10.1126/science.328.5975.141-a.
Texto completoHekmat, K. y C. Bruns. "„Liquid biopsy“". Der Chirurg 90, S2 (13 de febrero de 2019): 120. http://dx.doi.org/10.1007/s00104-019-0845-0.
Texto completoHekmat, K. y C. Bruns. "„Liquid biopsy“". Der Chirurg 88, n.º 7 (14 de junio de 2017): 621. http://dx.doi.org/10.1007/s00104-017-0458-4.
Texto completoFulmer, Tim. "Liquid biopsy". Science-Business eXchange 5, n.º 26 (junio de 2012): 668. http://dx.doi.org/10.1038/scibx.2012.668.
Texto completoImyanitov, E. N., E. Sh Kuligina y G. A. Janus. "LIQUID BIOPSY IN CLINICAL ONCOLOGY". Practical oncology 23, n.º 4 (30 de diciembre de 2022): 211–24. http://dx.doi.org/10.31917/2304211.
Texto completoTesis sobre el tema "Liquid biopsy"
Abbou, Samuel. "Liquid Biopsy in Pediatric Sarcoma". Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASL037.
Texto completoAbstract: Liquid biopsy is an opportunity for improved diagnosis, treatment monitoring and genomic studies in oncology. Substantial effort in recent years has focused on circulating tumor DNA (ctDNA) and circulating tumor cells (CTC). However, pediatric cancer, including sarcomas, are still largely unexplored disease areas in this field.In this work, we sought to explore several aspects of liquid biopsy applied to pediatric sarcomas including their clinical use at diagnosis and as a tool to understand tumor biology. We first present a review of the literature demonstrating the feasibility of applying liquid biopsy to pediatric solid malignancies. Then, we report a methodological study using CTC for diagnostic purposes in translocation driven sarcomas. This approach identified fusions from as little as two unstained slides of FFPE tumor biopsy tissue, from CTC collected from tumor-bearing mice, and from liquid biopsy samples from patients with known fusion-positive cancers. The second study focuses on ctDNA for prognostication at the time of diagnosis in rhabdomyosarcoma by detecting copy number alterations, rearrangements, and single-nucleotide variants. Our study demonstrates that baseline ctDNA detection is feasible and has prognostic value. The last part of this work presents the development of a workflow to isolate single sarcoma cancer cells for sequencing, with an ultimate goal to analyze CTC genomic features at a single-cell resolution.This work explores several clinically and scientifically relevant aspects of liquid biopsy in pediatric sarcoma. We showed that liquid biopsy has utility at diagnosis in two different applications. Further development in this field will require a strong knowledge of tumor-specific biology, the clinical care of patients with these diseases, and the adaption of new technologies. My findings demonstrate the transformative possibilities this research may bring to the care of patients with pediatric sarcomas
BARBARESCO, FEDERICA. "Microfluidic devices: application for liquid biopsy". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2903504.
Texto completoGIORDANI, Elena. "Liquid Biopsy in Real Life Oncology". Doctoral thesis, Università degli studi di Ferrara, 2022. http://hdl.handle.net/11392/2481324.
