Literatura académica sobre el tema "Lithospheric Deformation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lithospheric Deformation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Lithospheric Deformation"
Dérerová, Jana, Miroslav Bielik, Mariana Pašiaková, Igor Kohút y Petra Hlavńová. "Calculation of temperature distribution and rheological properties of the lithosphere along transect II in the Western Carpathian-Pannonian Basin region". Contributions to Geophysics and Geodesy 44, n.º 2 (1 de junio de 2014): 149–60. http://dx.doi.org/10.2478/congeo-2014-0009.
Texto completoKelly, Sean, Christopher Beaumont y Jared P. Butler. "Inherited terrane properties explain enigmatic post-collisional Himalayan-Tibetan evolution". Geology 48, n.º 1 (28 de octubre de 2019): 8–14. http://dx.doi.org/10.1130/g46701.1.
Texto completoMcNutt, Marcia. "Lithospheric stress and deformation". Reviews of Geophysics 25, n.º 6 (1987): 1245. http://dx.doi.org/10.1029/rg025i006p01245.
Texto completoLamarque, Gaelle y Jordi Julià. "Lithospheric and sublithospheric deformation under the Borborema Province of northeastern Brazil from receiver function harmonic stripping". Solid Earth 10, n.º 3 (21 de junio de 2019): 893–905. http://dx.doi.org/10.5194/se-10-893-2019.
Texto completoWilson, Terry J. "Processes of continental Lithospheric Deformation". Geochimica et Cosmochimica Acta 54, n.º 10 (octubre de 1990): 2899–900. http://dx.doi.org/10.1016/0016-7037(90)90030-o.
Texto completoDehler, S. A. y C. E. Keen. "Effects of rifting and subsidence on thermal evolution of sediments in Canada's east coast basins". Canadian Journal of Earth Sciences 30, n.º 9 (1 de septiembre de 1993): 1782–98. http://dx.doi.org/10.1139/e93-158.
Texto completoDérerová, Jana, Miroslav Bielik, Igor Kohút y Dominika Godová. "Calculation of temperature distribution and rheological properties of the lithosphere along transect IV in the Western Carpathian-Pannonian Basin region". Contributions to Geophysics and Geodesy 49, n.º 4 (1 de diciembre de 2019): 497–510. http://dx.doi.org/10.2478/congeo-2019-0026.
Texto completoSingh, Ramesh P., Q. Li y E. Nyland. "Lithospheric deformation beneath the Himalayan region". Physics of the Earth and Planetary Interiors 61, n.º 3-4 (enero de 1990): 291–96. http://dx.doi.org/10.1016/0031-9201(90)90112-b.
Texto completoWu, Fu-Yuan, Jin-Hui Yang, Yi-Gang Xu, Simon A. Wilde y Richard J. Walker. "Destruction of the North China Craton in the Mesozoic". Annual Review of Earth and Planetary Sciences 47, n.º 1 (30 de mayo de 2019): 173–95. http://dx.doi.org/10.1146/annurev-earth-053018-060342.
Texto completoDombrádi, Endre, Dimitrios Sokoutis, Gábor Bada, Sierd Cloetingh y Frank Horváth. "Modelling recent deformation of the Pannonian lithosphere: Lithospheric folding and tectonic topography". Tectonophysics 484, n.º 1-4 (marzo de 2010): 103–18. http://dx.doi.org/10.1016/j.tecto.2009.09.014.
Texto completoTesis sobre el tema "Lithospheric Deformation"
Beard, Eric P. "Modeling Lithospheric Rheology from Modern Measurements of Bonneville Shoreline Deformation". DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1362.
Texto completoAudet, Pascal. "Seismic and mechanical attributes of lithospheric deformation and subduction in western Canada". Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2435.
Texto completoSaunders, Paul Nicholas. "The lithospheric structure of western Turkey : crustal deformation in an extending region". Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336353.
Texto completoMoisio, K. (Kari). "Numerical lithospheric modelling: rheology, stress and deformation in the central Fennoscandian Shield". Doctoral thesis, University of Oulu, 2005. http://urn.fi/urn:isbn:9514279514.
