Literatura académica sobre el tema "Mean Value Theorem"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Mean Value Theorem".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Mean Value Theorem"
Matkowski, Janusz. "Mean-value theorem for vector-valued functions". Mathematica Bohemica 137, n.º 4 (2012): 415–23. http://dx.doi.org/10.21136/mb.2012.142997.
Texto completoTrokhimchuk, Yu Yu. "Mean-Value Theorem". Ukrainian Mathematical Journal 65, n.º 9 (febrero de 2014): 1418–25. http://dx.doi.org/10.1007/s11253-014-0869-z.
Texto completoMerikoski, Jorma K., Markku Halmetoja y Timo Tossavainen. "Means and the mean value theorem". International Journal of Mathematical Education in Science and Technology 40, n.º 6 (15 de septiembre de 2009): 729–40. http://dx.doi.org/10.1080/00207390902825328.
Texto completoTokieda, Tadashi F. "A Mean Value Theorem". American Mathematical Monthly 106, n.º 7 (agosto de 1999): 673. http://dx.doi.org/10.2307/2589498.
Texto completoTokieda, Tadashi F. "A Mean Value Theorem". American Mathematical Monthly 106, n.º 7 (agosto de 1999): 673–74. http://dx.doi.org/10.1080/00029890.1999.12005102.
Texto completoPALES, ZSOLT. "A general mean value theorem". Publicationes Mathematicae Debrecen 89, n.º 1-2 (1 de julio de 2016): 161–72. http://dx.doi.org/10.5486/pmd.2016.7443.
Texto completode Camargo, André Pierro. "The geometric Mean Value Theorem". International Journal of Mathematical Education in Science and Technology 49, n.º 4 (8 de noviembre de 2017): 613–15. http://dx.doi.org/10.1080/0020739x.2017.1394503.
Texto completoTrokhimchuk, Yurii Yu. "To the mean-value theorem". Journal of Mathematical Sciences 188, n.º 2 (15 de diciembre de 2012): 128–45. http://dx.doi.org/10.1007/s10958-012-1112-9.
Texto completoPenot, J. P. "On the mean value theorem". Optimization 19, n.º 2 (enero de 1988): 147–56. http://dx.doi.org/10.1080/02331938808843330.
Texto completoMercer, Peter R. "On A Mean Value Theorem". College Mathematics Journal 33, n.º 1 (enero de 2002): 46. http://dx.doi.org/10.2307/1558980.
Texto completoTesis sobre el tema "Mean Value Theorem"
Bel, Haj Frej Ghazi. "Estimation et commande décentralisée pour les systèmes de grandes dimensions : application aux réseaux électriques". Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0139/document.
Texto completoThis thesis focuses on the decentralized estimation and control for large scale systems. The objective is to develop software sensors that can produce a reliable estimate of the variables necessary for the interconnected nonlinear systems stability analysis. A decomposition of a such large system into a set of n interconnected subsystems is paramount for model simplification. Then, taking into account the nature of the subsystem as well as the interconnected functions, observer-based decentralized control laws have been synthesized. Each control law is associated with a subsystem which allows it to be locally stable, thus the stability of the overall system is ensured. The existence of an observer and a controller gain matrix stabilizing the system depends on the feasibility of an LMI optimization problem. The LMI formulation, based on Lyapunov approach, is elaborated by applying the DMVT technique on the nonlinear interconnection function, assumed to be bounded and uncertain. Thus, non-restrictive synthesis conditions are obtained. Observer-based decentralized control schemes have been proposed for nonlinear interconnected systems in the continuous and discrete time. Robust Hinfini decentralized controllers are provided for interconnected nonlinear systems in the presence of perturbations and parametric uncertainties. Effectiveness of the proposed schemes are verified through simulation results on a power systems with interconnected machines
Kong, Kar-lun y 江嘉倫. "Some mean value theorems for certain error terms in analytic number theory". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206432.