Texto completoAccording to the data contained in the report "I numeri del cancro in Italia 2020" edited by the Italian Association of Tumour Registers (AIRTUM) and the Italian Association of Medical Oncology (AIOM), breast cancer remains the most frequent neoplasm in Italy and the leading cause of death from cancer in women. HER2+ subtype breast cancers represent 30% of all breast cancers and used to be associated with a poor prognosis, although the application of targeted HER2 blockade has rendered this subtype at least as curable as other biologically less aggressive breast cancer subtypes. Unfortunately, patients with advanced breast cancer treated with anti-HER2 therapies almost invariably develop pharmacological resistance. Liquid biopsy (LB) is minimally invasive, easy to perform, highly sensitive and specific. It may detect molecular traits of resistance even before clinical manifestations of progression, which may reduce unnecessary anti-HER2 treatment, abating unwanted side effects, toxicity, and treatment-associated costs. Patients with tumors bearing HER2 alterations benefit from target therapy with many specific inhibitors. Longitudinal monitoring by LB is expected to become a key factor in disease management and the use of these targeted therapies, because it takes into account the idea of cancer evolution in the context of the general principles of precision oncology. The HER2 status is presently assessed by a combination of Immunohistochemistry and In Situ Hybridization (IHC/ISH) to detect gene overexpression and amplification in tissues on a binary scale that separately factors overexpression and gene amplification. I hypothesize that a static, one-time-only, tissue-only HER2 Companion Diagnostics (CDx), like the one we presently use, should be revised, or dismissed. This scale assigns defined cut-offs for conventional HER2 blockade therapy, e.g., tumors are either HER2 or non-HER2. This view is probably simplistic, because novel anti HER2 agents may effectively target both HER2-high and HER2-low tumors, and HER2 levels wane during therapy. In this thesis, I defend the hypothesis that HER2 functional expression should be assessed longitudinally (on a continuous scale, and bimodally), e.g. (over)expression and Copy Number Variation (CNV) should be fully co-factored into a novel CDx scheme, enabling dynamic reallocation of patients to different subtypes and assign non-standard treatment in a potentially practice-changing setting. I present data showing that LB may help redesigning CDx in advanced breast cancer. As an example, I briefly summarize LiqBreasTrack, a recent LB NGS study, carried out during my thesis, published at the time of writing (Allegretti M., Fabi A. et al. Molecular Cancer 2021). I also describe HER2-2D, a bidimensional LB assay that estimates HER2 CNV and HER2 protein level in the first and second dimensions, respectively. This is presently unpublished and personally developed. The assay takes advantage of customized digital PCR and a commercial ELISA, it is equally applicable to tissues and blood, and yields a cumulative HER2 score. HER2-2D main application is in blood, and I will describe a subset of breast cancer tumors/patients electively susceptible to HER2 blockade by Trastuzumab Emtansine (T-DM1), a potent Antibody-Drug Conjugate (ADC) targeting HER2. I will briefly mention a collaboration with the laboratory of Prof. Francesco Michelotti at the University of Sapienza, Rome, aimed at the construction of a novel Surface Plasmon Resonance Imaging (SPRI) biosensor for the rapid, simple and label-free detection of HER2, for future applications in the Health Technology Assessment area. In summary, thorough LB we show that HER2 is an adaptive tumor feature, and that its changes (amongst more general genomic changes) in blood may find application to adaptively assign target therapy to defined, distinct cohorts of breast cancer patients characterized by different degrees of HER2 oncogenic addiction.
Palmieri, Maria. "CfDNA-NGS Liquid Biopsy for solid cancers and vascular malformations". Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1120548.
Texto completoSoda, Narshone. "Advanced Liquid Biopsy Technologies for Circulating Cancer Biomarker Detection". Thesis, Griffith University, 2021. http://hdl.handle.net/10072/406071.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Yap, Soo Ann [Verfasser]. "Extracellular vesicles as cancer liquid biopsy biomarker / Soo Ann Yap". Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2021. http://d-nb.info/1234982889/34.
Texto completoDiop, Fary. "Diffuse large B-cell lymphoma genotyping on the liquid biopsy". Doctoral thesis, Università del Piemonte Orientale, 2018. http://hdl.handle.net/11579/105207.
Texto completoBracht-Loman, Jillian Wilhelmina Paulina. "Validation of liquid biopsy-based analysis on the NanoString nCounter platform". Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/672549.