Texto completoPüsök, Adina E. [Verfasser]. "Three-dimensional numerical modelling of subduction/collision and lithospheric deformation / Adina E. Püsök". Mainz : Universitätsbibliothek Mainz, 2016. http://d-nb.info/1105494594/34.
Texto completoBehn, Mark Dietrich 1974. "The evolution of lithospheric deformation and crustal structure from continental margins to oceanic spreading centers". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29061.
Texto completoIncludes bibliographical references (p. 221-243).
This thesis investigates the evolution of lithospheric deformation and crustal structure from continental margins to mid-ocean ridges. The first part (Ch. 2) examines the style of segmentation along the U.S. East Coast Margin and investigates the relationship between incipient margin structure and segmentation at the modem Mid-Atlantic Ridge. The second part (Chs. 3-5) focuses on the mechanics of faulting in extending lithosphere. In Ch. 3, I show that the incorporation of a strain-rate softening rheology in continuum models results in localized zones of high strain rate that are not imposed a priori and develop in response to the rheology and boundary conditions. I then use this approach to quantify the effects of thermal state, crustal thickness, and crustal rheology on the predicted style of extension deformation. The mechanics of fault initiation and propagation along mid-ocean ridge segments is investigated in Ch. 4. Two modes of fault development are identified: Mode C faults that initiate near the center of a segment and Mode E faults that initiate at the segment ends. Numerical results from Ch. 5 predict that over time scales longer than a typical earthquake cycle transform faults behave as zones of significant weakness.
(cont.) Furthermore, these models indicate that Mode E faults formed at the inside-corner of a ridge-transform intersection will experience preferential growth relative to faults formed at the conjugate outside-corner due to their proximity to the weak transform zone. Finally, the last part of this thesis (Ch. 6) presents a new method to quantify the relationship between the seismic velocity and composition of igneous rocks. A direct relationship is derived to relate Vp to major element composition and typical velocity-depth profiles are used to calculate compositional bounds for the lower continental, margin, and oceanic crust.
by Mark Dietrich Behn.
Ph.D.
Cohen, Shaina Marie. "An assessment of heterogeneity within the lithospheric mantle, Marie Byrd Land, West Antarctica". Thesis, Boston College, 2016. http://hdl.handle.net/2345/bc-ir:106873.
Texto completoThe West Antarctic rift system is one of the most expansive regions of extended continental crust on Earth, but relatively little is known about the structure of the mantle lithosphere in this region. This research aims to examine a suite of ultramafic mantle xenoliths from several volcanic centers located throughout Marie Byrd Land, West Antarctica. Through the use of several complementary analytical methods, the deformational and compositional heterogeneity of the lithospheric mantle in this region is characterized. The Marie Byrd Land xenoliths have equilibration temperatures between 779 and 1198°C, which is a range that corresponds to extraction depths between 39 and 72 km. These samples preserve significant mineralogical and microstructural heterogeneities that document both lateral and vertical heterogeneities within the Marie Byrd Land mantle lithosphere. The modal mineralogy of spinel peridotites varies between 40 – 99% olivine, 0 – 42% diopside, 0 – 45% enstatite and 0 – 5% chromite. Minimum olivine grain sizes range from 60 to 110 µm and maximum olivine grain sizes range from 2.5 to 10.0 mm. The geometric mean grain size of olivine in these samples ranges from 100 µm to 2 mm and has an average of 694 µm. The geometric mean grain size of diopside ranges from 90 to 865 µm and has an average of 325 µm, whereas that of enstatite ranges from 120 µm to 1.2 mm and has an average of 625 µm. Comparatively, the pyroxenites contain 0 – 29% olivine, 29 – 95% diopside, 1 – 36% enstatite and 1 – 11% chromite. Deformation mechanism maps suggest that the olivine within the MBL peridotite xenoliths primarily accommodate strain through the operation of dislocation-accommodated grain-boundary sliding at strain rates between 10-19/s and 10-11/s. This is consistent with microstructural observations of the suite made using optical microscopy (e.g., deformation bands and subgrains in olivine; aligned grain boundaries between contrasting phases). Application