Literatura académica sobre el tema "Matrix regression"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Matrix regression".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Matrix regression"
Zhou, Hua y Lexin Li. "Regularized matrix regression". Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76, n.º 2 (12 de agosto de 2013): 463–83. http://dx.doi.org/10.1111/rssb.12031.
Texto completoViroli, Cinzia. "On matrix-variate regression analysis". Journal of Multivariate Analysis 111 (octubre de 2012): 296–309. http://dx.doi.org/10.1016/j.jmva.2012.04.005.
Texto completoLuo, Changtong y Shao-Liang Zhang. "Parse-matrix evolution for symbolic regression". Engineering Applications of Artificial Intelligence 25, n.º 6 (septiembre de 2012): 1182–93. http://dx.doi.org/10.1016/j.engappai.2012.05.015.
Texto completoKoláček, Jan y Ivana Horová. "Bandwidth matrix selectors for kernel regression". Computational Statistics 32, n.º 3 (16 de enero de 2017): 1027–46. http://dx.doi.org/10.1007/s00180-017-0709-3.
Texto completoMukha, V. S. "The best polynomial multidimensional-matrix regression". Cybernetics and Systems Analysis 43, n.º 3 (mayo de 2007): 427–32. http://dx.doi.org/10.1007/s10559-007-0065-3.
Texto completoZhang, Jianguang y Jianmin Jiang. "Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification". Neural Computation 30, n.º 2 (febrero de 2018): 505–25. http://dx.doi.org/10.1162/neco_a_01038.
Texto completoZeebari, Zangin, B. M. Golam Kibria y Ghazi Shukur. "Seemingly unrelated regressions with covariance matrix of cross-equation ridge regression residuals". Communications in Statistics - Theory and Methods 47, n.º 20 (13 de noviembre de 2017): 5029–53. http://dx.doi.org/10.1080/03610926.2017.1383431.
Texto completoChitsaz, Shabnam y S. Ejaz Ahmed. "Shrinkage estimation for the regression parameter matrix in multivariate regression model". Journal of Statistical Computation and Simulation 82, n.º 2 (febrero de 2012): 309–23. http://dx.doi.org/10.1080/00949655.2011.648938.
Texto completoChitsaz, S. y S. Ejaz Ahmed. "An Improved Estimation in Regression Parameter Matrix in Multivariate Regression Model". Communications in Statistics - Theory and Methods 41, n.º 13-14 (julio de 2012): 2305–20. http://dx.doi.org/10.1080/03610926.2012.664672.
Texto completoTurner, David L. "Matrix Calculator and Stepwise Interactive Regression Programs". American Statistician 41, n.º 4 (noviembre de 1987): 329. http://dx.doi.org/10.2307/2684760.
Texto completoTesis sobre el tema "Matrix regression"
Fischer, Manfred M. y Philipp Piribauer. "Model uncertainty in matrix exponential spatial growth regression models". WU Vienna University of Economics and Business, 2013. http://epub.wu.ac.at/4013/1/wp158.pdf.
Texto completoSeries: Department of Economics Working Paper Series
Piribauer, Philipp y Manfred M. Fischer. "Model uncertainty in matrix exponential spatial growth regression models". Wiley-Blackwell, 2015. http://dx.doi.org/10.1111/gean.12057.
Texto completoLi, Yihua M. Eng Massachusetts Institute of Technology. "Blind regression : understanding collaborative filtering from matrix completion to tensor completion". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105983.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 37-39).
Neighborhood-based Collaborative filtering (CF) methods have proven to be successful in practice and are widely applied in commercial recommendation systems. Yet theoretical understanding of their performance is lacking. In this work, we introduce a new framework of Blind Regression which assumes that there are latent features associated with input variables, and we observe outputs of some Lipschitz continuous function over those unobserved features. We apply our framework to the problem of matrix completion and give a nonparametric method which, similar to CF, combines the local estimates according to the distance between the neighbors. We use the sample variance of the difference in ratings between neighbors as the proximity of the distance. Through error analysis, we show that the minimum sample variance is a good proxy of the prediction error in the estimates. Experiments on real-world datasets suggests that our matrix completion algorithm outperforms classic user-user and item-item CF approaches. Finally, our framework easily extends to the setting of higher-order tensors and we present our algorithm for tensor completion. The result from real-world application of image inpainting demonstrates that our method is competitive with the state-of-the-art tensor factorization approaches in terms of predictive performance.
by Yihua Li.