Texto completoLa evaluación de los marcadores moleculares en tejido tumoral para el pronóstico del cáncer y la predicción de respuesta al tratamiento (lo que habitualmente se conoce como tratamiento personalizado) ha transformado la práctica clínica a la hora de tratar muchos tipos de cáncer. Son numerosos los trabajos que desde hace tiempo respaldan el efecto que esta terapia dirigida por genotipo tiene sobre los pacientes oncológicos mejorando la supervivencia del paciente; consecuentemente, un amplio rango de plataformas técnicas han sido implementadas en los laboratorios clínicos en los últimos años. Sin embargo, no todos los tumores se pueden biopsiar y, a menudo, las cantidades de tejido son insuficientes para la caracterización del tumor. Las biopsias líquidas, como el ARN, el ADN o las proteínas circulantes tanto libres como encapsuladas en una membrana, pueden extraerse de los fluidos corporales reemplazando o complementando de este modo las tradicionales biopsias de tejido. Las biopsias líquidas tienen varias ventajas: ofrecen la posibilidad de realizar estudios seriados, son mínimamente invasivas y permiten analizar la heterogeneidad tumoral. Desafortunadamente, todavía existe una gran brecha entre la investigación básica y la implementación clínica de las biopsias líquidas, principalmente debido a la falta de metodologías estandarizadas. Además, las plataformas técnicas que se utilizan actualmente no siempre son adecuadas para analizar la baja cantidad y calidad de material del tumor procedente de una biopsia líquida. En consecuencia, la validación e implementación de los ensayos de biomarcadores en biopsias líquidas en los laboratorios clínicos requieren una plataforma técnica estandarizada que sea sensible, rápida, fácil de usar, viable económicamente, flexible y que requiera un aporte inicial de ácidos nucleicos bajo, debido a la baja concentración que normalmente se obtiene en las biopsias líquidas. La plataforma nCounter se puede utilizar para analizar todo tipo de moléculas, incluyendo ARN, ADN y proteínas. La hibridación de diferentes códigos formados por moléculas de colores siguiendo patrones específicos con secuencias de interés permite una lectura directa de los niveles de expresión de genes y proteínas o la detección de mutaciones. El desarrollo de ensayos de biomarcadores en tejidos usando nCounter condujo a la aprobación por la administración de fármacos y alimentos de los Estados Unidos (FDA) del ensayo Prosigna ™ para su uso clínico en la tipificación del cáncer de mama. Numerosos estudios han destacado el potencial de esta plataforma para analizar moléculas derivadas y amplificadas de biopsias líquidas, aunque estudios de validación en el entorno clínico aun son necesarios. El objeto de esta tesis es la validación del uso de la plataforma NanoString nCounter para analizar material de biopsias líquidas y desarrollar ensayos de biomarcadores clínicamente relevantes.
The assessment of predictive- and prognostic molecular markers in tumor tissue, also known as personalised treatment, has transformed clinical practice for many cancer types. This genotype-directed therapy was found to improve patient survival, and several technical platforms have been introduced in clinical laboratories since then. However, not all tumors can be biopsied and tissue quantities are often insufficient for tumor characterisation. Liquid biopsies, such as membrane-encapsulated- or circulating free RNA, DNA and proteins, can be derived from body fluids and can replace or complement tissue biopsies. They have several advantages, such as repeated sampling, a minimally invasive character and heterogeneous profiling. Unfortunately, there is still a big gap between basic research and clinical implementation of liquid biopsies, mainly due to the lack of standardised methodologies. In addition, currently used technical platforms are not always suitable to analyze the low quantity and quality of tumor-derived material that can be found in a liquid biopsy. In consequence, large-scale validation and clinical implementation of liquid biopsy-based biomarker assays requires a sensitive, quick, easy-to-use, relatively cheap, flexible and standardized technical platform with low input requirements. The nCounter platform can be used to analyze all types of molecules, including RNA, DNA and proteins. Binding of color coded barcodes to targets of interest allows for either a direct read-out of gene- or protein expression levels or the detection of mutations. Tissue-based biomarker assay development on nCounter led to the FDA approval of the Prosigna™ assay for clinical use in breast cancer subtyping. Previous efforts have also highlighted the potential of this platform to analyze amplified liquid biopsy-derived molecules, although validation studies in the clinical setting are needed. In this thesis we validated the use of the NanoString nCounter platform to analyze material from liquid biopsies and develop clinically relevant biomarker assays.
Universitat Autònoma de Barcelona. Programa de Doctorat en Bioquímica, Biologia Molecular i Biomedicina
MARALANI, Mahafarin. "Liquid Biopsy: A Next Generation Diagnostic And Prognostic Tool In Solid Malignancies". Doctoral thesis, Università degli Studi di Palermo, 2020. http://hdl.handle.net/10447/401539.
Texto completoDO, REGO BARROS FERNANDES LIMA MARIA AUGUSTA. "Investigating Label-Free markers at Nanoscale for Liquid Biopsy Using Multimodal Microscopy". Doctoral thesis, Università degli Studi di Trieste, 2021. http://hdl.handle.net/11368/2995896.