of the olivine grain size piezometer indicates that the suite preserves differential stresses ranging from 0.5 MPa to 50 MPa, with mean differential stresses ranging from 4 to 30 MPa. Values of mean differential stress only vary slightly throughout the field area, but generally decrease in magnitude towards the east with maximum values migrating upwards in the lithospheric mantle along this transect. The samples from some volcanic centers are highly homogenous with respect to their microstructural characteristics (e.g., Mount Avers – Bird Bluff), whereas others display heterogeneities on the sub-five-kilometer-scale (e.g., Demas Bluff). Comparatively, mineralogical heterogeneities are more consistent throughout the sample suite with variations generally being observed between the sub-five-kilometer-scale and the sub-ten-kilometer-scale. Most samples within the MBL peridotite suite display axial-[010] or A-type olivine textures. Although less dominant, axial-[100], B-type and random olivine textures are also documented within the suite. Axial-[010] textures have J-indices and M-indices ranging from 1.7 – 4.1 and 0.08 – 0.21, respectively. The average value of the J-index for axial-[010] textures is 2.9, whereas the average M-index of these samples is equal to 0.15. Overall, A-type textures tend to be stronger with J- and M-indices ranging from 1.4 – 9.0 and 0.07 – 0.37, respectively. The olivine crystallographic textures of the MBL xenolith suite are heterogeneous on scales that are smaller than the highest resolution that is attainable using contemporary geophysical methods, which implies that patterns of mantle flow and deformation are far more complex than these studies suggest
Thesis (MS) — Boston College, 2016
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Earth and Environmental Sciences
Frets, Erwin C. "Thermo-mechanical evolution of the subcontinental lithospheric mantle in extensional environment : Insights from the Beni Bousera peridotite massif (Rif belt, Morocco)". Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20090/document.
Texto completoThe mantle deformation processes that control the thinning and break-up of continentallithosphere remain poorly understood. Our knowledge is restricted to either lithospheric scalethermo-mechanical models —that use experimentally derived flow laws—, geophysicalimaging and/or rare xenoliths from active continental rifts, such as the East African Rift System.The originality of this work relies on the study of the two largest outcrops of diamond faciessubcontinental lithospheric mantle in the world: the Beni Bousera and Ronda peridotite massifsin N Morocco and S Spain, respectively. The structures and petrologic and metamorphic zoningpreserved in these massifs —implying a polybaric and polythermal evolution— provide aunique opportunity to investigate the thermo-mechanical evolution of thick subcontinentallithospheric mantle in extensional settings.In this thesis we studied the deformation mechanisms in both peridotites andpyroxenites to constrain the modes of exhumation of subcontinental lithospheric mantle fromgarnet-, to spinel-, and finally, to plagioclase lherzolite facies conditions. We combined fieldmapping of tectono-metamorphic domains and structural mapping of ductile structures,microstructural analysis, crystal preferred orientations (CPO) measurements and conventionalthermobarometric calculations and thermodynamic modeling (Perple_X) to unravel the pressureand temperature conditions of deformation. We showed that exhumation from garnet- to spinellherzolite facies conditions was accommodated by fast shearing —in thermal disequilibrium—along a lithospheric scale transtensional shear zone. In this context, the petrological zoning andthe large temperature gradient (ca. 100ºC/km) preserved in the Beni Bousera massif representthe mechanical juxtaposition of progressively deeper and hotter lithospheric levels at depths ofca. 60 km in the latest Oligocene (ca. 25 Ma). Final exhumation from spinel- to plagioclasefacies lherzolite and emplacement into the crust is best recorded in the Ronda massif where itoccurred by inversion and lithospheric scale folding of the highly attenuated continentallithosphere in a back-arc region, probably in relation with southward slab rollback andsubsequent collision with the palaeo-Maghrebien passive margin in the early Miocene (21-23Ma)
Popov, Anton. "Three-dimensional thermo-mechanical modeling of deformation at plate boundaries : case study San Andreas Fault System". Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2009/3187/.