M. Eng.
Fallowfield, Jonathan Andrew. "The role of matrix metalloproteinase-13 in the regression of liver fibrosis". Thesis, University of Southampton, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443059.
Texto completoAlbertson, K. V. "Pre-test estimation in a regression model with a mis-specified error covariance matrix". Thesis, University of Canterbury. Economics, 1993. http://hdl.handle.net/10092/4315.
Texto completoMei, Jiali. "Time series recovery and prediction with regression-enhanced nonnegative matrix factorization applied to electricity consumption". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS578/document.
Texto completoWe are interested in the recovery and prediction of multiple time series from partially observed and/or aggregate data.Motivated by applications in electricity network management, we investigate tools from multiple fields that are able to deal with such data issues.After examining kriging from spatio-temporal statistics and a hybrid method based on the clustering of individuals, we propose a general framework based on nonnegative matrix factorization.This frameworks takes advantage of the intrisic correlation between the multivariate time series to greatly reduce the dimension of the parameter space.Once the estimation problem is formalized in the nonnegative matrix factorization framework, two extensions are proposed to improve the standard approach.The first extension takes into account the individual temporal autocorrelation of each of the time series.This increases the precision of the time series recovery.The second extension adds a regression layer into nonnegative matrix factorization.This allows exogenous variables that are known to be linked with electricity consumption to be used in estimation, hence makes the factors obtained by the method to be more interpretable, and also increases the recovery precision.Moreover, this method makes the method applicable to prediction.We produce a theoretical analysis on the framework which concerns the identifiability of the model and the convergence of the algorithms that are proposed.The performance of proposed methods to recover and forecast time series is tested on several multivariate electricity consumption datasets at different aggregation level
Bownds, Christopher D. "Updating the Navy's recruit quality matrix : an analysis of educational credentials and the success of first-term sailors /". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Mar%5FBownds.pdf.
Texto completoBogren, Patrik y Isak Kristola. "Exploring the use of call stack depth limits to reduce regression testing costs". Thesis, Mittuniversitetet, Institutionen för data- och systemvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-43166.
Texto completoKuljus, Kristi. "Rank Estimation in Elliptical Models : Estimation of Structured Rank Covariance Matrices and Asymptotics for Heteroscedastic Linear Regression". Doctoral thesis, Uppsala universitet, Matematisk statistik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9305.
Texto completoWang, Shuo. "An Improved Meta-analysis for Analyzing Cylindrical-type Time Series Data with Applications to Forecasting Problem in Environmental Study". Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-theses/386.
Texto completoLibros sobre el tema "Matrix regression"
Puntanen, Simo, George P. H. Styan y Jarkko Isotalo. Formulas Useful for Linear Regression Analysis and Related Matrix Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32931-9.
Texto completoNi un paso atrás: La prohibición de regresividad en materia de derechos sociales. Ciudad Autónoma de Buenos Aires: Del Puerto, 2006.
Buscar texto completoFormulas Useful For Linear Regression Analysis And Related Matrix Theory Its Only Formulas But We Like Them. Springer, 2012.
Buscar texto completoFranzese, Robert J. y Jude C. Hays. Empirical Models of Spatial Inter‐Dependence. Editado por Janet M. Box-Steffensmeier, Henry E. Brady y David Collier. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199286546.003.0025.
Texto completoCheng, Russell. The Skew Normal Distribution. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0012.
Texto completo1967-, Vizzardelli Silvia, ed. La regressione dell'ascolto: Forma e materia sonora nell'estetica musicale contemporanea. Macerata: Quodlibet, 2002.