Texto completoLiquid biopsy emerges as a noninvasive, easily repeatable, and potentially low-cost approach alternative to standard tissue biopsy. In most cases, it can be used to investigate the cause of symptoms or to help diagnose a number of different health conditions. Although originally used to designate analysis of non-solid tissues to screen for cancer cells, liquid biopsy also refers to the investigation of other general body fluids including its constituents characterization and not necessarily related to cancer. In this thesis, three new applications for the usage of label-free markers in the analysis of body fluid cellular constituents will be presented. Digital holographic microscopy and optical tweezers are applied to the characterization of ex-vivo generated and native red blood cells. In a second application, neutrophils precursors are characterized and classified according to its cellular and nuclear morphology during granulocytic differ- entiation. In a third proposed application, morphological markers retrieved by digital holographic microscopy are used to perform fast screening urinalysis, including leukocyturia and bacteriuria. Lastly, although not label-free, fluorescence superresolution microscopy is used to bring insights into why nuclear morphology can be used as a trustful label-free marker and shows the structural arrangement of lamin in the nucleus of neutrophil precursors with unprecedented resolution. Fast screening label-free liquid biopsies integrates the group of emerging approaches that will revolutionize the future of early disease diagnosis and therapeutic choice with disruptive impact on the society. All the investigations described in this Thesis were aimed to contribute to this promising and intriguing new scenario.
Libros sobre el tema "Liquid biopsy"
Chinen, Ludmilla Thomé Domingos, ed. Atlas of Liquid Biopsy. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69879-9.
Texto completoRusso, Antonio, Antonio Giordano y Christian Rolfo, eds. Liquid Biopsy in Cancer Patients. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55661-1.
Texto completoStrumfa, Ilze y Janis Gardovskis, eds. Liquid Biopsy. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.73612.
Texto completoDatar, Ram H., Marija Balic, Siddarth Rawal, Zheng Ao y Anthony Williams. Liquid Biopsy. Elsevier Science & Technology Books, 2019.
Buscar texto completoHistopathology and Liquid Biopsy [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.87426.
Texto completoLianidou, Evi y Richard J. Cote. Circulating Tumor Cells: Advances in Liquid Biopsy Technologies. Springer International Publishing AG, 2023.
Buscar texto completoLiquid Biopsy in Urogenital Cancers and its Clinical Utility. Elsevier, 2022. http://dx.doi.org/10.1016/c2021-0-00436-3.
Texto completoAghamir, Seyed Mohammad Kazem. Liquid Biopsy in Urogenital Cancers and Their Clinical Utility. Elsevier Science & Technology, 2022.
Buscar texto completoAghamir, Seyed Mohammad Kazem. Liquid Biopsy in Urogenital Cancers and Their Clinical Utility. Elsevier Science & Technology Books, 2022.
Buscar texto completoCapítulos de libros sobre el tema "Liquid biopsy"
Snyder, Rebecca A., Arvind Dasari y Y. Nancy You. "Liquid Biopsy". En Colorectal Liver Metastasis, 457–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09323-4_49.
Texto completoRao, Jianyu, Weibo Yu, Teresa Kim y Thomas Lee. "Liquid Biopsy". En Clinical Molecular Diagnostics, 377–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1037-0_27.
Texto completoCastiglia, Marta, Lorena Incorvaia, Valerio Gristina, Umberto Malapelle, Viviana Bazan, Christian Rolfo y Antonio Russo. "Liquid Biopsy". En Practical Medical Oncology Textbook, 99–122. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56051-5_6.
Texto completoCiaccio, Marcello. "Liquid Biopsy". En Clinical and Laboratory Medicine Textbook, 467–73. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24958-7_34.
Texto completoRoberts, Rene, Bilal A. Siddiqui, Sumit K. Subudhi y Rahul A. Sheth. "Image-Guided Biopsy/Liquid Biopsy". En Image-Guided Interventions in Oncology, 299–318. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48767-6_18.
Texto completoTorres, Jacqueline Aparecida y Victor Hugo Fonseca de Jesus. "Circulating Tumor Cells in Gastric Cancer". En Atlas of Liquid Biopsy, 103–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69879-9_7.
Texto completoSouza e Silva, Virgilio, Angelo Borsarelli Carvalho de Brito y Daniela Costa. "Circulating Tumor Cells in Colorectal Cancer". En Atlas of Liquid Biopsy, 47–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69879-9_4.
Texto completoTariki, Milena Shizue. "Circulating Tumor Cells in Prostate Cancer". En Atlas of Liquid Biopsy, 93–102. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69879-9_6.
Texto completode Oliveira, Thiago Bueno. "Circulating Tumor Cells in Head and Neck Cancer". En Atlas of Liquid Biopsy, 27–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69879-9_3.