Texto completoSeit jeher rätselhaft sind die Prozesse, die die Akkretion der Nordamerikanischen Terranen in Richtung der Pazifischen Platte sowie die Wanderung der Plattengrenze der San-Andreas-Verwerfung in Richtung Festland bestimmen. Eine Theorie besagt, dass sich die Pazifische Platte erst abkühlt und den aufsteigenden Mantel im „Slab Window“ fängt und somit die Akkretion der kontinentalen Krustenblöcke bewirkt. Die andere Theorie geht von einer Akkretion durch das Fangen von Teilen der Farallon-Platte (Mikroplatten) aus, die in der inaktiven nordamerikanischen Farallon-Subduktionszone fest stecken. Die quantitative Beurteilung dieser beiden gegensätzlichen Konzepte erfordert eine thermomechanische numerische 3-D-Modellierung. Das dafür benötigte Software Tool steht jedoch der geodynamischen Modellierung derzeit noch nicht zur Verfügung. Das Hauptziel der vorliegenden Arbeit umfasst im Wesentlichen zwei miteinander verbundene Aufgaben. Die erste besteht in der Entwicklung und Erprobung des Finite-Element-Codes, dessen Eigenschaften den hohen Anforderungen an die Ausführung der dreidimensionalen Simulationen lithosphärischer Deformation auf geologischer Zeitskala gerecht werden müssen. Die zweite Aufgabe ist die Anwendung des entwickelten Tools auf die neogenen Deformationen der Kruste und des Mantels entlang der San-Andreas-Verwerfung in Zentral- und Nordkalifornien. Die Modellierung auf geologischer Zeitskala lithosphärischer Deformation bringt für die Software Tools in Bezug auf Konzept und Durchführung zahlreiche Herausforderungen mit sich. Unter anderem gilt es, den Brittle-Ductile-Übergang in einem einzigen Modell sowie die Gesteinsrheologie in einer breiten Spanne unterschiedlicher Temperaturen und Spannungen adäquat darzustellen und die extremen Deformationen der freien Oberfläche und internen Grenzen aufzulösen. Im Rahmen der vorliegenden Arbeit erfolgte die erfolgreiche Entwicklung und Erprobung des neuen Finite-Element-Codes (SLIM3D). Dieser Code beinhaltet eine gekoppelte thermomechanische Behandlung von Deformationsprozessen und ermöglicht eine elasto-visko-plastische Rheologie mit Diffusion, Dislokation, Peierls Kriechmechanismen und Mohr-Coulomb-Plastizität. Der Code verbindet eine Arbitrary Lagrangian-Eulerian kinematische Formulierung mit freien Oberflächen- und Winkler-Randbedingungen. Das entwickelte Modellierungsverfahren wird für die Untersuchung der Aspekte verwendet, die die neogene lithosphärische Deformation in Zentral- und Nordkalifornien beeinflussen. Die Modellanordnung konzentriert sich auf die Interaktion zwischen drei großen tektonischen Elementen in dieser Region: die Nordamerikanische Platte, die Pazifische Platte sowie die Gorda-Platte, die sich in der Mendocino-Triple-Junction treffen. Unter anderem verdeutlicht die Modellierung den Einfluss des Aufsteigens der Asthenosphäre in das sich öffnende „slab window“ der übergelagerten Nordamerikanischen Platte. Die Modelle beziehen auch die angelagerten Überreste der Mikroplatten in der fossilen Farallon-Subduktionszone, die vereinfachte subduzierende Gorda-Platte sowie markante Heterogenitäten der Kruste, wie beispielsweise den „Salinian Block“, mit ein. Die Ergebnisse zeigen, dass die Erwärmung der Mantellithosphäre unter den älteren Störungszonen sowie die Transpression eine Abkühlung im „Slab Window“ als alleinige Begründung für die Ostwärtsbewegung der Plattengrenze nicht zulassen. Aus Sicht der thermomechanischen Modellierung bestätigen die Ergebnisse das geologische Konzept, welches durch das mehrmalige Fangen von Mikroplatten den Hauptgrund für die Wanderung der Plattengrenze der San-Andreas-Verwerfung in Richtung Festland über die letzten 20 Millionen Jahre sieht. Die Überreste der Farallon-Platte, die in der fossilen Subduktionszone gefangen sind, verursachen im Mantel eine wesentlich stärkere Heterogenität als die Abkühlung der Asthenosphäre und stellen somit den effizienteren und direkteren Weg für die Anlagerung der nordamerikanischen Gebiete an die Pazifische Platte dar. Die Modelle demonstrieren, dass ein hoher effektiver Reibungskoeffizient an großen Störungen nicht in der Lage ist, die eindeutigen Zonen der Dehnungslokalisierung in der spröden Kruste vorherzusagen. Die Größe des Reibungskoeffizienten, die sich aus der Modellierung ableitet, beträgt etwa 0,075 und ist damit wesentlich kleiner als die durch unterschiedliche Bohrlochmessungen und Labordaten ermittelten Spannungswerte zwischen 0,6 und 0,8. Daher liefern die in dieser Arbeit präsentierten Ergebnisse der Modelle in der seit langem geführten Debatte über die Stärke von großen Störungen in der San-Andreas-Verwerfung eine zusätzliche unabhängige Begründung der „Weak-Fault“-Hypothese.