Buscar texto completoCapítulos de libros sobre el tema "Matrix regression"
Groß, Jürgen. "Matrix Algebra". En Linear Regression, 331–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55864-1_7.
Texto completoSchmidt, Karsten y Götz Trenkler. "Lineare Regression". En Moderne Matrix-Algebra, 181–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-08806-7_12.
Texto completovon Frese, Ralph R. B. "Matrix Linear Regression". En Basic Environmental Data Analysis for Scientists and Engineers, 127–40. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429291210-7.
Texto completoBrown, Jonathon D. "Polynomial Regression". En Linear Models in Matrix Form, 341–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11734-8_10.
Texto completoBrown, Jonathon D. "Multiple Regression". En Linear Models in Matrix Form, 105–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11734-8_4.
Texto completoGroß, Jürgen. "The Covariance Matrix of the Error Vector". En Linear Regression, 259–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55864-1_5.
Texto completoSchmidt, Karsten y Götz Trenkler. "LINEARE REGRESSION". En Einführung in die Moderne Matrix-Algebra, 181–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46773-2_10.
Texto completoBrown, Jonathon D. "Simple Linear Regression". En Linear Models in Matrix Form, 39–67. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11734-8_2.
Texto completoAdachi, Kohei. "Regression Analysis". En Matrix-Based Introduction to Multivariate Data Analysis, 47–62. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2341-5_4.
Texto completoAdachi, Kohei. "Regression Analysis". En Matrix-Based Introduction to Multivariate Data Analysis, 49–64. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4103-2_4.
Texto completoActas de conferencias sobre el tema "Matrix regression"
Papalexakis, Evangelos E., Nicholas D. Sidiropoulos y Minos N. Garofalakis. "Reviewer Profiling Using Sparse Matrix Regression". En 2010 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2010. http://dx.doi.org/10.1109/icdmw.2010.87.
Texto completoZhang, Liang, Deepak Agarwal y Bee-Chung Chen. "Generalizing matrix factorization through flexible regression priors". En the fifth ACM conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2043932.2043940.
Texto completoYi Tang y Hong Chen. "Matrix-value regression for single-image super-resolution". En 2013 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE, 2013. http://dx.doi.org/10.1109/icwapr.2013.6599319.
Texto completoHoneine, Paul, Cedric Richard, Mehdi Essoloh y Hichem Snoussi. "Localization in sensor networks - A matrix regression approach". En 2008 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2008. http://dx.doi.org/10.1109/sam.2008.4606873.
Texto completoLi, Junyu, Haoliang Yuan, Loi Lei Lai, Houqing Zheng, Wenzhong Qian y Xiaoming Zhou. "Graph-Based Sparse Matrix Regression for 2D Feature Selection". En 2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE, 2018. http://dx.doi.org/10.1109/icwapr.2018.8521279.
Texto completoCao, Guangzhi, Yandong Guo y Charles A. Bouman. "High dimensional regression using the sparse matrix transform (SMT)". En 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5495359.
Texto completoJoshi, Swapna, S. Karthikeyan, B. S. Manjunath, Scott Grafton y Kent A. Kiehl. "Anatomical parts-based regression using non-negative matrix factorization". En 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010. http://dx.doi.org/10.1109/cvpr.2010.5540022.
Texto completoMiao, Xiaoyu, Aimin Jiang y Ning Xu. "Gaussian Processes Regression with Joint Learning of Precision Matrix". En 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco47968.2020.9287742.
Texto completoXie, Jianchun, Jian Yang, Jianjun Qian y Ying Tai. "Robust Matrix Regression for Illumination and Occlusion Tolerant Face Recognition". En 2015 IEEE International Conference on Computer Vision Workshop (ICCVW). IEEE, 2015. http://dx.doi.org/10.1109/iccvw.2015.118.
Texto completoSong, Yiliao, Guangquan Zhang, Haiyan Lu y Jie Lu. "A Fuzzy Drift Correlation Matrix for Multiple Data Stream Regression". En 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020. http://dx.doi.org/10.1109/fuzz48607.2020.9177566.
Texto completo