Texto completoBraun, Alexcia Camila y José Gabriel Rodríguez Tarazona. "Circulating Tumor Cells in Mesenchymal Tumors". En Atlas of Liquid Biopsy, 127–47. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69879-9_8.
Texto completoActas de conferencias sobre el tema "Liquid biopsy"
Grinyte, Ruta, Thorsten Lux, Mokhtar Chmeissani y Marc Masa. "Photonics Platform For Liquid Biopsy". En Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/bgppm.2018.jtu2a.50.
Texto completoKim, Hyunji, Fehmi Civitci, Josiah Wagner, Pavana Anur, Matthew Rames, Xiaolin Nan, Terry Morgan y Thuy Ngo. "Abstract 2286: Liquid biopsy for early cancer detection". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2286.
Texto completoKim, Hyunji, Fehmi Civitci, Josiah Wagner, Pavana Anur, Matthew Rames, Xiaolin Nan, Terry Morgan y Thuy Ngo. "Abstract 2286: Liquid biopsy for early cancer detection". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2286.
Texto completoMohan, S., V. Foy, HS Leong, M. Carter, L. Priest, C. Faivre-Finn, F. Blackhall, D. Rothwell, C. Dive y G. Brady. "9 Liquid biopsy in small cell lung cancer (SCLC)". En Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.9.
Texto completoSims-Mourtada, Jennifer, Kimberly M. Arnold y Adam Marsh. "Abstract 4545: A liquid biopsy for breast cancer diagnosis". En Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4545.
Texto completoRahimian, Ali, Kyungjin Hong, Clara Neal, Gabriella Iacovetti, Greg Sommer y Ulrich Schaff. "Abstract 3103: TorqTMsystem improves liquid biopsy sample shipping stability". En Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3103.
Texto completoSpaziani, Sara, Giuseppe Quero, Stefano Managò, Gianluigi Zito, Daniela Terracciano, Paolo E. Macchia, Francesco Galeotti, Marco Pisco, Anna C. De Luca y Andrea Cusano. "SERS optrode for human thyroglobulin detection in liquid biopsy". En European Workshop on Optical Fibre Sensors (EWOFS 2023), editado por Marc Wuilpart y Christophe Caucheteur. SPIE, 2023. http://dx.doi.org/10.1117/12.2679428.
Texto completoTrudel, Suzanne y Trevor Pugh. "Abstract IA11: Clinical applications of liquid biopsy in multiple myeloma". En Abstracts: AACR Special Conference on Advances in Liquid Biopsies; January 13-16, 2020; Miami, FL. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3265.liqbiop20-ia11.
Texto completoNetto, George J. "Abstract IA26: Liquid biopsy in precision pathology: Plasma and beyond!" En Abstracts: AACR Special Conference on Advances in Liquid Biopsies; January 13-16, 2020; Miami, FL. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3265.liqbiop20-ia26.
Texto completoPantel, Klaus. "Abstract PL01-01: Liquid biopsy: Novel technologies and clinical applications". En Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-pl01-01.
Texto completoInformes sobre el tema "Liquid biopsy"
Liang, Feixin. Progress in Liquid Biopsy: A possible role of neutrophils. Science Repository, agosto de 2018. http://dx.doi.org/10.31487/j.cor.2018.02.004.
Texto completoChen, Xuefeng, Haoyu Wang y Yu Wang. The diagnostic value of liquid biopsy for cervical cancer: A meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, julio de 2022. http://dx.doi.org/10.37766/inplasy2022.7.0122.
Texto completoWang, Yu, Hao Yu Wang y Xue Feng Chen. Diagnostic value of different components of liquid biopsy in ovarian cancer: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, julio de 2022. http://dx.doi.org/10.37766/inplasy2022.7.0124.
Texto completoWang, Hao Yu, Yu Wang y Xue Feng Chen. Diagnostic performance of various liquid biopsy methods in the detection of gastric cancer: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, julio de 2022. http://dx.doi.org/10.37766/inplasy2022.7.0123.
Texto completoChen, Si Yu \. y Hao Yu Wang. Diagnostic performance of various liquid biopsy methods in the detection of upper gastrointestinal cancer: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, noviembre de 2022. http://dx.doi.org/10.37766/inplasy2022.11.0044.
Texto completo