Kourim, Fatna. "Architecture lithosphérique et dynamique du manteau sous le Hoggar : le message des xénolites". Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20040.
Texto completoThis study aims to characterize the lithospheric mantle of the Hoggar swell (Algeria) and its evolution through time via a multidisciplinary (petrological, geochemical and petrophysical) study of mantle xenoliths sampled by Cenozoic volcanism. The samples were collected in two volcanic districts (Tahalagha and Manzaz) located in the periphery and in the central part of the Hoggar massif, respectively. The Tahalgha sampling also straddles a mega pan-African shear zone (the 4°35 fault) between two major structural domains of the Tuareg Shield basement: the Central Polycyclic Hoggar to the East (LATEA terranes) and the Western Hoggar domain to the West (Iskel block). The studied xenoliths provide information on the evolution of the lithospheric mantle from the Pan-African orogeny – i.e. the period when the Tuareg Shield was structured – to the Cenozoic events responsible for topographic upwelling and volcanism in the Hoggar swell.The Pan-African heritage is found in xenoliths from the peripheral Tahalgha district. These samples are distinguished by low equilibrium temperatures (750-900°C) and LREE-depleted clinopyroxene compositions. They are considered to represent the sub-continental lithosphere after the rejuvenation process that marked the later stages of the Pan-African orogeny. They show well preserved deformation textures (porphyroclastic to equigranular) assigned to these events and characterized by preferential crystallographic orientations (CPOs) of olivine (axial-[010]) consistent with a transpressional regime. The Cenozoic events are marked by partial annealing of these textures, particularly pronounced in the Manzaz samples, as well as in the Tahalgha xenoliths equilibrated at medium to high temperatures (900-1150°C). These samples were affected by different degrees of metasomatism. The Tahalgha xenoliths represent a rather unique case study of mantle metasomatism, where coupled textural, mineralogical and chemical variations occur along local temperature gradients. The Cenozoic events were also responsible for a change in olivine CPOs, resulting from both infiltration of metasomatic fluids and reactivation of Pan-African accidents in a pure-shear regime.Important implications of this study lie in the scale at which the first-order lithosphere modifications ascribed to the Cenozoic event are observed, i.e. either at the scale of the whole Hoggar swell, as shown by the increasing degree of textural annealing and metasomatism from Tahalgha to Manzaz (i.e. from outer to central Hoggar), or at the small scale of magma conduits and their wall rocks, as shown by the local variability registered by the Tahalgha xenoliths. Conversely, our data show little changes at intermediate scales, as might be expected, for instance, among the Tahalgha localities situated on either sides - or at different distances - from the 4°35. As regards the origin of the Hoggar volcanic swell, this result favours the models involving relatively large-scale structures such as a mantle plume or "Edge Driven Convection", rather than a process involving merely the reactivation of pan-African lithospheric faults
Libros sobre el tema "Lithospheric Deformation"
Behn, Mark Dietrich. The evolution of lithospheric deformation and crustal structure from continental margins to oceanic spreading centers. Cambridge, Mass: Massachusetts Institute of Technology, 2002.