Texto completoMATSUMOTO, KOHJI. "LIFTINGS AND MEAN VALUE THEOREMS FOR AUTOMORPHIC L-FUNCTIONS". Cambridge University Press, 2005. http://hdl.handle.net/2237/10258.
Texto completoLau, Yuk-kam y 劉旭金. "Some results on the mean square formula for the riemann zeta-function". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31211586.
Texto completoLee, Kai-yuen y 李啟源. "On the mean square formula for the Riemann zeta-function on the critical line". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44674405.
Texto completoTran, Vanthu Thy. "Newton's method as a mean value method". Akron, OH : University of Akron, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1176739678.
Texto completo"May, 2007." Title from electronic thesis title page (viewed 4/28/2009) Advisor, Ali Hajjafar; Faculty readers, Linda Marie Saliga, Lala Krishna; Department Chair, Joseph W. Wilder; Dean of the College, Ronald F. Levant; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Parker, M. J. "Mean values and distance functions in potential theory". Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382068.
Texto completoLau, Yuk-kam. "Some results on the mean square formula for the riemann zeta-function /". [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13762394.
Texto completoArroyo, García Ángel René. "Nonlinear mean value properties related to the p-Laplacian". Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405316.
Texto completo林啓任 y Kai-yam Lam. "Some results on the mean values of certain error terms in analytic number theory". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31214241.
Texto completoLibros sobre el tema "Mean Value Theorem"
Ramachandra, K. Lectures on the mean-value and omega-theorems for the Riemann zeta-function. Berlin: Springer-Verlag, 1995.
Buscar texto completoSabelʹfelʹd, K. K. Spherical means for PDEs. Utrecht, Netherlands: VSP, 1997.
Buscar texto completoJürgen, Spilker, ed. Arithmetical functions: An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties. Cambridge: Cambridge University Press, 1994.
Buscar texto completoSchwarz, Wolfgang. Arithmetical functions: An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties. Cambridge: Cambridge University Press, 1994.
Buscar texto completoPolishchuk, Efim Mikhaĭlovich. Continual means and boundary value problems in function spaces. Basel: Birkhäuser Verlag, 1988.
Buscar texto completoPolishchuk, Efim Mikhaĭlovich. Continual means and boundary value problems in function spaces. Berlin: Akademie-Verlag, 1988.
Buscar texto completoKant, Immanuel. Sette scritti politici liberi. Editado por Maria Chiara Pievatolo. Florence: Firenze University Press, 2011. http://dx.doi.org/10.36253/978-88-6655-000-6.
Texto completoBishop, Tom, Gina Bloom y Erika T. Lin, eds. Games and Theatre in Shakespeare's England. NL Amsterdam: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463723251.
Texto completo1966-, Pérez Joaquín y Galvez José A. 1972-, eds. Geometric analysis: Partial differential equations and surfaces : UIMP-RSME Santaló Summer School geometric analysis, June 28-July 2, 2010, University of Granada, Granada, Spain. Providence, R.I: American Mathematical Society, 2012.
Buscar texto completoCapítulos de libros sobre el tema "Mean Value Theorem"
Ben-Israel, Adi y Robert Gilbert. "Mean value theorem". En Computer-Supported Calculus, 224–78. Vienna: Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6146-3_7.
Texto completoSmoryński, Craig. "The Mean Value Theorem". En MVT: A Most Valuable Theorem, 151–444. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52956-1_3.
Texto completoLang, Serge. "The Mean Value Theorem". En Undergraduate Texts in Mathematics, 159–80. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4419-8532-3_5.
Texto completoMercer, Peter R. "The Mean Value Theorem". En More Calculus of a Single Variable, 97–117. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1926-0_5.
Texto completoLang, Serge. "The Mean Value Theorem". En Undergraduate Texts in Mathematics, 79–93. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0077-9_5.
Texto completoObata, Nobuaki. "The Levy Laplacian and mean value theorem". En Lecture Notes in Mathematics, 242–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0087857.