Buscar texto completoKeken, Peter Edwin van. Numerical modelling of thermochemically driven fluid flow with non-Newtonian rheology: Applied to the earth's lithosphere and mantle. [Utrecht: Faculteit Aardwetenschappen der Rijksuniversiteit te Utrecht, 1993.
Buscar texto completoGrowth and collapse of the Tibetan Plateau. London: Geological Society, 2011.
Buscar texto completoSengör, A. M. Celâl. The large wavelength deformations of the lithosphere: Materials for a history of the evolution of thought from the earliest times to plate tectonics. Boulder, Colo: Geological Society of America, 2003.
Buscar texto completoŞengör, A. M. Celâl. The large-wavelength deformations of the lithosphere: Materials for a history of the evolution of thought from the earliest times to plate tectonics. Boulder, CO: Geological Society of America, 2003.
Buscar texto completoŞengör, A. M. Celâl. The large wavelength deformations of the lithosphere: Materials for a history of the evolution of thought from the earliest times to plate tectonics. Boulder, CO: Geological Society of America, 2004.
Buscar texto completo1929-, Clark Sydney P., Burchfiel B. C. 1934-, Suppe John y Rodgers John 1914-, eds. Processes in continental lithospheric deformation. Boulder, Colo: Geological Society of America, 1988.
Buscar texto completoProcesses in Continental Lithospheric Deformation. Geological Society of America, 1988. http://dx.doi.org/10.1130/spe218.
Texto completoUnited States. National Aeronautics and Space Administration, ed. Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera. [Washington, DC: National Aeronautics and Space Administration, 1985.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera. [Washington, DC: National Aeronautics and Space Administration, 1985.
Buscar texto completoCapítulos de libros sobre el tema "Lithospheric Deformation"
Amalvict, Martine y Hilaire Legros. "Lithospheric Deformation and Asthenospheric Pressure". En International Association of Geodesy Symposia, 140–48. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4615-7109-4_17.
Texto completoPirazzoli, P. A. y D. R. Grant. "Lithospheric Deformation Deduced from Ancient Shorelines". En Recent Plate Movements and Deformation, 67–72. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gd020p0067.
Texto completoAardoom, L. "Current Activities in the Measurement of Lithospheric Plate Motion and Deformation". En Recent Plate Movements and Deformation, 1–3. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gd020p0001.
Texto completoSrijayanthi, G. y M. Ravi Kumar. "Seismicity, Lithospheric Structure and Mantle Deformation in the Andaman Nicobar Subduction Zone". En Society of Earth Scientists Series, 107–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39843-9_6.
Texto completoYang, Youqing y Mian Liu. "Algorithms for Optimizing Rheology and Loading Forces in Finite Element Models of Lithospheric Deformation". En Advances in Geocomputing, 119–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85879-9_4.
Texto completoZoback, M. D. "The Role of Continental Scientific Drilling in Studies of Earthquakes, Crustal Deformation, and Lithospheric Dynamics". En Super-Deep Continental Drilling and Deep Geophysical Sounding, 70–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-50143-2_7.
Texto completoHirth, Greg, Javier EscartíN y Jian Lin. "The Rheology of the Lower Oceanic Crust: Implications for Lithospheric Deformation at Mid-Ocean Ridges". En Faulting and Magmatism at Mid-Ocean Ridges, 291–303. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm106p0291.
Texto completoBraun, Jean y Russell Shaw. "Contrasting styles of lithospheric deformation along the northern margin of the Amadeus Basin, central Australia". En Structure and Evolution of the Australian Continent, 139–56. Washington, D. C.: American Geophysical Union, 1998. http://dx.doi.org/10.1029/gd026p0139.
Texto completoSchettino, Antonio. "Seismic Deformation of the Lithosphere". En Quantitative Plate Tectonics, 301–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09135-8_11.
Texto completoEngland, P. "Large Rates of Rotation in Continental Lithosphere. Undergoing Distributed Deformation". En Paleomagnetic Rotations and Continental Deformation, 157–64. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0869-7_11.
Texto completoActas de conferencias sobre el tema "Lithospheric Deformation"
Demouchy, Sylvie y Patrick Cordier. "Mechanisms of Ductile Deformation in the Lithospheric Mantle (Keynote 3f)". En Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.547.
Texto completoDygert, Nicholas J., Rachel E. Bernard y Whitney M. Behr. "MANTLE XENOLITHS RECORD DEFORMATION ASSOCIATED WITH ACTIVE LITHOSPHERIC DOWNWELLING BENEATH CENTRAL NEVADA". En 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-312076.
Texto completoSparks, C. Renee y Issac J. Jacques. "GEOLOGIC MAPPING AND LITHOSPHERIC DEFORMATION IN THE STRUCTURALLY COMPLEX REGION OF CENTRAL-WESTERN HONDURAS". En Joint 53rd Annual South-Central/53rd North-Central/71st Rocky Mtn GSA Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019sc-326621.
Texto completoFoster, Anna, Fiona Darbyshire y Andrew J. Schaeffer. "THE PHASE-VELOCITY SIGNATURE OF LITHOSPHERIC DEFORMATION IN CENTRAL CANADA AND THE NORTH-CENTRAL UNITED STATES". En 53rd Annual GSA Northeastern Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018ne-311081.
Texto completoKourim, Fatma, Kuo-Lung Wang, Katsuyoshi Michibayanchi y Suzanne Yvette O'Reilly. "Deformation, Metasomatism and Seismic Anisotropy in the Lithospheric Mantle beneath Taiwan Straits, Southeast Asian Margin: Constraints from Mantle Xenoliths". En Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1364.
Texto completoDilek, Yildirim y Safak Altunkaynak. "CENOZOIC MAGMATISM AND EXTENSIONAL DEFORMATION IN WESTERN ANATOLIA AS A RESULT OF MANTLE RESPONSE TO COLLISION, SLAB BREAK-OFF, AND LITHOSPHERIC TEARING". En GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-341039.
Texto completoWeil, Arlo Brandon y Adolph Yonkee. "DEFORMATION PATTERNS ACROSS THE LARAMIDE AND SIERRA PAMPEANAS THICK-SKINNED FORELAND SYSTEMS; RELATIONS TO PLATE DYNAMICS, LITHOSPHERIC STRESS TRANSMISSION, AND CRUSTAL ARCHITECTURE". En GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-316407.
Texto completoLima, Cláudio, Claudio Amaral, Anderson Moraes y Alvaro Maia. "Are The Large Wave-Lenght South American Intraplate Deformation And The Incipient Inversion Of Brazilian Continental Basins Manifestations Of Ongoing Lithospheric/ Crustal Folding?" En 6th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 1999. http://dx.doi.org/10.3997/2214-4609-pdb.215.sbgf305.
Texto completoShylo, O. M., Ye O. Shylo, A. L. Tserklevych y I. M. Bubniak. "Geometric deformation of the Earth's lithosphere figure and its dynamic interpretation". En 18th International Conference on Geoinformatics - Theoretical and Applied Aspects. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902059.
Texto completoHinz, K., M. Block, D. Franke, S. Neben, C. Reichert y H. Roeser. "Deformation of Continental Lithosphere on the Laptev Sea Shelf, Russian Arctic". En 60th EAGE Conference and Exhibition. European Association of Geoscientists & Engineers, 1998. http://dx.doi.org/10.3997/2214-4609.201408467.
Texto completo