Texto completoHui-Ru, Chen y Shang Chan-Juan. "Generalizations of the Second Mean Value Theorem for Integrals". En Lecture Notes in Electrical Engineering, 657–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21697-8_83.
Texto completoDi Crescenzo, Antonio, Barbara Martinucci y Julio Mulero. "Applications of the Quantile-Based Probabilistic Mean Value Theorem to Distorted Distributions". En Computer Aided Systems Theory – EUROCAST 2017, 80–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74727-9_10.
Texto completoIndlekofer, Karl-Heinz y Nikolai M. Timofeev. "A Mean-Value Theorem for Multiplicative Functions on the Set of Shifted Primes". En Analytic and Elementary Number Theory, 153–65. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-4507-8_9.
Texto completoKosheleva, Olga y Karen Villaverde. "Uncertainty-Related Example Explaining Why Calculus Is Useful: Example of the Mean Value Theorem". En How Interval and Fuzzy Techniques Can Improve Teaching, 33–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55993-2_5.
Texto completoActas de conferencias sobre el tema "Mean Value Theorem"
Huang, Yong. "Research on Extensions and Applications of Integral Mean Value Theorem". En 2017 4th International Conference on Machinery, Materials and Computer (MACMC 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/macmc-17.2018.2.
Texto completoZhang, Qingling y Huazhou Hou. "Impulse analysis for nonlinear singular system via Differential Mean Value Theorem". En 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016. http://dx.doi.org/10.1109/ccdc.2016.7531145.
Texto completoMa, Wenting. "Study of Higher Order Differential Mean Value Theorem for Multivariate Function". En 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icmmct-17.2017.281.
Texto completoPei, Hongmei, Xuanhai Li y Jielin Shang. "Two Methods of Proving the Improved Mean Value Theorem of Integral". En International Conference on Education, Management, Computer and Society. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/emcs-16.2016.132.
Texto completoIchalal, Dalil, Benoit Marx, Said Mammar, Didier Maquin y Jose Ragot. "Observer for Lipschitz nonlinear systems: Mean Value Theorem and sector nonlinearity transformation". En 2012 IEEE International Symposium on Intelligent Control (ISIC). IEEE, 2012. http://dx.doi.org/10.1109/isic.2012.6398269.
Texto completoMessaoud, Ramzi Ben. "Nonlinear Unknown Input Observer Using Mean Value Theorem and Simulated Annealing Algorithm". En 2019 International Conference on Advanced Systems and Emergent Technologies (IC_ASET). IEEE, 2019. http://dx.doi.org/10.1109/aset.2019.8871002.
Texto completoDonghui Li. "On asymptotic properties for the median point of Cauchy Mean-value Theorem". En 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002502.
Texto completoZhang, C., Q. Lv y J. Yan. "Numerical Solution of Mean-Value Theorem for Downward Continuation of Potential Fields". En 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801462.
Texto completoOu, Yangjing, Chenghua Wang y Feng Hong. "A Variable Step Maximum Power Point Tracking Method Using Taylor Mean Value Theorem". En 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5449521.
Texto completoRehman, O. U., I. R. Petersen y B. Fidan. "A mean value theorem approach to robust control design for uncertain nonlinear systems". En 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6314677.
Texto completoInformes sobre el tema "Mean Value Theorem"
Zilberman, Mark. Methods to Test the “Dimming Effect” Produced by a Decrease in the Number of Photons Received from Receding Light Sources. Intellectual Archive, noviembre de 2020. http://dx.doi.org/10.32370/iaj.2437.
Texto completoCollington, Rosie y William Lazonick. Pricing for Medicine Innovation: A Regulatory Approach to Support Drug Development and Patient Access. Institute for New Economic Thinking Working Paper Series, enero de 2022. http://dx.doi.org/10.36687/inetwp176.
Texto completoPhillips, Jake. Understanding the impact of inspection on probation. Sheffield Hallam University, 2021. http://dx.doi.org/10.7190/shu.hkcij.05.2021.
Texto completo